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Abstract: Rolling bearings have to meet the highest requirements in terms of guidance accuracy,
energy efficiency, and dynamics. An important factor influencing these performance criteria is the
cage, which has different effects on the bearing dynamics depending on the cage’s geometry and
bearing load. Dynamics simulations can be used to calculate cage dynamics, which exhibit high
agreement with the real cage motion, but are time-consuming and complex. In this paper, machine
learning algorithms were used for the first time to predict physical cage related performance criteria
in an angular contact ball bearing. The time-efficient prediction of the machine learning algorithms
enables an estimation of the dynamic behavior of a cage for a given load condition of the bearing
within a short time. To create a database for machine learning, a simulation study consisting of
2000 calculations was performed to calculate the dynamics of different cages in a ball bearing for
several load conditions. Performance criteria for assessing the cage dynamics and frictional behavior
of the bearing were derived from the calculation results. These performance criteria were predicted
by machine learning algorithms considering bearing load and cage geometry. The predictions for
a total of 10 target variables reached a coefficient of determination of R2 ≈ 0.94 for the randomly
selected test data sets, demonstrating high accuracy of the models.

Keywords: rolling bearing dynamics; cage instability; regression; machine learning; neural networks;
random forest; gradient boosting; evolutionary algorithms

1. Introduction

The use of dynamics and noise behavior as criteria to assess the performance of a
rolling bearing are coming into increasing focus besides the lifetime and energy efficiency.
In addition to potentially negative health consequences of noise pollution [1], one reason
for this is the increasing electrification of passenger cars and the associated sensitivity re-
garding disturbing and unpleasant noise of all machine elements contained in the technical
system [2]. Besides unpleasant noise caused by bearing dynamics, in precision applications
such as the bearing assembly of the main spindle of machine tools, vibration of the bearing
can lead to a negative influence on manufacturing accuracy [3].

The vibrations emitted by a rolling bearing may have various causes. Due to the
rotation of the rolling element set, the force transmitting points between the inner and
outer ring differ. This leads to a changing stiffness and to unavoidable vibrations of the
rolling bearing caused by the design itself and is known as variable compliance [4]. The
characteristics of these vibrations differ depending on the rolling bearing type (geometry,
number of rolling elements, and pitch diameter) and load conditions (operating contact
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angle and load zone). In addition to the geometry-related causes of vibrations in rolling
bearings, production-related geometric deviations of the bearing rings or rolling elements,
such as roughness, waviness, or surface damage (scratches and inclusions in the material),
influence the radial displacement of the rings and can cause undesired vibrations [5]. Thus,
depending on the frequency of vibration occurring, isolated surface deviations can be
assigned to the inner or outer bearing part based on the respective ball-pass frequency [6].

The cage of the rolling bearing can also be a source of vibrations and noise. An
example are highly dynamic cage movements, which are called “cage rattling” or “cage
instability” in the literature and are associated with strong noise generation [7–9]. The
normal and frictional forces at the guiding surfaces accelerate the cage, so that certain
operating conditions lead to a high-frequency motion and severe deformation of the
cage [10,11]. These cage dynamics lead to a sharp increase in frictional torque [8,9,12] and
temperature in the rolling bearing [8] and can have a negative effect on cage life due to
severe deformations and component stresses. Cage dynamics depend on many influencing
factors; an overview of previous research papers is provided in Table 1.

Table 1. Influencing parameters on the cage dynamics that have been investigated in research papers.

Group Parameter

Bearing and cage properties

Internal clearance [13]
Rolling element size [13]

Rolling element profile [13]
Pocket clearance [13–15]

Guidance clearance [14,15]
Pocket shape [9]

Bearing load
Load ratio [14,16]

Rotational speed [7,13–16]
External vibrations [8]

Friction
Coefficient cage/rolling elements [7,14,15,17]

Coefficient cage/raceway [17]
Rolling element/raceway traction [18]

Lubrication
Viscosity [8,19]

Temperature [8,19]
Oil injection [8]

The dynamic behavior of the cage depends on the bearing and cage properties as
well as the operating conditions of the bearing. As the cage is (besides the rib contact)
accelerated by the rolling elements contact, the dynamic behavior of the rolling elements
has an influence on the cage motion. The kinematics of the rolling elements is affected
by various factors, such as the bearing load and speed, the friction in the contact to
the raceway, the rolling element geometry and the bearing clearance. However, these
parameters are determined depending on the intended application with focus on bearing
lifetime and accuracy of shaft guidance. The influence of the bearing design and load
on the cage dynamics during the application is not usually in the focus in the bearing
selection. Therefore, the cage dynamics must be adjusted by adapting the cage geometry in
the available design space of the selected bearing. By varying the cage geometry, properties
such as the pocket and guidance clearance, the mass inertia and stiffness, and the shape of
the cage pocket are affected. By defining the cage properties, the dynamics can be adjusted,
for example, to avoid unstable cage movements or to minimize the friction loss caused by
the cage as well as the robustness against shock loads.

The influencing parameters on the resulting cage dynamics can be named in gen-
eral, but the quantification of their effects is only partially known so far. There are two
primary reasons for this. First, the calculation using numerical computer simulations
or the measurement of the cage dynamics (motion, forces, or deformation) on a test rig
are time consuming and complicated. In particular for experimental tests, the range of
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influencing parameters that can be investigated is usually limited. Second, the interaction
of the influencing variables is complex, so that it is not possible to determine the influence
of the individual effects directly on the basis of the observed dynamics. Cage instability, for
example, is caused by high frictional forces in the cage contacts and high rotational speeds
of the bearing [14]. If one of the two parameters is low, the probability that highly dynamic
movements will be excited is reduced. In addition to this example, other interactions
can be found, making it more difficult to determine the cage dynamics depending of the
influencing factors such as cage geometry and bearing load.

