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Abstract: In the rail industry, there are four types of steel grades used for monoblock wheels, namely
ER6, ER7, ER8 and ER9. ER7 steel is manufactured in accordance with the EN13262 standard and is
utilized in European railway lines. These train wheels are formed by pressing and rolling after which
they are machined using turning process to achieve their final dimensions. However, machining ER7
steels can be challenging due to their high mechanical properties, which can facilitate rapid tool wear
and thermal cracking. Therefore, while the use of coolants is critical to improving their machinability,
using conventional flood coolants adds extra operational costs, energy and waste. An alternative is
to use minimum quantity lubrication (MQL) cooling technology, which applies small amounts of
coolant mixed with air to the cutting zone, leaving a near-dry machined surface. In the current study,
preliminary tests were undertaken under dry conditions and using coated carbide inserts to determine
the optimal cutting parameters for machining ER7 steel. The impact of the cutting speed and feed
rate on surface roughness (Ra), energy consumption and cutting temperature were investigated and
used as a benchmark to determine the optimal cutting parameters. Next, additional machining tests
were conducted using MQL and nano-MQL cooling technologies to determine their impact on the
aforementioned machining outputs. According to preliminary tests, and within the tested range of
the cutting parameters, using a cutting speed of 300 m/min and a feed rate of 0.15 mm/rev resulted
in minimal surface roughness. As a result, using these optimal cutting parameters with MQL and
Nano-MQL (NMQL) cooling technologies, the surface roughness was further reduced by 24% and
34%, respectively, in comparison to dry conditions. Additionally, tool wear was reduced by 34.1%
and 37.6%, respectively. The overall results from this study demonstrated the feasibility of using
MQL coolants as a sustainable machining alternative for steel parts for rail wheel applications. In
addition, the current study highlight the enhanced performance of MQL cooling technology with the
addition of nano additives.

Keywords: ER7 steel; nano-MQL; machinability; surface roughness; tool wear

1. Introduction

Train wheels are produced as a single piece from low-alloyed carbon steel grades
such as ER7 steel [1]. In the heat treatment stage, the train wheel is heated up to 830 ◦C
and then cooled to 200–230 ◦C for hardening. Then, the hardened material is kept for
1–2 h before it is tempered at 530 ◦C for 3 h [2]. Wheel rail components should possess
wear and corrosion resistance characteristics since they are continuously subjected to static
and dynamic loads [3]. For this reason, material properties such as the type of alloying
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elements added to the material, production method and heat treatment have a direct
impact on the quality of the train wheels. Moreover, the expected surface quality of a
train wheel produced with ER7 material after machining is very high (0.8–3.2 µm) [4].
Therefore, understanding the machinability of ER7 steel is critical to ensuring that the
machined wheels meet the stringent surface finish requirements. Therefore, past studies
in the open literature investigated the wear behavior, heat treatment and microstructural
changes of steel alloys used in the rail industry. The studies employed a combination of
surface microstructure techniques such as LSCM, SEM, EBSD, TEM and X-ray diffraction.
Hu et al. [1] studied the microstructures, and differences in the microstructures, of three
different types of railway wheel materials (ER7, CL60 and C grade) with varying ferrite
content (XRD). There was also a discussion about the link between fatigue and wear. In
another work by Hu et al. [5], the wear behavior of five different wheels and four different
rail material pairings with varying hardness values was investigated. They discovered
that when the hardness of the wheels and rails increased, the wear rate reduced and then
marginally increased. There were significantly fewer cracks found on PG4 and PG5 rails
according to their analysis of the five wheel materials. In another study, Hu et al. [6]
also observed that, as the wheel and rail hardness ratios increased, the wheel wear rate
decreased but the rail wear rate increased. They observed that low fatigue wear turns into
severe fragmentation and severe fatigue wear as the void rate increases with decreasing
hardness values for both materials. Angelo et al. [7] reported that double-disc tests on
rail steel specimens exposed to dry contact with cast iron brake block specimens, dry
contact with rail steel specimens and wet contact with rail steel specimens matched the
braking effect while minimizing the damage to the ER7 steel railway wheels. Additionally,
nondestructive testing procedures (weight loss, surface temperature and coefficient of
friction) were employed to inspect material structures. According to their results, the most
important mechanism of damage is the expansion of the surface fracture caused by the
pressure of the liquids in wet contact. They employed FEA (finite element analysis) to
determine the stress intensity factor (SIF) applied at the tip of the surface crack and the
propagation limit of these cracks, which are critical requirements for damage avoidance.
T. Giętka and K. Ciechacki [8] focused on the real load values and material behavior, not
only measuring on a test or real object, but also simulating and analyzing them with FEA
for verification. They stated that the material they proposed in their study met the criteria
specified in the light of the literature review and the simulation results obtained. As a result,
they stated that ADI (austempered ductile iron) material is 20.7% more advantageous than
monoblock material based on the analysis of the mass difference. In addition, there a rich
literature which investigated the effect of coatings on reducing the surface defects and
wear in wheel train made from ER7 steel experimentally and numerically [9–11]. However,
limited studies can be found in the open literature on the machinability of the train wheels
made from ER7 steel. Increasing global competition stimulated businesses to produce
high-quality and low-cost products which made it mandatory for enterprises to choose
the appropriate machining parameters to produce the desired qualities in the machined
parts [12,13]. If the appropriate parameters are not selected, rapid wear, breakage and
deformations might occur in the cutting tools, deteriorating the surface quality of the
machined parts which in return will have an adverse effect on the cost and quality [14]. In
parallel with technological developments, different cutting fluids are currently being used
in machining hard-to-cut materials [15,16]. These cutting fluids are sometimes embedded
with additives according to the machined material and manufacturing conditions [17–19].
Although cutting fluids can improve the machining process, they may have negative
effects on the environment (disposal and recycling) and human health (skin irritation). To
minimize the negative effects of cutting fluids, minimum quantity lubrication techniques
were developed which use small amounts of coolants mixed with air to reduce the amount
of fluid used during the machining process [20,21].

