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Abstract: In this paper, the nonlinear oscillations induced by friction in a ball-on-socket system
are investigated. The nonlinear time response was obtained by solving the differential equations
of the friction-noise model of the finite element ball with multiple modes. The different patterns
of motion were analyzed via the bifurcation diagram, Poincare map, and recurrence plot. The
Lyapunov exponents of the discontinuous system with distributed contact were calculated using the
Muller method. From the analysis, it is shown that a friction-noise of a ball joint can retain periodic,
quasi-periodic, or chaotic oscillations with respect to tilted contact.
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1. Introduction

A ball joint is a major mechanical part consisting of a spherical bearing and a semi-
spherical socket. It is widely used in the suspension and steering linkages of automotive,
robotic arms, and even biomechanics such as human hip joints. Fretting and squeaking
is one frequent issue; thus, consistent lubrication is essential for the prevention of these
problems. The friction-induced vibration is the self-excited vibration [1,2]. Its mechanisms
have long been investigated in the application of automotive brake and gear systems. The
linear stability analysis has been adopted for estimating the onset of squeal [3–8].

The numerical simulation for friction noise in a ball-on-socket has been also carried out
on the basis of complex eigenvalue analysis [9–12]. It has been suggested that the positive
real parts of the system’s eigenvalues indicate the unstable modes generating friction noise
frequencies. However, the results of the linear stability theory did not properly estimate the
squeak frequencies in the experiment. Therefore, the transient time-domain analysis should
be considered to reproduce the experimental squeak frequencies, where the nonlinear
differential equations subject to friction sliding are numerically solved. Recently, Kang’s
nonlinear finite element (FE) model qualitatively reproduced the frequency spectrum in an
experiment [13].

It is known that the friction-induced vibrating system has sufficient complexity. It
may contain chaotic motions as well as regular ones. Simple analytical models have been
proposed to investigate the rich pattern of nonlinear oscillations [14–16]. The Lyapunov
exponents can indicate the sensitivity to the initial values as the characteristics of chaos
in the manner that the nonlinear motion exhibits the chaotic behavior when the largest
Lyapunov exponent is positive. In real applications, the degree-of-freedom in the FE
model is tremendously increased. In this case, the time-delay reconstruction for the time
series data of the experiment or simulation was carried out to calculate the Lyapunov
exponents [17–19]. The recurrence quantification analysis (RQA, [20]) was also used to
display the recurrence pattern of the time series data in brake squeal application [21,22].
Recently, CNN-based deep learning was implemented to determine the classification of
recurrence patterns of friction-induced vibrations [23,24].

To the author’s knowledge, this is the first work to present the calculation of the
spectrum of Lyapunov exponents for the distributed FE friction contact on the ball joint
system in order to determine the chaotic behavior of ball joint squeak. Then, it clarifies that
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the frequency spectrum can be quite variable to small changes in the parameters such as
the tilt angle of axial load. This approach can be applied to hip joint squeak problems with
a complex geometry and various frequency spectrums in biomedical applications.

We also attempt to seek the different types of attractors for the nonlinear oscillation
of the FE ball-on-socket system in the analytical and numerical manner. In particular, the
possibility of a chaotic attractor in the ball joint system is proposed through nonlinear
analysis such as a bifurcation diagram, Poincare map and recurrence analysis. The degree
of freedom in the FE ball joint model was reduced through the truncated Galerkin approxi-
mations to the original nonlinear equations of motion. Then, the Lyapunov exponents were
directly estimated by solving the differential equations. We also clarify that the unstable
modes in the linear stability analysis do not predict the squeak frequencies of the transient
time-domain analysis under several circumstances.

2. Materials and Methods

The ball joint system was constructed in the finite element manner as shown in
Figure 1a. The ball joint rotated in the x, y, and z axes when the tilted reaction pre-load was
applied on the center of the ball. The tilting angle between the axis of the beam and reaction
pre-load was considered to be the system parameter. The clearance between the ball and
socket produced the contact area and the contact pre-stress distribution as in Figure 1b.
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Figure 1. Configuration of a ball joint model, (a) FE model under loading and movement conditions,
(b) normal pre-stress distribution by reaction pre-load.

