
Citation: Li, G.; Yang, S.; Xing, P.; Liu,

T.; Gao, H.; Song, Y.; Zhang, H.

Experimental Investigation of

Triboelectrification Behaviour in the

Friction Process. Lubricants 2022, 10,

180. https://doi.org/10.3390/

lubricants10080180

Received: 2 July 2022

Accepted: 5 August 2022

Published: 9 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

lubricants

Article

Experimental Investigation of Triboelectrification Behaviour in
the Friction Process
Guobin Li 1, Sifan Yang 1, Pengfei Xing 1,* , Ting Liu 2,*, Honglin Gao 1, Yuchao Song 1 and Hongpeng Zhang 1

1 Marine Engineering College, Dalian Maritime University, Dalian 116026, China
2 College of Mechanical and Electronic Engineering, Dalian Minzu University, Dalian 116600, China
* Correspondence: wlyxpf@dlmu.edu.cn (P.X.); liuting@dlnu.edu.cn (T.L.)

Abstract: The triboelectrification phenomenon can occur during the friction process of metal con-
tact pairs. An in-depth understanding of triboelectrification behaviour is incredibly beneficial to
controlling friction and wear. However, due to the complexity of the driving mechanism, it is still
challenging to gain a thorough understanding of the triboelectrification behaviour of metal–metal
contact pairs. To further reveal the triboelectrification behaviour during the friction process of metal
pairs, wear experiments of GCr15 steel–cast iron were carried out on a CFT-I tribometer under oil-free
and oil lubrication conditions. The triboelectric current signal was collected during the investigation,
and its variation was discussed. The result shows that the varying trend of the triboelectric current
was consistent with that of the friction coefficient in the friction process. The triboelectrification of
similar metal contact pairs primarily driven by material transfer was closely related to friction and
wear conditions.

Keywords: experimental investigation; friction; triboelectrification; driving mechanism

1. Introduction

It is well-known that triboelectrification occurs during the friction process of friction
pairs [1–4]. Understanding and ultimately controlling triboelectrification could have wide
applications in the field of tribology, such as wear monitoring and friction suppression [5,6].
Therefore, an in-depth understanding of triboelectrification behaviour is incredibly benefi-
cial to controlling friction and wear.

Triboelectrification results from transferring charge from one object to another in
the friction process [7,8]. To explain this phenomenon, some driving mechanisms of
charge transfer have been proposed, such as separation charging, the Seebeck effect, and
material transfer [9]. The separation charging is mainly attributed to the separation of
contacting surfaces, which can be neglected under a complete contact condition of the
friction pair. The Seebeck potential is caused by the temperature difference between
a metal pair [10], which is referred to as charging by a Seebeck effect. Considering the
Seebeck effect, the reciprocating speed and the normal load on the triboelectrification
mechanism were investigated for the five soft metals (Pb, Ag, Cu, Zn, and Al), sliding on
iron for complete contact under severe dry wear in a reciprocating friction process [11,12].
The results show that the triboelectrification resulted mainly from the Seebeck effect at
an average sliding velocity higher than 200 mm/s and the Seebeck potential was linear with
the reciprocating speed. Moreover, the influence of material transfer cannot be ignored,
especially at low speeds. Wear debris appears when the asperities of a contact surface are
removed from an original surface due to strong adhesion. It is attached to the opposite
surface, transferring material from one surface to the other. Since free electrons are excited
during the material transfer, some scholars believe the material transfer could cause the
charging. Furthermore, the triboelectrification behaviour was investigated for self-mated
pure hard and soft metal pairs in a dry severe wear process [13,14]. The results show that
the material transfer influenced the polarity of triboelectrification in the friction process
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of metal friction pairs. On this basis, the triboelectrification behaviour caused by material
transfer was investigated in the same metal friction pairs of different wear mechanisms [15].
A micro-model of the triboelectrification mechanism for self-mated materials was proposed
to explain the intermittent positive and negative polarity of the same material in the wear
process [16]. Furthermore, triboelectrification was successfully applied to monitor the
tribological properties of the metal films [17].