Machine learning methods are suitable for identifying complex patterns and relation-
ships in the data provided. The application of machine learning algorithms in the field of
tribological problems is increasing, especially in recent years. A comprehensive overview
of the use of machine learning for tribological problems was provided by Marian and
Tremmel [20]. Based on experimental test results, calculations, or information collected
from the literature, regression methods are used to predict typical tribological behavior in
the form of temperature, specific wear, or coefficient of friction. In addition to applications
at the nano or micro scale, machine learning methods are also used at the macro scale, such
as in bearing technology. Schwarz et al. used an ensemble classification model to determine
the dependence between geometric parameters and load of a rolling bearing and the result-
ing dynamics of a cage. The result of the classification was one of the classes “unstable”,
“stable”, or “circling” that were used to assess the qualitative behavior of the cage [21]. By
extending this approach with a regression algorithm, not only the cage motion class but
also the resulting forces on the cage or the acceleration of the cage can be estimated.

In previous research investigations [21], it was possible to quantify the dynamics of
the cage for different operating conditions, but this was usually completed in isolated
cases within the framework of complex numerical calculations or tests. A method for the
time-efficient estimation of the quantitative dynamic behavior of rolling bearing cages
for certain cage properties and rolling bearing loads is not yet available. The aim of this
paper is to present a procedure for predicting the dynamics of a rolling bearing cage
in an angular contact ball bearing using dynamics simulations and regression machine
learning algorithms. This enables time-efficient estimation of the dynamics for the intended
application during the development and selection of rolling bearing cages and also for
operating conditions that are not directly included in the training data.

2. Materials and Methods
2.1. Methodology

The application of machine learning regression methods to predict the dynamics
of a rolling bearing cage requires data representing the correlation between the varied
parameters and the calculated cage dynamics. The starting point was the multi-body
simulation model defined in the software Caba3D [22,23]. The calculation parameters of
the model such as initial and boundary conditions, friction models, and elastic modeling of
the cage are described in Section 2.2. The geometry of the cage as well as the bearing load
and rotational speed were modified with the help of a comprehensive simulation plan using
the design of experiment, see Section 2.3. A Latin hypercube sampling was used to ensure
that the varied parameters are distributed uniformly in the entire mathematical space
defined by previously specified boundaries [24]. The limits of the simulation plan were
chosen so that the operating conditions prevailing in reality are mainly covered. On the
basis of the uniformly distributed parameter values in the simulation plan, the correlations
between the parameters can be efficiently learned by the algorithm. After performing the
calculations, the simulation results were used to determine the input and output parameters
and thus the data sets for machine learning, see Section 2.4. Characteristic values such
as the Cage Dynamics Indicator (CDI) defined by Schwarz et al. [21] were derived from
the calculated time series, which can be used for the assessment of the cage dynamics
and as target values for machine learning. Artificial neural networks (ANN) [25], random
forest (RF) [26], and XGBoost [27] were applied to predict the target variables based on the
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varied calculation parameters, see Section 2.5. The optimization of the hyperparameters of
the used algorithms was performed as part of the training process using an evolutionary
algorithm (EA) [28]. Finally, the predictions of the optimized models for test data sets
were compared so that the most suitable algorithm could be selected. Figure 1 illustrates
the procedure for generating a regression model for the prediction of characteristic values
representing cage dynamics.

Figure 1. Procedure in this study, starting with the dynamics simulation and the design of exper-
iments, followed by the creation of a database, the training of the machine learning models, and
analysis of the predictions.

2.2. Calculation of Bearing Cage Dynamics

The multi-body simulation software Caba3D [29] developed by SCHAEFFLER Technolo-
gies AG & Co. KG was used to determine the rolling bearing dynamics. This tool allows the
calculation of the dynamics of all rolling bearing components for a previously defined time
step and simulation time using a Runge–Kutta-method for performing the numerical time
step integration. The results of the multi-body simulation include the kinematics (position,
velocity, and acceleration in all degrees of freedom) of the rolling bearing components as
well as contact results (pressures, relative velocities, etc.) and node displacements of the
elastically modeled cage [23].

The discretization of the contacts rolling element/raceway as well as cage/ring was
achieved by means of slices. Contact results such as pressure or forces were calculated for
each of the slices and thus resolved locally [22]. For the contact calculation between rolling
element and cage pocket, the ’node-to-surface model’ was used. This approach determines
the contact results using the surface nodes of the finite element (FE) model of the cage
and the slices of the rolling element. This allowed the elastic deformations of the cage and
their effects on the contact conditions to be determined during the calculation [22]. An
elastohydrodynamic model with consideration of mixed friction and the surface roughness
was used for the calculation of the friction between rolling elements and raceways. The
lubricant film thickness was calculated according to Dowson–Higginson [30]. Coulomb’s
friction law was used to calculate the frictional force in the contact between the cage and
the other bearing elements.

The calculation of the node displacements of a FE model of the rolling bearing cage
with several thousand degrees of freedom would be too computationally intensive in the
context of a multi-body simulation. Therefore, a model order reduction according to Craig
and Bampton [31] was performed to consider the node displacements of the FE model
during the dynamics simulation. This allows the number of degrees of freedom to be
significantly reduced without a meaningful degradation in accuracy [29]. For the reduction
in the FE model, eigenfrequencies up to 20 kHz and a maximum of 100 eigenmodes were
considered. The deviation of the eigenfrequencies from the original model and thus the
quality of the reduced FE model was verified using various quality criteria (e.g., modal
assurance criteria and normalized relative eigenfrequency difference [29,32]).