The highly nonlinear contact kinematics were formulated on the contact between the
ball and socket. Contact area on the ball was estimated by Hertz contact theory [10–13]. The
analytical contact area was projected onto the FE geometry; thus, the node within the FE
contact surface was called the contact node. In the perturbed state from the steady-sliding
equilibrium, the contact force vector normal to the contact surface was defined on the kth
contact node as:

Nk
c = −Nk

c er (1)

where the normal force is the summation of the normal pre-stress pk
n and the normal load

variation kcuk
r if the kth contact node is under contact, and zero if it is non-contacted. So, it

can take the following the form:

Nk
c =

{
pk

n + kc

(
uk

r − uk
r,eq

)}
·Θ
{

pk
n + kc

(
uk

r − uk
r,eq

)}
(2)

where the subscript ‘eq’ denotes the equilibrium state and Θ(·) is the Heaviside function
representing the discontinuous property of contact modelling such that Θ(x) = 0 if x < 0,
and Θ(x) = 1 otherwise.
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The friction force at the kth contact node is described in the Coulomb’s friction law as:

fk
c = −µk Nk

c
Vk

c∣∣∣Vk
c

∣∣∣ (3)

where the velocity vector of the kth contact node is the time-derivative of the perturbed
position vector as:

Vk
c =

d
dt

(
xk

c + uk
c

)
(4)

where xc is the position vector from the ball center and uc is the deflection vector of the
contact node. The friction coefficient is described in the smoothing curve method [25,26] as:

µk =
(

1− e−d|Vk
c |
){

µd + (µs − µd) · e−f|Vk
c |
}

(5)

where d and f are the slope factors in the creep and sliding regions of the friction curve,
respectively, and µd and µs are the kinetic and static friction coefficients of the friction curve.

The virtual work performed by the contact normal and friction forces is then defined
and numerically estimated in the finite element manner as:

δWc =
∫

Ac
(fc + Nc)·δucdA ∼=

Nnd

∑
k=1

(
fk

c + Nk
c

)
·δuk

c∆Ak (6)

where ‘·’ denotes the vector inner product, Nnd is the number of contact nodes, ∆Ak is the
finite area of the kth contact element, and the contact deflection vector uc is expressed in
the modal expansion form:

u
(

xk
c, t
)
=

N

∑
i=1

[
Φk

θ,ieθ + Φk
φ,ieφ + Φk

r,ier

]
· qi(t) (7)

where N represents the truncated number of the vibration modes, qi is the ith modal
coordinate, and Φθ,i, Φφ,i, and Φr,i are the elements of the ith eigenvector in the θ, φ, and r
directions of the spherical coordinates, respectively.

The discretized nonlinear equations of motion with distributed and discontinuous FE
friction contact can reduce to:

..
qi + ω2

i qi =
Nnd

∑
k=1



−µk Nk
c∣∣∣Vk
c

∣∣∣
(

Vk
c·eθ

)
Φk

θ,i

−µk Nk
c∣∣∣Vk
c

∣∣∣
(

Vk
c·eφ

)
Φk

φ,i

−µk Nk
c∣∣∣Vk
c

∣∣∣
(

Vk
c·er

)
Φk

r,i

−Nk
c Φk

r,i



∆Ak (8)

where ωi is the circular natural frequency of the ith mode. The linear stability analysis can
be conducted by linearizing Equation (8) at the equilibrium.

The Lyapunov spectrum is determined by solving the derived differential equations of
motion and the variational equation simultaneously. The nonlinear differential Equation (8)
is rewritten in the state-space form as:

.
z = F(z), z(t0) = z0 (9)
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where F is the vector of the nonlinear functions, and

z =
{

z1 z2 · · · z2k−1 z2k · · · z2N
}

=
{

q1
.
q1 · · · qk

.
qk · · · .

qN
} (10)

It should be noted that Equation (9) represents the discontinuous dynamical system
due to the non-smooth normal stress function in Equation (2) over the distributed contact
area. Therefore, the algorithm of calculating the Lyapunov exponents of the non-smooth
dynamical system is required.