Obikawa et al. [22] observed that, when machining carbon steel, MQL was more
effective in reducing nose and flank wear than a solution type cutting fluid. Dniz et al. [23]
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evaluated the influence of MQL and other cooling strategies on the machinability of
AISI 52100 steel using various types of cutting tool materials. Their findings indicated
that traditional coolant machining resulted in increased tool wear and decreased surface
roughness when compared to dry and MQL machining settings. Unlike many previous
studies that compared the MQL technique to the dry, standard coolant and compressed
air, this study recommends MQL turning for improved surface roughness and reduced
tool wear. Dhar et al. [24] evaluated the effects of turning AISI 1040 steel on cutting
temperature, chip shape and dimensional accuracy in another investigation, comparing the
MQL approach to the dry and standard coolant. According to the experimental data, MQL
can significantly reduce the cutting temperature and dimensional error rates at various
cutting speeds and feed rates. MQL leaves a near-dry machined surface and can reduce the
cutting temperature at the tool–chip interface more than other types of cooling techniques
due to the better penetration of the lubricant with the assistance of pressurized air [25–28].
In addition, chip breakability and separation were improved using MQL due to the effective
lubrication and the ability of the pressurized air to blow cut chips away from the cutting
zone [29]. To increase the efficiency of MQL cooling systems and to improve the tribological
properties, the use of nanofluids by adding nanolubricants and nanoparticles is becoming
increasingly common. Yildirim et al. [30] compared the results obtained with dry and
pure MQL by adding hBN nanoparticles with a low coefficient of friction and excellent
lubricating properties at two different rates (0.5 and 1 vol%). They stated that the best
machining output results were obtained with nano-MQL. Moreover, 0.5%-hBN-added MQL
showed a 43% improved performance on tool wear, while 1%-hBN-added MQL showed
approximately a 30% improved performance on the cutting temperature than the dry
condition. The authors also stated in another study that hBN-added nanoparticles have a
positive effect on the milling process as well as on the machining outputs [31]. Additionally,
Nguyen et al. [32], from their tribometer tests, stated that hBN particles are effective in
reducing flank and central wear. Similarly, previous studies reported that adding hBN
nanoparticles in the coolant improved the quality of the machined parts [33–35]. Different
nanosolid-added lubricants (silicon carbide, Al2O3, carbon, carbon derivatives, graphene,
etc.) had a positive impact on the overall machining process [36,37]. Pandey et al. [38]
evaluated the chip morphology and tool wear using two different nano-MQL methods and
found that using CNT (carbon nanotubes)-based NFMQL performed better than alumina-
based NFMQL (nanofluid minimum quantity lubrication). Chetan et al. [39] analyzed
the machinability of nickel alloy using cooling and lubrication with nano-MQL (Al2O3
nanoparticle addition), cryogenic cooling (CC) and cryogenic treatment (CT). Their results
showed that using nano-MQL reduced the cutting forces by 16%, while machining with
CC was more effective in cutting edge wear.