Lubricants 2022, 10, 25 5 of 23

The modeling considered the angular contact ball bearing without adjacent machine
elements consisting of two bearing raceways, the rolling elements, and the outer ring
guided cage, see Figure 2.

Figure 2. (a) Cross-section of the angular contact ball bearing as typically used in machine tools.
(b) Exploded view of the three-dimensional dynamics simulation model consisting of two raceways,
19 rolling elements, and the outer ring-guided window cage.

The degrees of freedom of the outer ring were disabled, while the other rolling bearing
components could move along all six degrees of freedom. The angular contact ball bearing
was loaded axially (Fx) and radially (Fy) by a force on the inner ring. Further parameters
important for the calculation can be found in Table 2.

Table 2. Calculation information of the simulation model.

Group Property Value

Integration
Integration method Runge–Kutta

Output time step 0.0001 s
Calculation time 1.0 s

Cage properties Cage guidance type rib
Cage material fibre reinforced phenolic resin

Bearing properties

Inner diameter 90 mm
Outer diameter 140 mm

Pitch diameter dp 115 mm
Rolling elements 19 balls

Rolling element diameter 15.875 mm
Ring and ball material 100 Cr6

Contact angle α 15°
Static load capacity C0,r 51 kN

The data-driven approach to employ machine learning methods for cage dynamics
prediction requires a high-quality set of data. The source of the data is the multi-body
simulation software Caba3D, for which a high correlation with the real cage motion has
already been found several times [10,14,21] and is therefore considered as a reliable source
for the generation of datasets. Schwarz et al. used a test rig specially developed for testing
cages of rolling bearings and high-speed cameras for optical measurement of cage dynamics.
As in the calculations, cage instability could be observed in the experiment. For the shape,
amplitude, and frequency of the cage deformation, high agreement was found with the
measurement results [21].
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2.3. Simulation Plan for the Cage Geometry and Bearing Load

Twenty cage variants were generated for the angular contact ball bearing, and their
dynamic behavior was calculated for 100 different operating conditions using multi-body
simulations as described in Section 2.2. In total, 2000 dynamics simulations were performed.
Figure 3 illustrates the geometry parameters used to generate different cage designs. The
chosen parametrization of the cage geometry enables the shape to be represented as
generically as possible by 7 parameters. This allows cages with different properties to be
created in the given design space and their dynamic behavior to be investigated. Using
the parameter dg, the clearance between the cage and the outer ring and thus the guidance
clearance can be influenced, see Figure 3a. The cross-section of the cage is defined by
the height hc and width of the cage bc, see Figure 3a. Both parameters affect important
properties such as mass, moment of inertia, and stiffness of the cage. The shape of the
cage pocket was varied using the parameters c0, c1, c2, and c3, which represent the pocket
clearance along the circumference, see Figure 3b.

By choosing the pocket shape parameters, the pocket clearance of the cage on the one
hand and the contact point between cage and the rolling element on the other hand can
be influenced. The pocket clearance has a significant effect on the cage dynamics, as the
number of contacts to the rolling elements increases with decreasing pocket clearance and
can cause highly dynamic cage movements [21]. The contact point between the rolling
element and the cage defines the direction of the normal and frictional force vector in the
contact and finally the direction of the cage acceleration.

Figure 3. (a) Cross-section of the angular contact ball bearing cage. (b) Three-dimensional view of
cage pocket and a rolling element. The blue area represents the geometry of the cage pocket and
shows an exemplary shape defined by four parameters c0, c1, c2, and c3.

Using the geometry parameters, a total of 20 different cage variations were created
using Latin hypercube sampling. The boundaries for the sampling shown in Table 3 were
chosen in such a way that there are no dependencies between the cage design parameters.
For the smallest guidance diameter dg and largest cage height hc, the clearance cage/inner
ring is greater than the clearance cage/outer ring, and the same guidance type is provided.

Besides the modifications of the cage geometry, the load on the rolling bearing was
also modified using an additional Latin hypercube sampling. The forces acting on the
inner ring were varied using the load ratio R and the equivalent dynamic bearing load P.
Based on the two parameters in Equations (1) and (2), the forces Fx and Fy to be defined in
the simulation can be calculated. In addition to the forces, the inner ring was also loaded
by the torque Tz acting around the z-axis, see Figure 2. The frictional force in the rolling
element/cage contact was varied via the coefficient of friction µc.

P = X · Fx + Y · Fy (1)

R =
Fx

Fy
(2)
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The speed of the inner ring ni was also taken into account in the sampling. The
kinematic speed of the rolling elements nr and the cage nc at the beginning of the simulation
were determined for the initial time step by the Equations (3) and (4) depending on the
defined inner ring rotational speed [33].

nr = −
ni

2
·
(

dp

dre
− dre · cos2(α)

dp

)
(3)

nc =
ni

2
·
(

1 +
dre · cos(α)

dp

)
(4)

A simulation plan consisting of a total of 100 operating conditions (inner ring rotational
speed, force and torque on the inner ring, and friction coefficient in the rolling element/cage
contact) was created using the boundary values in Table 3 and Latin hypercube sampling.
Simulation models were generated for each of the 20 cage variants according to the same
operating conditions defined by the created simulation plan, so that a total of 2000 dynamics
simulations were performed.

Table 3. Minimum and maximum values of the parameters for the Latin hypercube sampling.