Once the time and locations at the instance (ti) between the contact and non-contact at
every FE node are detected, Equation (9) can be discretized in the time step by Muller’s
method [27,28]:

ti−1 < t < ti:
.
z = Fi(z), z(ti−1) = z(t+

i−1
) (11)

t = ti: 0 = h(z(t−i )) (12)

z(t+i ) = g(z(t−i )) (13)

ti < t < ti+1:
.
z = Fi+1(z), z(ti) = z(t+i ) (14)

It is noted that the friction contact is discontinuous because each contact node can
experience the transition between the contact and non-contact condition. This transition
of each contact node on FE contact model should be carefully dealt with alongside the
transition time as:

δti = ti − ti = −

∂h
∂z

∣∣∣∣
z=z−i

· δz−i

∂h
∂z

∣∣∣∣
z=z−i

· Fi(z−i )
(15)

δz+i =
∂g
∂z

∣∣∣∣
z=z−i

· δz−i +

[
∂g
∂z

∣∣∣∣
z=z−i

· Fi(z−i )− Fi+1(z+i )

]
δti (16)

where z−i = z(t−i ) and z+i = z(t+i ), the plus and minus represent the right- and the left-
sided limits, h and g are the indicator function and transition condition, respectively, and
∂g
∂z

∣∣∣
z=z−i

= I for the piecewise linear stiffness model. Moreover, the indicator function h

is discretized for all FE contact nodes in Equation (2) and the discontinuity condition in
the distributed contact geometry can be detected by applying the single equation form
representing the indicator of transition over all contact nodes between the ball and socket
as follows:

h(ti) =
nc

∏
j=1

hj(ti) = s1(ti) · s2(ti) · · · snc(ti) = 0, (17)

hj(ti) =
{

pk
n + kc

(
uk

r − uk
r,eq

)}
·Θ
{

pk
n + kc

(
uk

r − uk
r,eq

)}
= sj(ti), j = 1, 2, · · · , nc (18)

The corresponding Jacobian matrix of the indicator function is numerically estimated as:

∂h
∂z

=

{
∂h
∂z1

∂h
∂z2

· · · ∂h
∂z2k−1

∂h
∂z2k

· · · ∂h
∂z2N

∂h
∂z2N+1

}
(19)

where ∂h/∂z2n = 0, n = 1, 2, · · · , N.
The disturbed trajectory is described in the form:

δ
.
z =

∂F(z(t))
∂z

· δz, δz(t0) = δz0 (20)

where the solution of Equation (20) takes the following form:

δz(t) = Φt(z0)δz0 (21)
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where Φt(z0) is the state transition matrix that is obtained by solving the following varia-
tional equation:

.
Φt(z0) =

∂F(z(t))
∂z

·Φt(z0), Φt0(z0) = I (22)

The Lyapunov exponents are defined as:

λi = lim
τ→∞

1
τo

ln|mi(τo)| (23)

where m1(t), m2(t), . . . , m2N(t) are the eigenvalues of Φt(z0) for any initial point z0, and
τo = t/ω1. Here, the Lyapunov exponents can be numerically calculated by the Gram–
Schmidt orthonormalization [18,19], where the largest Lyapunov exponent indicates the
sensitivity to the initial values determining the chaotic attractor.

Alternatively, the recurrence analysis can also be conducted for the nonlinear time-
series data of the numerical solution. For this, the motion of the central contact point in
the sliding direction of the ball joint is numerically calculated by the modal solutions of
Equation (9) and the fully-developed time-series are recorded by sampling time ∆t as:

us(n∆t) = u(xctr, n∆t)·Vk
o/
∣∣∣Vk

o

∣∣∣ (24)

A time-delay reconstruction in m dimension is then taken for the selected time-series
as [29]:

yn =
(

us,n−(m−1)τ , us,n−(m−2)τ , · · · , us,n−τ , us,n

)
(25)

where the embedding dimension m and the time lag τ are determined by the mutual
information method [30] and the false nearest neighbors (FNN) [31]. For the recurrence
analysis [20], the recurrence plot (RP) is firstly defined to measure the recurrences of a
trajectory in the reconstructed phase space as:

Ri,j(ε) = Θ(ε− ‖yi − yj‖) (26)

where ‖ · ‖ is the Euclidean norm and ε is the threshold distance.