The above research shows that triboelectrification is closely related to the friction
and wear of friction pairs, and its behaviour is distinct under different tribological con-
ditions. However, due to the complexity of the driving mechanism, it is still challenging
to gain a comprehensive understanding of triboelectrification. In fact, triboelectrification
is a consequence of combining different mechanisms in sequence or parallel, leading to
the triboelectrification source of charge and transfer form being unrevealed. Therefore,
it is still challenging to gain a thorough understanding of triboelectrification, and the
interaction between triboelectrification and friction needs further investigation to push our
understanding forward.

In this study, the triboelectrification experiments were conducted on a ball-on-disk
tribometer, and the triboelectric current signals were measured in the experiment process.
Based on the measured triboelectric current signals, the triboelectrification behaviours un-
der different friction states were investigated, and their driving mechanism was discussed.

2. Experiments
2.1. Experimental Apparatus

As shown in Figure 1, the experiments were conducted on a triboelectrification test
bench consisting of a signal analysis system and a tribometer. During the investigation, the
triboelectric current signals were obtained by the signal analysis system consisting of an
electrometer, a data acquisition system, and a computer. To obtain the weak triboelectric
current signal, an electrometer (model Keithley 6514, USA) with a resolution of 100 nA in
the range of 20 mA and a resolution of 100 pA in the range of 20 µA and a data acquisition
system (model NI-9215, USA) with a sampling rate of 100 ks/s were selected.
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Figure 1. Triboelectrification test bench.

The ball-on-disk wear experiments were carried out using a reciprocating tribometer
(model CFT-I, China). The ball and disk specimens were connected to the negative and
positive electrodes of the electrometer by wires, respectively. Moreover, to measure the
triboelectric current, the ball and disk specimens were insulated from the tribometer by
an insulation gasket, as shown in Figure 2. The ball specimen was mounted under the
load device, which can apply a normal load in the 0–200 N range at a rate of 0.1 N/s,
and kept stationary in the wear process. The disk specimen was driven in a reciprocating
motion with a stroke of 5 mm by a crank–slider mechanism. The mechanism was connected
to a motor with a rotational speed of 0–2000 rpm. Two force sensors were equipped for
measuring the normal load and the friction force between the ball and disk specimens.
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The friction coefficient could be calculated in real-time by the data processing system of
the tribometer.
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2.2. Friction Pair

Ball and disk specimens were used as tribological pairs, as depicted in Figure 2b.
Specifically, the ball specimen was made of GCr15 steel with 750 HV hardness, a Φ6 mm
diameter, and surface roughness Sa = 0.125 µm. Moreover, the disk specimen was cast iron
with 350 HV hardness, 16 mm diameters, and a surface roughness Sa = 0.73 µm.

2.3. Experimental Set-Up

The wear experiments were performed under oil-free and oil lubrication conditions,
respectively. The motor drove the disk specimen at a speed of 400 rpm. The average relative
sliding velocity between the ball and disk was 0.067 m/s. The pressure load applied on the
ball specimen was 20 N and 100 N under oil-free and oil lubrication conditions, respectively,
and each experiment lasted for 14 min. In the oil lubrication experiment, the submerged
lubrication was conducted using CD40 (a standard marine lube oil) with a density of
0.8957 g/cm3 and a viscosity of 139.6 cSt at 40 ◦C and 12.5 cSt at 100 ◦C. The experiments
were repeated seven times under the same conditions with different test durations of
2 min, 4 min, 6 min, 8 min, 10 min, 12 min, and 14 min to ensure good repeatability. The
experimental set-up was designed with consideration of the fact that the accuracy of the
experimental results would be influenced if the wear process were to be interrupted.

