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Abstract: Thermoelectric (TE) devices have short service lives. These materials undergo thermal
degradation at elevated temperatures by processes such as oxidation or sublimation. Our substrates
were skutterudite-based TE materials. We covered their surfaces with a liquid high-temperature
polymer (HTP)—crosslinked after the deposition, what converted those surfaces into solid coatings.
Sintering was performed at 250 ◦C for times of up to 48 h on both uncoated (control) and HTP-coated
samples. The changes caused by thermal degradation were evaluated by thermogravimetric analysis,
electrical resistivity, and energy-dispersive X-ray spectroscopy, and observed by scanning electron
microscopy. Significant mitigation of oxidation and sublimation of our TE materials was achieved.

Keywords: thermoelectric devices; polymer crosslinking; polymeric coatings; thermal degradation;
skutterudites

1. Introduction

Thermoelectric (TE) devices contain TE materials. TE coolers create a temperature
difference ∆T when a current flows through the device. This is a manifestation of the Peltier
effect—so named after a French physicist, Jean Peltier, who worked in Paris. There is also
a twin effect, namely one can have a TE generator: a voltage V is created when different
temperatures are applied to the two sides of the device. This is known as the Seebeck effect,
so named after the Estonian−German physicist Thomas Johann Seebeck, who worked
in Tallinn. Both kinds of TE devices have small size, no moving components, and work
without noise [1–16]. As discussed by Abbas [16], thermoelectric materials can be classified
as smart materials and be used for changing the electrical properties of nanostructures.

Given these advantages, TE devices are widely used in microelectronics, in optical
components, medical equipment, biochemical or portable electronic equipment communica-
tions and when electromagnetic processing of materials is important [17]. Parashchuk and
his colleagues [18] have created p-type Bi0.5Sb1.5Te3 films on a flexible substrate with high
thermoelectric performance. TE properties can be present together with magnetic ones—as
in the Bi2Sr2Co1.8Oy phase created by Özçelik and coworkers [19]. Pristine Bi2Te3 and
Bi2Te3/reduced graphene oxide (Bi2Te3 + rGO) composites show good electrochemical and
thermoelectric properties at 1% rGO concentration—a result of the interaction of the grain
boundary interfaces of rGO nanosheets with pristine Bi2Te3—as reported by Thongsamrit
and coworkers [20]. There are also CoSb3 skutterudites [21], used in TE devices for high
energy conversion efficiency.

There are three main components which comprise a TE device. Two ceramics metalized
with copper [22], an array of TE elements, and a solder that joins the device together; details
are provided in a textbook [23].

However, the use of TE devices also involves disadvantages. The amount of electricity
created by a TE generator is proportional to the temperature difference ∆T, hence one
maximizes that difference as much as possible. The most often used TE material is bismuth
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telluride Bi2Te3 [4,10,24]. At elevated temperatures, bismuth undergoes oxidation; the
oxide is not thermoelectric. At elevated temperatures tellurium also escapes by sublimation.
These issues are discussed below in relationship to Figure 1. Corrosion is also possible in
certain environments. Our way of dealing with these problems has been covering the TE
materials or entire devices with high-temperature polymers (HTPs) [25]. One has to be
careful since there are polymeric nanofibers which provide high thermal conductivity useful
for us—but at the same time high electric conductivity [26], which would be detrimental for
us. The use of HTPs is not obvious since polymers are known for their low glass transition
and melting temperatures; very widely used polyethylene has the melting temperature of
135 ◦C. However, polymers have been used in abrasion-resistant coatings for steels [27]
and in corrosion-resistant coatings for Cu-Ni alloys [28]. Moreover, we have HTPs at our
disposal. Sufficient protection of bismuth telluride-based up to and including 250 ◦C was
achieved [24]. Since one typically begins with a liquid HTP—a lubricant which undergoes
curing—we have studied somewhat more in detail properties of the HTP coatings, including
their rheological behavior in the molten state [29].
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Now, bismuth telluride is not the only TE material in wide use. Skutterudites are also
important [30]. They contain ytterbium and antimony. In this situation, we have performed
testing of skutterudite TE materials covered with an HTP with the objective of extending
the service life of this class of materials.

2. Experimental
2.1. Materials

A fine-grained skutterudite micro-alloyed material (MAM) from Furukawa Co., Ltd.
(Tokyo, Japan), and samples diced to needed dimensions from 3 mm × 3 mm × 5 mm
cuboids were used for testing.

Three HTPs were prepared at the Laboratory of Advanced Polymers & Optimized
Materials (LAPOM). HTP2 is made from a solution of an advanced polyimide. The solution
is deposited on the surface as usually lubricants are so deposited, then heated to high
temperature to vaporize the solvent, to accelerate the imidization reaction and make a non-
soluble, non-melting insulating material with good heat resistance, chemical resistance, and
providing insulation. HTP5 and HTP9 are also advanced polymeric acids with properties
similar to HTP2.
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2.2. Encapsulation of Skutterudite Materials

The dip coating was used to prepare TE materials. The coatings were dried and cured
at elevated temperatures. Before further tests, the coatings on some skutterudite materials
were removed so as to have ‘naked’ samples for comparison.