3. Results

In this study, the steel beam had a 20 mm diameter and 200 mm length and the steel
ball with 31.75 mm diameter was in contact with the aluminum socket with a 31.95 mm
diameter. For the loading and movement conditions, the reaction pre-load was 150 N, and
the rotation components (Ω1, Ω2, Ω3) were (1/

√
2, 1/

√
2, 0) [rad/s]. The eleven vibration

modes of the ball joint up to 13 kHz were used in the analysis as shown in Figure 2. In the
numerical simulation, the Stribeck-type friction curve under mixed lubrication was applied
to the nonlinear ball joint model as illustrated in Figure 3.

It has been shown that the tilting angle of the reaction pre-load force is an important
parameter in ball joint squeaking [13]. Thus, the tilting angle was chosen to be the main
parameter in this study. The different patterns of motion in ball joint squeaking were
demonstrated for the several tilting angles, 2.0◦, 3.5◦, and 5.0◦. The mismatch between the
linear stability analysis and the frequency spectrum of the nonlinear time series will also be
well illustrated.
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Figure 2. Mode shapes of the ball joint, (a) first bending mode pair (1698 Hz), (b) second bending
mode pair (4093 Hz), (c) first torsion mode (4501 Hz), (d) third bending mode pair (7545 Hz), (e) first
axial mode (9737 Hz), (f) second torsion mode (9917 Hz), (g) fourth bending mode pair (12,448 Hz).
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Figure 3. Friction curve, µs = 0.55, µd = 0.25, d = 10 and f = 1000.

For the 2.0◦ tilting angle, the four unstable modes were detected in the linear stability
analysis by determining the complex eigenvalues of the linearized equations of Equation (8)
as shown in Figure 4a. The corresponding nonlinear time series and its phase plot are
demonstrated in Figure 4b,c for the limit cycle oscillations of the central contact node in
the sliding direction. One fundamental frequency of 4.1 k Hz and its higher harmonics in
the frequency spectrum of the time series are shown in Figure 4d. It was found that the
fundamental frequency corresponded to the second bending mode. Even for the unstable
multiple modes, the second bending mode dominated the nonlinear oscillations. The topo-
logically similar phase trajectories were reconstructed as shown in the three-dimensional
plot of Figure 4e. Its recurrence pattern can be visualized via the recurrence plot in Figure 4f
by applying Equation (26) to the reconstructed time-delay vectors, where the diagonal
lines were repeated with an equally spaced period of the fundamental frequency as the
periodic attractor.
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Figure 4. Oscillations of limit cycle at 2.0◦, (a) linear modal instability, (b) time series, (c) phase plot,
(d) frequency spectrum, (e) time-delay reconstruction, (f) recurrence plot.

A similar analysis was conducted for the tilting angle of 3.0◦ as illustrated in Figure 5.
Figure 5a shows that the four unstable modes in the linear stability analysis were similar
to those in the case of 2.0◦. However, the dominant frequency in the frequency spectrum
(Figure 5d) turned out to be 12.48 kHz, which was the fourth bending mode. This implies
that the dominant mode in the nonlinear oscillations shifted from the second bending
mode to the fourth bending mode at this configuration. The nonlinear time series, its
phase trajectories, and the time-delay phase trajectories indicate that this motion was nearly
periodic (Figure 5b,c,e). In the enlarged RP of Figure 4f, the diagonal lines were mainly
repeated with a period of 1/12.48 kHz.
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Figure 5. Oscillations of limit cycle at 3.0◦, (a) linear modal instability, (b) time series, (c) phase plot,
(d) frequency spectrum, (e) time-delay reconstruction, (f) recurrence plot.