2.4. Acquisition of Data

The triboelectric current signals were collected with 3072 sampling points and a sam-
pling interval of 1.95 ms. A set of triboelectric current signals was collected during the
experiments every 60s. Under the oil-free and oil lubrication conditions, 14 groups of
triboelectric current signals were obtained. To avoid the interruption of externally induced
electricity, the tribometer was grounded. Furthermore, the 3-D surface topography of the
friction pair was measured using a confocal laser scanning microscope (model OLS4000,
Tokyo, Japan) before and after experiments.

3. Results and Discussions
3.1. Change in Triboelectric Current under Different Lubrication Conditions
3.1.1. Oil-Free Lubrication

The triboelectric current signals collected after accomplishing the loading process
of the CFT-I tribometer were taken as the representatives of the corresponding minute.
The time-domain waveforms of the triboelectric current signals collected under oil-free
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lubrication are shown in Figure 3. It can be seen from Figure 3a–f that despite the similar
waveforms of triboelectric current signals, their amplitudes at different times were distinct,
which implies that triboelectrification varies with the friction state. To investigate the
relationship between the triboelectrification and the friction state, the mean values of
triboelectric current signals at different times were calculated. Figures 4 and 5 depict the
change in the triboelectric current signal and friction coefficient, respectively. It can be
seen from the comparison of Figures 4 and 5 that both the triboelectric current and the
friction coefficient went through three different stages: the sharply rising stage, the slowly
dropping stage, and the smoothly fluctuating stage, which indicates that the triboelectric
current and the friction coefficient had the same changing trend, and the triboelectrification
is closely related to the friction state.
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Figure 3. Time-domain waveform of triboelectric current under oil-free lubrication. 
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Figure 4. Change in triboelectric current with time under oil-free lubrication. 
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Figure 6. Time-domain waveform of triboelectric current under oil lubrication. 
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3.1.2. Oil Lubrication

The time-domain waveforms of the triboelectric current signals under oil lubrication
conditions are shown in Figure 6. The amplitudes of current signals at different times were
also distinct. Furthermore, the mean values of triboelectric current signals and the friction
coefficient at different times were obtained separately. The changes with time are separately
shown in Figures 7 and 8. It can be observed that the triboelectric current and the friction
coefficient also had the same changing trend, which indicates that under oil lubrication
conditions, the triboelectrification is also closely related to the friction state. However, the
trend of triboelectric current under oil lubrication was different from that under oil-free
lubrication; it shows the change of first decreasing and then tending to steady. In addition,
the amplitude of the triboelectric current signal under oil lubrication was much smaller
than under oil-free lubrication. The difference in triboelectric current signals between oil
lubrication and oil-free lubrication conditions further proves that triboelectrification is
closely related to the friction state.
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As discussed above, the change in the triboelectric current signal presents a trend
consistent with that of the friction coefficient during the friction process of the friction pair,
which indicates that the triboelectrification is closely related to the friction state. However,
the driving mechanism of triboelectrification still needs to be further discussed.

3.2. Driving Mechanism of Triboelectrification

In this study, two similar types of metals, carbon steel and cast iron, were selected as
the friction pairs and were always kept in contact during the experiment. According to the
reference [13], the Seebeck effect can be neglected for similar metal pairs, such as Fe–Steel.
In addition, because the metal friction–pair was under complete-contact conditions, the
electrical charge from separation was neglected [11]. Thus, the material transfer is regarded
as the dominant factor of triboelectrification under full-contact conditions of similar metal
pairs. Due to the material transfer being closely related to the wear mechanism in a wear
process [18], the material transfer under different friction conditions is discussed in view of
a transition of the wear mechanism and severity.