The results of a comprehensive assessment of the relevant literature suggest that there
is not a single study on the machinability of the ER7 train wheels when the final product
is produced utilizing turning, milling or drilling operations after they have been manu-
factured. This lack of literature, together with the rising frequency of rail transportation
networks around the globe, demonstrates the significance of the ER7 material’s machin-
ability. In addition, the impact of cutting tools on the prices of machinability is a crucial
consideration to keep in mind. To fill this gap in the literature, the purpose of this research
is to find the optimal values of the cutting parameters (feed rate and cutting speed) in the
first stage, and the influence of the optimal cutting parameters on tool life under dry, MQL
and nano-MQL conditions in the second and final stages of the investigation.

2. Materials and Methods

EN 13262 standard is used to determine the characteristics of train wheels used in
European railway networks. In this standard, four different steel grades, ER6, ER7, ER8
and ER9, are defined for use in train wheels. These grades have low carbon content (0.55%
C) and pearlitic and ferritic structures. ER6 and ER7 steel grades are generally used as
a wagon wheel material. After the train wheels are produced by the forging process,
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they are processed on special vertical CNC (Computer Numerical Control) lathes due to
their geometric shape, size and weight. Since there is not enough lathe in size for the
machining of the commercially produced train wheels in the university laboratories, ER7-
quality material with the dimensions of 170 × 50 mm was taken from the wheel hub to
be used as a test workpiece. The chemical composition of the ER7-quality steel used in
turning experiments is shown in Table 1. The ER7 steel samples used in the current study
were obtained from Kardemir Inc. (Sanayi Karabuk, Turkey), which manufactures and
commercially sells train wheels.

Table 1. The chemical composition of ER7 steel (wt%).

C Mn Si S P Cr

0.52 0.80 0.40 0.015 0.020 0.30
Ni Cu Mo V Cr + Ni + Mo H.ppm

0.30 0.30 0.080 0.060 0.50 max 2.0 max

In the experiments, CNMG 120408 P20-quality tools and suitable tool holders were
used as per the ISO standards of the Korloy company. Karabük University’s TTC-550 CNC
lathe was used for the tests. In the preliminary studies, a fixed cut depth of 1 mm, three
different cutting speeds (200, 250, 300 m/min) and three different feed rates (0.15, 0.20,
0.30 mm/rev) were all employed together according to the cutting tool manufacturers and
the industry recommendations. The depth of cut is directly proportional to the MRR during
turning. Due to the keeping constant of the MRR (or cutting length), the depth of cut is
kept constant at 1 mm. The temperatures on the cutting tool and workpiece during turning
were measured with the Fluke TI400 infrared camera. The infrared camera has automatic
focusing, a temperature measuring range of 0 ◦C to 1200 ◦C and a measurement accuracy
of ±2 ◦C. The KAEL network analyzer with three 60/5A current transformers was used to
precisely measure the power consumption of the CNC lathe during turning. After each
machining parameter, the surface roughness of the workpiece was measured with the Mahr
M300 roughness device. For each measurement, the workpiece was rotated approximately
72◦, measured from five different regions and evaluated by taking the average value. The
experimental setup is shown in Figure 1.

Dry, MQL and nano-MQL were also used to determine the optimal conditions after the
optimum parameters were determined from the preliminary turning tests. It was supplied
by the SBH Company (Istanbul, Turkey) and used an MQL system by Werte. The cutting
fluid (WerteMist) was distributed in two dimensions by an additional air pump fitted by
the manufacturer. The MQL system made use of WerteMist (Table 2), a volatile proprietary
lubricant. Next, 40 to 50 nm-sized nano-hBN particles were mixed into a commercial
vegetable cutting liquid at a weight ratio of 1% (WerteMist). Using the Hydra ultrasonic
stirrer, the produced liquid was agitated for an hour to reduce nanoparticle clumping.
A magnetic stirrer, developed by MTops MS300HS, was also employed to improve the
homogeneity of nanoparticles with the cutting fluid (Figure 2). To ensure that the air
pressure used was maintained at 5 bar, a manometer was used. In all cooling settings, the
flow rate was 100 mL/hr. Quality properties such as roughness (Ra), power consumption
(W) and temperature (◦C) were used in an experimental design. Cutting speed (V) and
feed rate (F) were found to be the main regulating elements. Analysis of variance (ANOVA)
was performed to explore the influence of the input parameters and their interactions on
the measured outputs using Minitab 17 software.
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Table 2. Properties of the MQL coolants used in the machining experiments.