For the tilting angle of 3.5◦, the five unstable modes were found in the linear stability
analysis as in Figure 6a. Its oscillation pattern measured at the central contact node of
the ball had periodic waviness as in Figure 6b, and the corresponding phase trajectories
were not purely periodic (Figure 6c). In the spectrogram of Figure 6d, the frequency of
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0.57 kHz (= f2 − 3× f1) newly appeared by the superposition of the 3.87 kHz (≡ f1, the
second bending mode) and 12.18 kHz (≡ f2, the fourth bending mode). Then, two-periodic
trajectories were coupled with the 0.57 kHz and 3.87 kHz frequencies. The ratio of the two
frequency components was irrational, so the composite motion took a torus as the quasi-
period oscillations. This is demonstrated in the three-dimensional time-delay trajectories in
Figure 6e. In the RP of Figure 6f, the diagonal lines were mainly repeated with an equally
spaced period of 1/0.57 kHz, which is equivalent to the period of the waviness in Figure 6b.
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Figure 6. Oscillations of limit cycle at 3.5◦, (a) linear modal instability, (b) time series, (c) phase plot,
(d) frequency spectrum, (e) time-delay reconstruction, (f) recurrence plot.

On the other hand, the strange oscillation pattern was observed for the tilting angle of
5.0◦. The linear stability analysis resulted in the five unstable modes similar to the above
(Figure 7a). However, the oscillations seemed aperiodic as shown in the measured time
series (Figure 7b) and its phase trajectories (Figure 7c). The frequency spectrum of this
chaotic oscillation had peaks similar to the quasi-periodic case, but it contained the noise-
like broadband spikes (Figure 7d). The time-delay trajectories in Figure 7e imply a strange
attractor where the corresponding RP did not have any recurrence pattern (Figure 7f).

Lubricants 2022, 10, x FOR PEER REVIEW 9 of 13 
 

 

 

Figure 6. Oscillations of limit cycle at 3.5°, (a) linear modal instability, (b) time series, (c) phase plot, 

(d) frequency spectrum, (e) time-delay reconstruction, (f) recurrence plot. 

On the other hand, the strange oscillation pattern was observed for the tilting angle of 

5.0°. The linear stability analysis resulted in the five unstable modes similar to the above 

(Figure 7a). However, the oscillations seemed aperiodic as shown in the measured time se-

ries (Figure 7b) and its phase trajectories (Figure 7c). The frequency spectrum of this chaotic 

oscillation had peaks similar to the quasi-periodic case, but it contained the noise-like 

broadband spikes (Figure 7d). The time-delay trajectories in Figure 7e imply a strange at-

tractor where the corresponding RP did not have any recurrence pattern (Figure 7f).  

 

Figure 7. Oscillations of limit cycle at 5.0°, (a) linear modal instability, (b) time series, (c) phase plot, 

(d) frequency spectrum, (e) time-delay reconstruction, (f) recurrence plot. 

For the recurrence analysis and Poincare mapping, the time-delay reconstruction 

was taken for the nonlinear time series by selecting the time delay and embedding di-

mension from the mutual information and the false nearest neighbors (FNN). The first 

(a) (b) (c) 

(d) (e) (f) 

(a) (b) (c) 

(d) (e) (f) 

Figure 7. Oscillations of limit cycle at 5.0◦, (a) linear modal instability, (b) time series, (c) phase plot,
(d) frequency spectrum, (e) time-delay reconstruction, (f) recurrence plot.
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For the recurrence analysis and Poincare mapping, the time-delay reconstruction was
taken for the nonlinear time series by selecting the time delay and embedding dimension
from the mutual information and the false nearest neighbors (FNN). The first minimum for
the chaotic case of the tilting angle 5.0◦ in Figure 8a was nearly 20, which was chosen to be
the time delay in this analysis. By checking the false nearest neighbors in Figure 8b, the
optimal embedding dimension was chosen to be 5; thus, the reconstructed phase trajectories
in Figures 4e, 5e, 6e, and 7e were topologically similar to the physical phase plot as in
Figures 4c, 5c, 6c, and 7c.
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Figure 8. Choice of parameters in the time-delay reconstruction for 5.0◦, (a) average mutual informa-
tion, (b) percentage of false nearest neighbors.