3.2.1. Material Transfer Characteristics under Oil-Free Lubrication

The material loss mainly occurred on the disk specimen because its hardness (350HV)
was far lower than that of the ball specimen (750HV). Thus, the effect of the material transfer
is discussed by examining the surface topographies of the disk specimen. Figure 9 presents
the surface topographies and wear scar profile curves of disk specimens at different times.
It can be seen that there were many machining marks on the specimen surface before the
wear, as shown in Figure 9I. After two minutes into the wear experiment, small plastic
deformation and particle exfoliation appeared on the wear scar area, and a wear scar with
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a depth of 9.7 µm was observed, as shown in Figure 9II. The characteristics of the wear
scar indicate that adhesive wear accompanied by mild abrasive wear was the primary
wear mechanism, and it dominated the occurrence of material transfer. As the wear
experiment continued, the particle exfoliation increased and the wear scar became deeper,
as shown in Figure 9III. When the wear experiment had continued for 6 min, large plastic
deformation occurred in the wear scar of about 17.3µm in depth, as shown in Figure 9IV.
The wear mechanism was adhesive wear accompanied by abrasive wear, which indicates
that the material transfer increased significantly. After the eighth minute, the particle
exfoliation and plastic deformation began to decrease. The wear scar became smooth, and
its depth no longer increased significantly, as shown in Figure 9V,VI. The above phenomena
indicate that the disk specimen entered a steady wear stage, and the material transfer
became stable. In conclusion, the material transfer of the disk specimen presents a trend of
increasing, decreasing, and then tending to be stable under oil-free lubrication. Therefore,
the triboelectrification driven by the material transfer also presents the same trend, as
shown in Figure 6.
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3.2.2. Material Transfer Characteristics under Oil Lubrication

Figure 10 presents the surface topographies and wear scar profile curves of disk
specimens at different times under oil lubrication. It can be seen that the surface of the disk
specimen was relatively rough before the test due to the existence of machining marks. As
the wear experiment continued, the machining marks on the surface were gradually worn
away to form a smooth, worn region, as shown in Figure 10II(a)–IV(a). At the same time,
the wear scar gradually became deeper, as shown in Figure 10II(b)–IV(b). Compared with
oil-free lubrication, the wear scar depth was reduced under oil lubrication, which means
that the material transfer of the disk specimen under oil lubrication was smaller than that
under oil-free lubrication. Therefore, the triboelectrification driven by the material transfer
under oil lubrication was significantly reduced, as shown in Figure 7.



Lubricants 2022, 10, 180 9 of 11Lubricants 2022, 10, x FOR PEER REVIEW 9 of 11 
 

 

(I) Original surface

 

(II) the 1st minute 

(a) Worn surface

04.5

6.5

8.5

10.5

350 700

D
e
p
th

(μ
m

)

Length(μm)

(b) Grinding curve 

2.4μm

 

(III) the 3rd minute 

(a) Worn surface

0 350 7004.5

6.5

8.5

10.5

D
e
p
th

(μ
m

)

Length(μm)

(b) Grinding curve 

2.6μm

 

(IV) the 9th minute 

(a) Worn surface

0 350 7004.5

6.5

8.5

10.5

Length(μm)

D
e
p
th

(μ
m

)

(b) Grinding curve 

3.0μm

 

Figure 10. Surface topographies and wear scar profile curves of disk specimen under oil lubrication. 

As mentioned above, the triboelectrification driven by material transfer could be re-

lated to the friction condition and wear severity in the friction and wear process. However, 

due to the complexity of friction and wear, the correspondence between triboelectrifica-

tion, friction, and wear still needs further investigation. 

Figure 10. Surface topographies and wear scar profile curves of disk specimen under oil lubrication.

As mentioned above, the triboelectrification driven by material transfer could be
related to the friction condition and wear severity in the friction and wear process. However,
due to the complexity of friction and wear, the correspondence between triboelectrification,
friction, and wear still needs further investigation.
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4. Conclusions

The triboelectrification behaviours of similar metal pairs and their driving mechanism
were investigated based on friction and wear experiments under oil-free and oil lubrication
conditions. The following conclusions can be obtained:

1. The triboelectric current presented a trend consistent with the friction coefficient,
which indicates that triboelectrification is closely related to the friction condition.

2. Triboelectrification driven by material transfer is related to wear severity. The more
severe the wear, the larger the triboelectric current. The less severe the wear, the
smaller the triboelectric current.
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