Property MQL Nano-MQL

Density (kg/m3) 0.9 0.92
Kinematic viscosity (mm2/s) @ 40 ◦C 5.3 2.7

Nanoadditive particles — hBN
Nanovolume concentration — 1%

Nozzle pressure (bar) 5.0 5.0

Figure 1. Experimental setup.
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Figure 2. The effect of cutting parameters on for surface roughness, cutting temperature and total
power consumption.

3. Results and Discussion
3.1. Preliminary Experiments

Three different cutting speeds and feed rates were employed in the preliminary tests.
Table 3 summarizes the surface roughness, power consumption and machining temperature
at different cutting parameters.

Table 3. Cutting parameters levels and the resulting outputs (optimum cutting parameters are
in bold).

Exp.
No.

Cutting Speed
(V-m/min)

Feed Rate
(f-mm/rev)

Surface Roughness
(Ra-µm)

Total Power
(W)

Temperature
(◦C)

1 200 0.15 1.040 273.3 41
2 200 0.2 1.828 300.3 77
3 200 0.25 2.264 340.3 85
4 250 0.15 0.999 310.3 44
5 250 0.2 1.554 340.3 81
6 250 0.25 2.168 385.3 90

7 300 0.15 0.946 335.3 66

8 300 0.2 1.439 380.3 88
9 300 0.25 1.996 425.3 93

In Figure 2, the machining outputs (surface roughness, cutting temperature and power
consumption) of the test experiments are given. The total power consumption measured
during the machining process was obtained from the sum of the linear power, idle mode
power, spindle power and machining power outputs. The mechanical energy is transferred
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to thermal energy in practically all machining processes. According to Figure 2a, the
maximum surface roughness was achieved at 200 m/min and 0.25 mm/rev. The lowest
surface roughness was achieved at 300 m/min and 0.15 mm/rev. When the feed rate was
increased from 0.15 to 0.20 mm/rev or from 0.15 to 0.25 mm/rev, the surface roughness
increased by 52.11% and 111%, respectively, which was mainly due to increased uncut
chip thickness. The machined workpiece has surface roughness values of 0.946, 1.440
and 1.996 m, respectively, and rising values of 52.11% and 110%. The surface roughness
was 1.828, 1.554 and 1.439 µm at the feed rate of 0.20 mm/rev and at the cutting speed
of 200, 250 and 300 m/mi, respectively. When the cutting speed was increased from 200
to 250 m/min or 200 to 300 m/min, the surface roughness was reduced by 14.99% and
21.28%, respectively. Table 4 shows the p-value and percentage contribution (PCR) results
from the ANOVA tables of the analyzed outputs. The significant parameters and their
interactions are highlighted in blue (according to p-value < 0.05) [40,41]. From the table, it
can be seen that the feed rate was the was the most significant cutting parameter on the
surface roughness, with 94.087%, followed by the cutting speed, with 4.485%. The linear
interactions between the cutting speed and the feed rate were insignificant. Therefore,
the cutting parameters which provide the lowest surface roughness are 300 m/min and
0.15 mm/rev, taking into account that—according to the ANOVA results—it is expected
that the feed rate would have a significant effect on the machining outputs for the MQL
tests in the main part of the study.

Table 4. ANOVA results for surface roughness, cutting temperature and power consumption in
preliminary tests (signficant interactions are in bold).