Parameter Minimum Maximum

Load ratio R 0.25 10
Equivalent dynamic bearing

load P in N 1000 10,000

Torque on inner ring Tz in Nm 10 50
Rotational speed inner ring ni

in rpm 1000 9000

Friction coefficient rolling
element/cage µc

0.05 0.35

Pocket shape parameters
c0, c1, c2, c3 in mm 0.1 0.35

Cage width bc in mm 19 23
Cage height hc in mm 4 8
Guidance diameter dg 122 124.2

2.4. Features and Targets for Machine Learning

The input and output parameters for machine learning were derived from the calcula-
tion models and results and formed the database. The input parameters were structured
by mechanical and geometrical properties of the cage as well as the loading parameters
and the resulting class of the cage motion (according to Schwarz et al. [21]), see Table 4.
Stiffness as a mechanical property is defined using a weighted area moment of inertia and
cross-sectional area of the cage as input parameters. The weighting of the cross-section
properties in the pocket and in the bar is based on a nonlinear function that provides a
disproportionate amount of the area moment of inertia and the cross-sectional area in the
cage pocket according to Schwarz et al. [21]. The cage mass and the mass moments of inertia
complement the mechanical properties. The geometrical properties consist of the pocket
shape parameters and the pocket and guidance clearance of the cage. The mechanical
and geometrical parameters represent the essential properties that can be derived from a
given cage geometry. The axial and radial loads, as well as the torque acting on the inner
ring, were defined as relative quantities in relation to the basic static load rating C0,r and
the pitch diameter dp as input parameters. Thus, the database can be supplemented by
calculation results of other bearing sizes in the future. The cage motion class is represented
by one of the basic observable cage motion types, “unstable”, “stable”, or “circling”, and
was determined using Quadratic Discriminant Analysis based on the simulation results.
The movement types differ in their dynamic behavior and can be classified based on their
kinematics [34]. The cage motion type can also be predicted with high reliability by the
classification algorithm AdaBoostM1 using the input parameters of the simulation [21].
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However, the cage motion class provides information about the dynamics of the cage in a
qualitative level. By extending the prediction using a regression algorithm, the relevant
kinematic results can be specified more precisely.

Table 4. Features for the machine learning model.

Group Property Symbol

Mechanical and material properties

Weighted area moment of
inertia Ĩ

Weighted cross-sectional
area Ã

Cage mass m
Cage moment of inertia Jx, Jy

Geometric properties
Pocket shape parameters c0, c1, c2, c3

Pocket clearance
circumferential cc

Pocket clearance axial ca
Guidance clearance cg

Load parameter

Axial Force Fx/C0,r
Radial Force Fy/C0,r

Torque Tz/(C0,r · dp)
Rotational speed inner

ring ni

Coefficient of friction µc

Predicted cage motion Cage motion class C

The Cage Dynamics Indicator (CDI) defined by Schwarz et al. [21] contains all neces-
sary parameters for the assessment of the cage dynamics and was used as the target of the
regression task. The median (med) and the quantile distance (qd) indicate the distribution
of the motion quantities contained in the CDI and were determined from the calculated time
series. For the evaluation of the cage motion, the Ω-ratio, the cage coordinates normalized
to the guidance or pocket clearance x̃c, ỹc, and z̃c, the rotational ratio ñc, and the equivalent
deformation force Fe were used.

In addition to the CDI, the output parameters include the median of the frictional
torque Tf, the median of the contact forces on the cage |Fc| and the median of the trans-
lational acceleration |ac| of the cage. In total, the output parameters for the regression
algorithm consist of 10 parameters, which can be used to assess the cage dynamics as well
as the energy efficiency of the bearing. In previous research papers, the CDI has been used
as a key figure to assess the cage motion calculated by the dynamics simulation [14,21,34].
In this contribution, machine learning methods will be used to predict the CDI in order to
accurately assess cage dynamics.

A strong scatter of the target variables reduces the prediction accuracy of the algo-
rithms. Therefore, an anomaly detection for each motion class identified outliers of the
target variables and removed them from the database. A density-based approach devel-
oped by Breunig et al. was used for anomaly detection. The local outlier factor (LOF)
determines the degree of isolation of a data set compared to the immediately neighboring
data sets [35].

2.5. Regression Algorithms and Hyperparameter Optimization

In this paper, the prediction accuracy of three different regression algorithms (Random
Forest, XGBoost, and Artificial Neural Networks) used to estimate rolling bearing cage
dynamics are compared. The hyperparameters of the models were determined by an EA as
part of an optimization of the prediction accuracy [28].

RF is an ensemble method based on the ‘wisdom of the crowd’ paradigm. According
to this, a prediction made by a large number of different persons/models achieves better
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results than the prediction of a single person/model. Accordingly, an RF regressor contains
multiple regression trees that learn the regression problem using different sub-sets of the
original training data. These sub-sets are regenerated by bagging for each regression tree.
The degree of randomness is further increased by using only a random selection of features
for training the decision trees. Random components (bagging or feature selection) reduce
the model’s tendency to overfit the training data [36].

Gradient boosting is another ensemble method developed by Friedman [37]. In an
iterative process, multiple regression trees are trained. The training process of a decision
tree depends on predictions and loss of the already trained decision trees in the ensemble.
One implementation of gradient boosting is XGBoost (extreme gradient boosting) [27],
which was used for predicting cage dynamics in the present case. As the regression
algorithm in XGBoost is designed to predict only a single value, one model was trained for
each output parameter. However, this allows interactions of the targets to be represented
less effectively than with the random forest regressor.

ANNs are widely used algorithms for classification and regression in the field of
machine learning. The input value of a neuron results from the weighted sum of the
output values of the neurons of the previous layer and a so-called constant bias value.
The neuron’s input value is converted into the output by a nonlinear activation function.
During the training of the ANN, the weights as well as the bias values are optimized so that
the relationship in the training data between the input values and the output values can
be predicted as accurately as possible [38]. For the prediction of the cage dynamics in this
paper, an ANN consisting of a total of five layers was trained using the training algorithm
Adam [39]. The target variable of the optimization procedure is the mean square error
(MSE) between the ANN’s predictions and the target values contained in the training data.