2.3. Thermogravimetric Analysis

The Perkin Elmer (Waltham, MA, USA) TG7 apparatus was used to perform thermal
stability testing. This technique is well described by Menard and Menard [31], by Lucas
and her colleagues [32], and by Gedde and Hedenqvist [33]. Seven to 10 milligrams of each
HTP were heated from 50 ◦C to 280 ◦C at 10 ◦C/min.

2.4. Electrical Resistivity

The four-point Jandel (Leighton Buzzard, UK) RM3000 resistivity meter was used to
measure electrical resistivity. The probes contacted four side surfaces of a cuboid, applied
at several locations, and then averages were calculated.

2.5. Scanning Electron Microscopy and Energy-Dispersive Spectroscopy

Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS)
of the samples was collected using a Hitachi (Tokyo, Japan) TM 3030Plus Tabletop Micro-
scope configured with EDS.

3. Thermal Stability of HTPs

To optimize the curing process of polymeric coatings so as to achieve the highest level
of protection from degradation of TE devices, we used thermogravimetric analysis (TGA)
to locate temperatures of various decomposition processes. There are many factors which
could affect the thermal stability of HTPs, such as pre-sintering time, temperature ramp,
post-sintering time, and sintering temperature. Figure 1 shows TGA thermograms for
three HTPs.

Apparently the sintering temperature is important for thermal stability of HTPs.
Figure 1 tells us also that the solvents evaporated at under 200 ◦C. All HTPs preserved their
thermal stabilities after temperature reached 220 ◦C to 280 ◦C.

4. Electrical Resistivity

After developing the optimal curing procedures for HTPs [20], we encapsulated both
p-type and n-type skutterudite-based samples and subjected them to sintering up to 250 ◦C.
The samples were ramped up to 250 ◦C at 1 ◦C/min and kept for up to 48 h at 250 ◦C. The
bulk resistivity was determined at 25 ◦C for each sample. The results are shown in Figure 2
for HTP2 coatings.
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Due to oxidation during the sintering process, the resistivity values increased with
longer sintering time in control samples (uncoated) for both p-type and n-type skutterudite-
based samples. Compared with control samples at different sintering times, coatings
mitigated the resistivity changes in any condition. There is a significant effect for n-type
skutterudite after 24 h.

5. Sublimation and Oxidation

We have applied EDS to determine the sublimation and oxidation for both n-type
and p-type skutterudite materials at different sintering times. The results are shown in
Figures 3–6 and also digitized as Figures 7 and 8.
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48 h.



Lubricants 2022, 10, 72 6 of 12Lubricants 2022, 10, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 5. EDS p-type samples, most subjected to sintering at 250 °C for different sintering times: (a) 
uncoated sample at 25 °C; (b) coated sample not subjected to sintering; (c) sample after sintering for 
1 h; (d) sintering for 4 h; (e) sintering for 24 h; (f) sintering for 48 h. 

Figure 5. EDS p-type samples, most subjected to sintering at 250 ◦C for different sintering times:
(a) uncoated sample at 25 ◦C; (b) coated sample not subjected to sintering; (c) sample after sintering
for 1 h; (d) sintering for 4 h; (e) sintering for 24 h; (f) sintering for 48 h.

We see that both n-type and p-type samples without polymeric coatings have higher
levels of sublimation. For example, ytterbium in p-type coated samples has 7 to 12% lower
weight loss than uncoated samples.

We also see that the polymeric coatings are preventing the oxidation. For p-type
uncoated skutterudite material with antimony which underwent longer sintering, the level
of oxidation was 10% higher than for coated samples.
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Figure 6. EDS p-type HTP2 coated samples, most sintered at 250 ◦C for different amounts of time:
(a) uncoated sample at 25 ◦C; (b) coated sample, 0 h sintering; (c) 1 h sintering (d); 4 h sintering;
(e) 24 h sintering; (f) 48 h sintering.
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6. Effects of Heating on Morphology

We have studied morphology of samples using environmental scanning electron
microscopy (ESEM) to see visual changes—if any—during sintering. The micrographs are
shown in Figures 9 and 10.
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Figure 10. SEM micrographs of p-type coated skutterudite at different sintering conditions at 250 ◦C:
(a) uncoated sample kept at 25 ◦C; (b) coated sample, 0 h sintering; (c) coated, 1 h sintering; (d) coated,
4 h sintering; (e) coated, 24 h sintering; (f) coated, 48 h sintering.

We do not see significant differences between Figures 9 and 10. In samples with
coatings, some residues start to show up with increasing sTintering time.
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7. Concluding Remarks

Our main objective was mitigation of thermal degradation of skutterudite-based
thermoelectric materials—so as to extend the service life of those materials and make them
more attractive for industry from the economical perspective. We had already developed
improved coating and curing processes of HTPs [24]. Now we have achieved mitigation of
oxidation and sublimation of skutterudite-based materials—as seen in electrical resistivity,
EDS, and in SEM analysis.
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