Surface Roughness Cutting Temperature Power Consumption

Source p-Value PCR (%) p-Value PCR (%) p-Value PCR (%)

Cutting
Speed—V (m/min) 0.0310 4.485 0.022 10.597 0.00007 48.311

Feed Rate—f (mm/rev) 0.0004 94.087 0.001 74.929 0.00007 50.463
V × V 0.8440 0.014 0.333 0.730 0.26813 0.091
F × f 0.5500 0.138 0.025 9.723 0.11164 0.245
V × f 0.3560 0.362 0.129 2.373 0.03008 0.744
Error 0.915 1.648 0.147
Total 100 100 100

According to Figure 2b, the highest cutting temperature occurred at 300 m/min and
0.25 mm/rev and lowest at 200 m/min and 0.15 mm. The cutting temperature increased
with the increase of the cutting speed (due to the increased rubbing between the tool and
workpiece) and with the increase of the feed rate (due to the increased chip load). It is
known that the tool life deteriorates as the cutting temperatures rise during the cutting
process. The cutting temperature recorded at 300 m/min and 0.15 mm/rev was 66 ◦C, 88 ◦C
at 0.20 mm/min and 93 ◦C at 0.25 mm/rev. The cutting temperature increased by 33.3% and
40.9%, respectively, when the feed rate was increased from 0.15 to 0.20 mm/rev and 0.15
to 0.25 mm/rev. The cutting temperature values of 85 ◦C, 90 ◦C and 93 ◦C were obtained
with a feed rate of 0.25 mm/rev and a cutting speed of 200 m/min, respectively. When the
cutting speed was increased from 200 to 250 m/min or 200 to 300 m/min, the temperature
increased by 5.88% and 9.41%, respectively. The analysis of variance for temperature is
given in Table 4. When the values are examined, it is seen that the effective parameter
is the feed rate, which was about seven times higher (74.929%) than that of the cutting
speed (10.597%). As a result, to attain lower machining temperatures, it is recommended to
use a cutting speed of 200 m/min and a feed rate of 0.15 mm/rev. The error values can
be explained by the presence of other variables, which were not considered in this study,
such as bench vibrations, floor vibrations or the microstructure of the material. These error
values were calculated as 1.648%.

The overall power output was determined at various cutting speeds and feed rates.
Reduced power consumption was achieved through higher cutting speeds and lower feed
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rates. Furthermore, the lowest power consumption was observed when cutting at a speed
of 200 m/min and feeding at a rate of 0.15 mm/rev. At a cutting speed of 300 m/min and a
feed rate of 0.15 mm/rev, the graph in Figure 2c indicates a power consumption of 335.3 W;
at a feed rate of 0.20 mm/rev, the power consumption increases to 380.3 W. It measured
425.3 W at a cutting speed of 300 m/min and a feed rate of 0.25 mm/rev. Increases in
power consumption of 13.42% and 26.84%, respectively, occur when the feed rate value is
increased from 0.15 mm/rev to 0.20 mm/rev and from 0.15 mm/rev to 0.25 mm/rev. The
CNMG cutting tool utilized 340.3 W of power at a feed rate of 0.25 mm/rev at a cutting
speed of 200 m/min, 385.3 W at a cutting speed of 250 m/min and 425.3 W at a cutting
speed of 300 m/min. When cutting speeds are increased from 200 m/min to 250 m/min
or 300 m/min, power consumption increases by 13.22% and 24.98%, respectively. The
ANOVA results for power consumption are given in Table 4. When the values are examined,
it is seen that the effective parameter is the feed rate. The PCR of feed rate is approximately
2% higher than the PCR of the cutting speed parameter. While the effective rate of the feed
rate was 50.46%, the effect of cutting speed was found to be 48.311%. Again, the cutting
speed and feed rate values are also statistically significant. As a result, for a lower energy
consumption, a combination of 200 m/min and 0.15 mm/rev is recommended. However,
from the preliminary test results, a set of cutting parameters (highlighted in blue) which
provide the optimal (lowest) surface roughness was chosen for the MQL and nano-MQL
tests. This is because the surface roughness is considered as the most important factor for
the performance of the train wheel during its service.

3.2. MQL and Nano-MQL Experiments Analysis

In this study, turning experiments were carried out under different machining condi-
tions, taking into account the optimum values of the cutting parameters used in dry cutting
conditions. When the maximum flank wear reached 0.2 mm [42], the tool performance was
evaluated. Figure 3 shows the variation of tool wear depending on machining conditions
and cutting length.