For the ML algorithms, hyperparameters such as the ANN’s number of neurons per
layer need to be specified. With the help of an EA, the hyperparameters were determined
so that the prediction accuracy of the models were optimized. The remaining parameters
of the models are listed in Appendix A. The EA uses mechanisms of biological evolution
such as selection, recombination and mutation to improve the fitness (metric for assessing
regression results, e.g., coefficient of determination R2) of the individuals (set of hyperpa-
rameters) contained in a population (amount of individuals) for a predefined number of
generations, see Figure 4. Starting from an initial population generated by Latin hypercube
sampling, the fitness of each individual is determined. The fitness of the individuals and
target value of the EA was represented by the mean R2 according to Equation (5). Using a
K-fold (K = 5) cross-validation, a total of K validation data sets were generated from the
training data for fitness evaluation. The data set was randomly split so that 85% is used
for hyperparameter optimization as well as the cross-validation contained within the loop
and 15% for subsequent testing of model predictions. R2 was calculated by evaluating the
arithmetic mean of the R2 for each validation data set and target variable. The prediction
accuracy for the validation data is an indicator of the generalization capability of the model,
which can be finally evaluated after training by the test data sets.

R2 =
1
K
· 1

N
·

K

∑
i

N

∑
j

R2
ij (5)

The R2 of each output parameter was calculated by Equation (6) using the predictions
of the algorithm ŷi, the target parameter according to the test data yi, and its arithmetic
mean y. Thus, R2 can reach a maximum value of 1 in case of an error-free prediction of
the algorithm.

R2 = 1− ∑i(yi − ŷi)
2

∑i(yi − y)2 (6)

After calculating the fitness of the initial population, the evolutionary process con-
sisting of selection, recombination, mutation, and evaluation of fitness was repeated in a
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given number of generations. Individuals for recombination were selected by the fitness
proportional method stochastic universal sampling. Each individual received an area
proportionate to its fitness value on a wheel. By spinning the wheel once and with n
arrows equally distributed around the circumference, n individuals were selected by the
pointers. Recombination was performed in pairs for the selected individuals. The list
of hyperparameters of two individuals for mating were separated at two points and the
new resulting individuals were defined by alternating the combination of the sections, see
Figure 4. After recombination, mutation was performed for each parameter contained in
the individual by a uniformly distributed random variable. Mutation served to generate
new parameter specifications in the population and was performed with a previously
defined probability. The individuals produced by recombination and mutation, as well as
the best individual from the previous population (elite), formed the new population for the
following generation.

Figure 4. Steps of the EA used for hyperparameter optimization of the regression models.

After a predetermined number of generations, the model with the highest fitness
and best prediction accuracy for the test data was returned by the EA. The parameters
controlling the behavior of the EA can be taken from Table 5.

Table 5. Parameters of the EA for the optimization of the hyperparameters of the regression algorithms.

Parameter Value Parameter Value

Number of
generations 30 Population size 50

Elite individuals 1 Crossover probability 0.8
Mutation probability 0.15

Table 6 shows the hyperparameters of the algorithms and components of the individ-
uals as well as the range of the parameters considered during optimization. The ranges
of the hyperparameters were chosen to be comparatively large in order to provide as
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many parameter combinations as possible. Large ranges of the hyperparameters increase
the risk of overfitting (e.g., large number of neurons contained in the ANN). However,
overfitting was avoided, including in the training methods of XGBoost and ANN, by using
evaluation datasets. Based on the predictions for the evaluation datasets that were not used
directly for training, it is determined whether overfitting is present in the current state
of the training process. No evaluation dataset was used for Random Forest, because the
algorithm generally has a low tendency to overfit the training data [36].

Table 6. Hyperparameters of the regression models optimized using the EA.

Model Parameter Minimum Maximum

XGBoost

Max depth 20 200
Number of estimators 100 1500

Learning rate 0.0001 0.01
L1 regularization 0.0001 0.9
L2 regularization 0.0001 0.9

Minimum loss reduction for tree split 0.00001 0.2

Random Forest

Max depth 20 200
Number of estimators 100 1500

Minimum samples required for a leaf 2 10
Maximum number of features for a split 10 17

Maximum number of leaf nodes 10 500
Minimal cost-complexity pruning 0 0.5

ANN

Number of neurons in layer 1 100 600
Number of neurons in layer 2 100 600
Number of neurons in layer 3 100 600
Number of neurons in layer 4 100 600

Learning rate 0.0001 0.9
Activation function ELU, RELU, Leaky_RELU

3. Results
3.1. Dynamics Simulation Results

The results of the dynamics simulations contain time series that include dynamics of
the cage as well as the rolling elements. Figure 5 shows an example of the dynamic behavior
of a cage for different operating conditions of the bearing. In the qualitative assessment of
cage dynamics, a fundamental differentiation is made between “unstable”, “stable”, and
“circling” cage motions [21,34]. These types of movements could also be observed for the
cages investigated. Figure 5a–c illustrates an example of an unstable cage motion (loading
conditions µc = 0.21, Fx = −8058 N, Fy = 1077 N, ni = 8263 rpm Tz = 48 Nm), that is
characterized by high dynamics as well as severe and high-frequency cage deformations.
The cage was pressed against the outer ring and strongly deformed. This led to the diameter
of the circular center of gravity trajectory being significantly larger than in the other two
calculations. In addition, high contact forces caused frictional losses, which significantly
impair the energy efficiency of the rolling bearing. In the case of stable cage motion
(loading conditions µc = 0.26, Fx = −15,126 N, Fy = 1636 N, ni = 4407 rpm Tz = 14 Nm),
no significant deformations occurred and the dynamics of the cage were generally low,
see Figure 5d–f. The contact forces between the cage and the rolling element and outer
ring were also significantly reduced compared to an unstable motion, and therefore the
frictional losses were also lower. The circling cage motion (loading conditions µc = 0.12,
Fx = −3030 N, Fy = 377 N, ni = 6844 rpm Tz = 12 Nm) is characterized by a circular
motion of the cage center of mass that exhibits small variations in the rotational speed. The
rotational speed of the cage center of mass corresponds to the speed of the rolling element
set. The cage is pressed in a radial direction due to the centrifugal force acting, so that the
number of contacts to the guidance rib and the contact force acting in the contact increase.
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Figure 5. Dynamic behavior of a cage for different operating conditions: an unstable (a–c), stable
(d–f), and circling (g–i) cage motion. The three-dimensional deformation of the cages, the center of
gravity trajectory, and the amplitude spectrum of the node displacement are illustrated.