Figure 3. Variable of flank wear in Vc = 300 m/min and f = 0.15 mm/rev.
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It is seen from Figure 3 that the flank wear (VB) increases in all variables depending on
the increasing cutting length, which is an expected situation. In the wear mechanism, which
was measured in five stages, the highest amount was obtained in dry cutting conditions,
with 116 µm in the first measurements. In the experiments carried out with MQL and
nano-MQL, wear of 70 and 73 µm occurred, respectively. Although the rate of change in
the amount of wear was higher in the experiments performed with MQL and nano-MQL
compared to the fourth stage measurements, there was a rapid deterioration of the tool
life in the test performed under dry cutting conditions in the fifth stage, and the targeted
wear amount (0.2 mm) was reached. This can be explained by the higher temperature
values that occur under dry processing conditions. Considering the last stage, it is possible
to say that the highest tool performance is obtained in nano-MQL, and the lowest tool
performance is obtained in dry cutting conditions. To express this situation proportionally,
it is seen that the MQL and nano-MQL applications applied depending on the cutting
length have a better performance of approximately 34.1% and 37.6%, respectively, in the VB
value in the last stage measurements compared to the dry cutting conditions. It is known
that coolants form a wear-retarding thin film layer at the cutting tool–workpiece contact
in machining processes. In addition, it can be said that the decrease in temperatures in
the cutting zone delays tool wear [43]. These conditions can be explained by the fact that
the machining conditions performed with MQL give better results than dry machining. It
is understood from the results that nano-MQL processing obtained by adding nanosolid
lubricant is more efficient than other processing conditions. This can be explained by the
fact that nano additives cause better lubrication in the cutting zone and thus lower cutting
temperatures [44]. It is known that cutting tool costs have an important place in machining
operations in terms of costs, and it is possible to say that machining with nano-MQL and
MQL is more suitable than dry machining in terms of efficiency. In addition, when the
MQL method is used with environmentally friendly cutting oils, it is very safe in terms of
employee health and the environment [45]. These oils are consumed by evaporation with
the heat generated between the cutting tool and the workpiece without the need for an
extra process. The flank and crater wear images formed on the cutting tool as a result of
the experiments are given in Figure 4.

The surface roughness (Ra), which is the machining output, varies depending on many
parameters (cutting speed, feed rate, depth of cut, cutting tool material, etc.). Figure 5 shows
the variation of Ra values according to the machining conditions at different machining
lengths. Compared to dry machining conditions, it is evident that lubrication methods
play an important role in achieving a better surface finish (Figure 5). In the first stage of
measurements, the highest Ra value was obtained as 1.05 µm in dry machining conditions.
Compared with the same conditions, it is seen that the result obtained with MQL is
approximately 24%, and the result obtained with nano-MQL is approximately 34% lower.
The MQL application provides better surface quality because it reduces the contact and
friction between the tool–workpiece pair. In addition to good lubrication in the cutting
zone, nanoparticles have good thermal conductivity and can efficiently remove heat from
the cutting zone, therefore improving the surface quality [46]. A similar upward trend
is observed for each processing condition until the final stage measurements. This was
expected and can be explained by the increased amount of wear [47], as seen from Figure 3.
Since the nose radius of the cutting tool is also a cutting parameter that affects the surface
roughness, the increased amount of wear directly affects Ra. The nano-MQL application
seems to be effective in obtaining the most efficient outcomes based on surface quality,
including in the wear mechanism [48]. To better understand the surface quality, Optical
and 3D surface images are given in Figure 6.

Figure 7 shows the power consumption values at different machining lengths accord-
ing to different machining conditions. The power consumption results show a similar trend
with the Ra and VB results. The highest power consumption occurred in dry machining
conditions. It was approximately 345 W for the first stage and approximately 355 W due
to tool wear in the final stage. Considering the first stage values, the power consumption
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of the MQL application is approximately 5.5% less. Compared to the nano-MQL system,
this decrease was approximately 7.7%. In addition, since the sum of the powers obtained
at each stage is considered, it has been calculated that there is approximately 5.3% and
10.2% lower power consumption in the experiments performed with MQL and nano-MQL,
respectively. This can be explained by the fact that the MQL and nano-MQL systems can
reduce the friction between the tool and the workpiece depending on the layer formed,
and, accordingly, the power consumption decreases, as illustrated by Gupta et al. [49] and
Korkmaz et al. [50]. In the light of these results, it can be said that the MQL and nano-MQL
systems are effective in terms of energy efficiency and sustainability.

Figure 4. The cutting tool wear images under different cutting conditions.
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Figure 5. Variable of surface roughness in Vc = 300 m/min and f = 0.15 mm/rev.

Figure 6. Surface roughness in Vc = 300 m/min and f = 0.15 mm/rev.
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Figure 7. Variable of power consumption in Vc = 300 m/min and f = 0.15 mm/rev.

The energy required for chip removal is converted into heat in the cutting zone and
that cannot be ignored. While the temperature is mostly formed at the cutting tool–chip
interface, some of it is transmitted to the part. This affects the surface integrity of the
machined surface as well as the cutting tool life. The temperature values measured as a
result of the experiments are given in Figure 8. Similar trends and results were obtained
at the cutting temperature as in other machining outputs. The highest temperatures were
measured under dry cutting conditions, as expected. Based on the first stage measurements,
the highest temperature was approximately 90 ◦C in dry cutting conditions. For MQL, the
measurement taken at the same step was obtained at a 5% lower value. For nano-MQL, this
ratio was approximately 14% less. For MQL and nano-MQL, this decreasing rate continues
to increase at every stage. When it comes to the last stage, the temperature obtained under
dry cutting conditions reached 170 ◦C. Under the same conditions, the decrease in MQL
and nano-MQL was approximately 23.6% and 29.5%, respectively. These results affect the
surface integrity and the amount of cutting tool wear, as mentioned above, and show a
similar trend. As a result, it is seen that the MQL and nano-MQL systems have a positive
effect on the temperature, as previously stated by Krolczyk et al. [45]. The thin layer and
lubrication that MQL systems create in the cutting zone is the most important factor in
reducing the cutting temperature. The fact that the nanoparticles added in addition to this
system have good thermal conductivity, and evacuate the heat from the cutting zone faster,
is the reason why the best results are obtained in nano-MQL. Figure 9 also shows the rise
in temperature under dry cutting conditions in chip and shear development.
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°

Figure 8. Variable of cutting temperature in Vc = 300 m/min and f = 0.15 mm/rev.

Figure 9. Variation of chip morphology in Vc = 300 m/min and f = 0.15 mm/rev.

4. Conclusions

The current study was conducted to evaluate the machinability of ER7 steel under dry,
MQL and nano-MQL lubrication conditions. The aim was to determine the effect of using
MQL cooling technologies and cutting parameters on the resulting machining outputs:
surface finish, energy consumption, machining temperatures and tool wear. The following
results can be concluded from this study:

• It is seen that there is a decrease in Ra values depending on the increasing cutting
speed, while, on the contrary, it exhibits an increase in cutting temperature and energy
consumption. The feed rate caused an increase in all machining outputs depending
on its increasing values.

• Preliminary experiments show that the best surface roughness values, the optimum
parameter values, are obtained at 300 m/min and 0.15 mm/rev. The error value was
obtained as 0.915%.
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• The highest values of VB were obtained in dry machining conditions at all machining
lengths. When the VB value was compared with other applications, considering
the last stage (3000 mm), it outperformed MQL and nano-MQL implementations by
approximately 34.1% and 37.6%, respectively.

• It is clear that the lubrication methods have a significant impact on obtaining better
surface quality when compared to the dry machining conditions. In the first stage
(600 mm) measurements, the highest Ra value was obtained as 1.05 µm under dry
machining conditions. Compared to the same conditions, the result obtained with
MQL was approximately 24% lower, and the result obtained with nano-MQL was
approximately 34% lower.

• The highest power consumption for each stage occurred under dry machining condi-
tions. Since the sum of the powers obtained for each length is taken into account, it has
been calculated that there is approximately 5.3% and 10.2% lower power consumption
in the experiments performed with MQL and nano-MQL, respectively.

• The highest temperatures were measured under dry cutting conditions, as expected.
Based on the first stage (600 mm) measurements, the highest temperature value
was measured as approximately 90 ◦C in dry cutting conditions. For MQL, the
measurement taken at the same stage was 5% lower, while for nano-MQL this rate
was approximately 14% lower.

• It is anticipated that this study will be useful to research and development centers
in the machining and railway industries, particularly those focusing on improving
cooling technologies in the machining of railway components.
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