In addition to the load on the bearing, the geometry of the cage can also influence the
dynamic response of the bearing. Figure 6 shows the cage dynamics for a load situation
(µc = 0.16, Fx = −9655 N, Fy = 3718 N, ni = 6844 rpm Tz = 16 Nm) and three different
cage geometries. The first cage variant performed a highly dynamic cage motion with
severe deformations and a high rotational speed of the cage center of mass, see Figure 6a–c.
A modification of the cage geometry (cross-section and shape of the cage pocket) for the
other two variants and the same operating conditions led to circling cage motions in
both cases. The amplitudes of the deformations were significantly smaller compared to
the first cage variant and the larger amplitudes were shifted to the low frequency range,
see Figure 6d–i.
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Figure 6. Dynamic behavior of three different cage variants for the same loading conditions. The
three-dimensional deformation of the cages (a,d,g), the center of gravity trajectory (b,e,h), and the
amplitude spectrum of the node displacement (c,f,i) are illustrated.

An overview of the simulations performed and the resulting cage motion types is
shown in Figure 7. Certain cage geometries (ID 02 or 05) had a high proportion of unstable
cage motions, while other cage variants exhibited a much lower tendency to unstable cage
motions (ID 14 or 10). In addition, differences in the proportion of circumferential and stable
cage movements were also evident for the different cage variants. The dynamic behavior of
the cage variants illustrates the potential of the geometry parameters to positively influence
the dynamics of the cage. A clear influence could also be identified in the loading conditions,
as was found, for example, by Schwarz et al. [14]. However, as the operating conditions
often cannot be influenced, these serve only as a reference for comparing the dynamic
behavior of the cage geometries.
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Figure 7. Overview of the results of the dynamics simulation. (a) Number of motion types “unstable”,
“stable”, and “circling” for each cage variant. (b) Motion type as a function of cage geometry and
bearing load. (c) Number of motion types for each bearing load in the experimental design.

The simulation results were further processed so that the influence of cage geometry
and bearing load was represented by a database consisting of input and target variables
and could be used for machine learning.

3.2. Preprocessing of Calculation Results and Data Analysis

The calculated time series were the starting point for determining the targets for
machine learning. For the evaluation of the cage dynamics, the time range t = 0.5...1 s
was analyzed to avoid unrepresentative cage motions due to the initial conditions at the
beginning of the calculation.

In addition it was checked whether the simulation results are suitable to be integrated
into the database. Especially for simulations with high friction coefficients, a severe defor-
mation of the cage occurred, which led to a termination of the simulation. Nonphysical
results as the automatically generated inputs are out of a reasonable range for this applica-
tion and were removed from the database. Using the density-based LOF approach, outliers
in the database could be identified and removed. The LOF approach was applied to each
of the classes “unstable”, “stable” and “circling”. Outliers with respect to the dynamic
behavior typical for the respective classes were thereby identified. Figure 8 illustrates the
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outliers (red) and the remaining datasets (blue). Outlier detection reliably removed atypical
cage movements, ensuring a high-quality database for machine learning. After preparing
the simulation results, the database for machine learning contained a total of 1362 data sets.

Figure 8. Distribution of target regression variables (a) med(Ω) and qd(Ω) as well as (b) qd(Fe) and
qd(ñ) in the database. The data sets marked in red are identified as outliers using the LOF approach
and not considered for training the regression models.

Figure 9 shows the correlation matrix for determining the qualitative relationship
between input and output parameters. The mechanical properties of the cage (area moment
of inertia Ĩ, mass m, area cross section Ã, and moment of inertia J) had similar values
for the correlation coefficient and thus a related influence on the target parameters, see
Figure 9a. A mathematical negative correlation existed between the mechanical properties
and the center of mass acceleration of the cage |ac|. Accordingly, lower accelerations
occur at higher masses of the cage, which can be justified by the inertia of the geometry.
There is also a positive correlation between the cage mass and the equivalent force Fe
representing the deformation of the cage. Thus, for the cages with larger masses, the
equivalent deformation force tend to be larger. With respect to the bearing speed ni and
friction coefficient µc, a mathematical positive correlation to cage acceleration, contact
forces, and finally a highly-dynamic cage movement could be clearly determined. This is
due to the increased relative velocity and frictional force in the contact between the cage
and the other components, which leads to a stronger excitation of the cage and an increased
tendency to highly dynamic movements.

Based on the matrix in Figure 9b, a mutual correlation of the output parameters was
also evident. Highly dynamic cage movements are characterized by strong deformations of
the cage, high accelerations, and a high frictional torque, for which reason these parameters
exhibited a strong correlation. Due to the opposite movement of the center of mass in the
case of unstable cage dynamics, there is a mathematical negative relationship between the
median of the Ω-ratio and the other parameters. The weak relationship of the normalized
x̃c-coordinate of the cage to the other target quantities is also noticeable. The contact forces
between the cage and the rolling element/rib point primarily in radial direction, which is
the direction of the resulting acceleration. Therefore, the correlation between the quantile
distance of the two non-axial coordinates is more significant, especially in the case of an
unstable cage motion. The quantile distance of the Ω-ratio also indicates a slightly lower
correlation to the other parameters, but still stronger than the quantile distance of the
x̃c-coordinate of the cage center of mass.



Lubricants 2022, 10, 25 16 of 23

Figure 9. Matrix with correlation coefficients for determining the relationship between (a) the input
and output parameters and (b) the output parameters among each other.

Although there were trends based on the correlation matrix that suggest the resulting
dynamic behavior of the cage, the relationship is highly nonlinear due to interactions
between the parameters. Therefore, the regression algorithms are trained in the following
to learn the relationship between input and output parameters.

3.3. Evaluating Optimization and Regression Results

The EA determined the hyperparameters of the models to maximize the average
coefficient of determination for the validation data sets. The best individuals or parameter
combinations are shown in Table 7. A large number of neurons, or many estimators in the
ensemble methods, increase the adjustable model parameters, the risk of overfitting to the
training data, and poor prediction accuracy for test data. However, the hyperparameters
causing overfitting were not chosen by the optimization to maximize the number of model
parameters to reach high values for the prediction accuracy based on the training data. In
general, this is a first indication that a generalization capable model was created by the
training and optimization.
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Table 7. Optimized parameters of the regression models.

Model Parameter Minimum Maximum Value

XGBoost

Max depth 20 200 52
Number of estimators 100 1500 832

Learning rate 0.0001 0.01 0.045
L1 regularization 0.0001 0.9 0.865
L2 regularization 0.0001 0.9 0.791

Minimum loss reduction for tree split 0.00001 0.2 0.021

Random Forest

Max depth 20 200 46
Number of estimators 100 1500 812

Minimum samples required for a leaf 2 10 2
Maximum number of features for a split 10 17 17

Maximum number of leaf nodes 10 500 441
Minimal cost-complexity pruning 0 0.5 0.0009

ANN

Number of neurons in layer 1 100 600 447
Number of neurons in layer 2 100 600 568
Number of neurons in layer 3 100 600 577
Number of neurons in layer 4 100 600 455

Learning rate 0.0001 0.9 0.003
Activation function ELU, RELU, Leaky_RELU Leaky_RELU

The hyperparameters optimized by the EA were used for training the algorithms.
Afterwards, the models were evaluated using the coefficient of determination R2 for test
and training data, see Figure 10. For the training data, acceptable values for R2 were
obtained for all algorithms. The quantile distance for the normalized x̃c-coordinate of the
cage reached R2 ≈ 0.41 in the case of the random forest regressor, which is to be assessed as
a medium correlation. The excitation of the cage, as well as the translational center of mass
movement, occurs both for the contact of the cage to the rolling elements and to the rib in
the radial direction. The relationship between the geometry and load parameters as well
as the axial center of mass movement and finally the R2 of the predictions were therefore
lower compared to the other center of mass coordinates. Random forest regressor predicted
very well for all target values, but reached a slightly lower R2 compared to XGboost and the
neural network for training data. The random components in the random forest algorithm
(e.g., feature selection) prevent possible overfitting to the training data and led to slightly
inferior prediction. The coefficients of determination R2 ≈ 1 for XGBoost were very high
and indicate a significant fit to the data sets.

The test datasets generally showed a lower coefficient of determination than the
training datasets but were within an acceptable range apart from the quantile distance of
the normalized x̃c coordinate of the cage. qd(x̃c) exhibited the worst values of R2 ≈ 0.41
for the random forest and R2 ≈ 0.6 the ANN. Thus, while qd(x̃c) is suitable for assessing
cage dynamics when derived from calculated time series, there is no strong correlation
to bearing load or cage geometry. The difference in prediction accuracy for training and
test data was lowest for random forest, which indicates a generalization of the model.
However, the difference for XGBoost and the ANN was also in an acceptable range, which
is also a sufficient generalization capability. All models reached comparable values for the
coefficient of determination R2 based on the test data sets and thus can be used equally
for the prediction of cage dynamics. The best prediction values for R2 based on the test
data sets were obtained for the quantile distance of the equivalent deformation force
Fe, the median of the Ω-ratio and the median of the friction torque Tf in the range of
R2 ∈ [0.90 . . . 0.94]. For the remaining target parameters, with the exception of qd(x̃c), at
least one of the models investigated achieved a coefficient of determination R2 > 0.8 and
sufficient prediction accuracy.
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Figure 10. Coefficient of determination R2 for the target variables of the regression algorithms
Random Forest, XGBoost, and Neural Network for training (a) and test data (b).

The scatter plot in Figure 11 shows, representative of the trained models, the predic-
tions of the ANN compared to the true values in the training (blue) and test (red) data. As
can be seen from the correlation matrix and the coefficient of determination, the predictions
for the quantile distance of the axial coordinate of the cage qd(x̃c) were considerably more
scattered than the other target variables. For the quantile distance of the omega ratio, the
deviation of the predictions from the test data sets was smaller, but a stronger, though still
acceptable, scatter was also present here. For the remaining parameters, a good correlation
was present, analogous to the R2. The deviations are within a tolerable range, as can be
seen by the intervals containing 90% of the errors determined for the test data (blue area).

The hyperparameters obtained from the optimization by the EA were used to perform
a 10-fold cross-validation. This allowed us to determine how strong the predictions of the
algorithm differ depending on the used training and test data set, see Figure 12. Based
on this, the sensitivity of the prediction results for different training and test data sets
could be investigated. Figure 12 exhibits the distribution of the average prediction of
the target values for the training data and a 10-fold cross-validation including (a) and
excluding (b) the quantile distance of the cage coordinate x̃c as regression target. For all
three models, omitting the normalized coordinate improves the average prediction quality,
as lower R2 values are obtained for qd(x̃c) than for the other values in all iterations of the
cross-validation. The minima and maxima of R2 for the three models without considering
x̃c in the cross-validation were very similar and differ only slightly. As no obvious favorite
could be identified based on the prediction accuracies, all three algorithms were suitable
for predicting the cage dynamics with a comparable error tolerance.
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Figure 11. Scatter plot of the target parameters for training (blue) and test (red) data sets and the
predicted values by the neural network. The colored area represents the range where 90% of the
errors for the test data sets are located.

Figure 12. Distribution of R2 values for all target variables (a) and without the normalized x̃c-
coordinate (b) for a 10-fold cross-validation. Besides the minimum and maximum, the distribution of
the values is also illustrated.
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4. Discussion

The results of the dynamics simulation illustrate the strong influence of the bearing
load and cage geometry on the resulting cage dynamics, see Figure 7. Depending on the
geometry, the tendency of a cage to highly dynamic and unstable cage movements varies
significantly. However, the relationship between the geometry parameters and the resulting
cage dynamics is very complex and difficult to determine using conventional methods of
descriptive statistics, as can be seen from the covariance matrix in Figure 9. The complex
relationship between the input and output parameters can basically be determined with
the help of the investigated algorithms. Analyzing the prediction results for test data, it
can be seen that for the quantile distance of the normalized center of mass coordinate x̃c of
the cage, mediocre prediction values could be obtained. As the frictional forces acting in
contact between the cage and the other components accelerate the cage primarily in the
bearing plane, the physical relationship between the input parameters of the model and
the resulting axial cage motion is less than for the other parameters. The normalized x̃c
coordinate of the cage is thus less suitable for predicting the cage dynamics. Though, as a
component of the multivariate metric CDI, which can be derived from calculated time series
representing cage dynamics, x̃c is a contribution to improve the classification performance.

The algorithms Random Forest, XGBoost, and ANN achieved similar values for the R2

of the different target variables for the test data sets, see Figure 10. A 10-fold cross-validation
exhibited that the differences between the models are small, and thus all algorithms are
suitable for the prediction of the cage dynamics. The robustness of the predicted targets for
a given cage geometry with respect to deviations from the true values can be improved
by a large number of predictions by the regression algorithm with a subsequent statistical
analysis. This reduces the influence of single incorrect predictions and improves the
comparability of the dynamic behavior of different cage variants.

A transfer of the predictions to other rolling bearing sizes is possible in general. For
this purpose, new training data must be generated and the existing database expanded.
However, a similar effect on the cage dynamics can be expected, especially for the load
conditions as shown, for example, by Schwarz et al. for various bearings [14,21]. Therefore,
the amount of training data for the same bearing type and similar cage shapes can probably
be lower than for the investigated angular contact ball bearing. In addition to the extension
to other bearing types, other parameters can also be added as input variables, so that
depending on the existing application, the model can also be designed flexibly. As with
the geometry parameters, new data sets must be created for the training, but the database
established so far serves as an initial starting point for further investigations.

5. Summary and Conclusions

The aim of this paper was to present a procedure for predicting the dynamics of
cages in an angular contact ball bearing using dynamics simulations and machine learning
regression methods. To achieve this aim, the approach in this paper is structured as follows:
starting with a comprehensive simulation study, a database was created to represent
the relationship between the input (cage geometry and bearing load) and output (cage
dynamics and bearing friction) parameters for the regression models. As part of the training,
the hyperparameters of the random forest, XGBoost, and artificial neural network models
were optimized using an evolutionary algorithm. The optimized hyperparameters were
used to train the regression models. The prediction accuracy of the models was compared
using the coefficient of determination R2 and regression plots. Based on the models and
their predictions, the dynamics of the cage represented by the target variables can be
predicted with high accuracy. The following conclusions can be drawn from the results of
this paper:

• The cage geometry has a significant influence on the resulting cage dynamics. The
occurrence of unstable cage movements can be significantly reduced by changing the
geometry of the cage.
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• The influence of the geoemtric parameters is non-linear and characterized by strong
alternating effects and can therefore hardly be assigned to single parameters.

• There is a low correlation between the axial movement of the cage and the influencing
factors such as bearing load and cage geometry. The reason for this is that the contact
forces acting on the cage point mostly in radial or circumferential direction. The forces
acting on the cage are influenced by the parameters such as cage mass, cage speed, etc.

• In this study, all regression algorithms achieved acceptable values for the coefficient
of determination in the range of R2 ∈ [0.75 . . . 0.94] for the target variables except for
the quantile distance of the normalized axial center of mass coordinate of the cage.
Therefore, the models appear to be suitable to compare the performance (dynamics,
friction) of different cages.

• The use of machine learning algorithms allows prediction even for new data sets of
the analyzed bearing for which no dynamics simulation has been performed. The
duration of the prediction is less than one second, while the computation time for a
simulation is about 10 h.
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Appendix A

Table A1. Parameters of the machine learning models, that were not optimized. The literature
reference for each model is the implementation of the algorithms.

Random Forest [26] XGBoost [27] ANN [25]

Parameter Value Parameter Value Parameter Value

Split criterion MSE Importance
type gain Weight

initializer
HeNormal/

Glorot

Minimum samples
for split

2 Objective MSE Slope coefficient for
Leaky ReLu activation

0.01

Use out of
bag score

False Subsampling False Bias initializer None

Bootstraping when
building trees

True Booster gbtree Regularizer None
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