Then, the transition from periodic to quasi-periodic and chaotic oscillations was
investigated by the recurrence analysis. Figure 9 illustrates that the successive RPs from
2.4◦ to 4.6◦ by the increment of 0.2◦ were captured within 5 milliseconds. For 2.4◦~2.8◦, the
periodic line structure covered the entire RP nearly with a period of 1

4 kHz. As the tilting
angle increased up to 3.4◦, the period of the periodic lines turned to the reciprocal of the
lower frequency component in quasi-periodic oscillation as 1/0.57 kHz. Then, the period
of the periodic lines became double for 3.6◦~4.0◦. Above the value of 4.2◦„ the recurrence
pattern was not seen any more in this local RP.

The Poincare map corresponding to the successive tilting angles was also illustrated
by choosing the cross-section of the time-delay phase trajectories as shown in Figure 10. For
the periodic trajectories, the set of narrow points were plotted on the map. For the quasi-
periodic trajectories, a single embedded circle was seen in the manner that the cross-section
intersected the torus geometry. Then, the set of points on the Poincare section scattered
arbitrarily as they behaved as the chaotic attractor.

Lubricants 2022, 10, x FOR PEER REVIEW 10 of 13 
 

 

minimum for the chaotic case of the tilting angle 5.0° in Figure 8a was nearly 20, which 

was chosen to be the time delay in this analysis. By checking the false nearest neighbors 

in Figure 8b, the optimal embedding dimension was chosen to be 5; thus, the recon-

structed phase trajectories in Figures 4e, 5e, 6e, and 7e were topologically similar to the 

physical phase plot as in Figures 4c, 5c, 6c, and 7c. 

 

Figure 8. Choice of parameters in the time-delay reconstruction for 5.0°, (a) average mutual infor-

mation, (b) percentage of false nearest neighbors. 

Then, the transition from periodic to quasi-periodic and chaotic oscillations was in-

vestigated by the recurrence analysis. Figure 9 illustrates that the successive RPs from 

2.4° to 4.6° by the increment of 0.2° were captured within 5 milliseconds. For 2.4°~2.8°, 

the periodic line structure covered the entire RP nearly with a period of ¼ kHz. As the 

tilting angle increased up to 3.4°, the period of the periodic lines turned to the reciprocal 

of the lower frequency component in quasi-periodic oscillation as 1/0.57 kHz. Then, the 

period of the periodic lines became double for 3.6°~4.0°. Above the value of 4.2°,, the re-

currence pattern was not seen any more in this local RP.  

The Poincare map corresponding to the successive tilting angles was also illustrated 

by choosing the cross-section of the time-delay phase trajectories as shown in Figure 10. 

For the periodic trajectories, the set of narrow points were plotted on the map. For the 

quasi-periodic trajectories, a single embedded circle was seen in the manner that the 

cross-section intersected the torus geometry. Then, the set of points on the Poincare sec-

tion scattered arbitrarily as they behaved as the chaotic attractor. 

 

Figure 9. Recurrence plot from 2.4°, to 4.6°. 

(a) (b) 

Figure 9. Recurrence plot from 2.4◦, to 4.6◦.



Lubricants 2022, 10, 201 10 of 12
Lubricants 2022, 10, x FOR PEER REVIEW 11 of 13 
 

 

 

Figure 10. Poincare map at ( ) 0y t    from 2.4°, to 4.6°. 

For a given friction curve in Figure 3 and the differential Equation (8), the Lyapunov 

exponents in Equation (23) were estimated by directly solving Equation (20) with respect 

to the tilting angle variation. Figure 11a shows that the largest Lyapunov exponent was 

nearly zero from 1.0° to 4.0°, but it clearly became positive above the value of 4.0°. Par-

ticularly, the second and third Lyapunov exponents were also seen to be positive nearly 

from 5.0° to 8.0°, which indicates the hyper-chaos. The bifurcation diagram in Figure 11b 

confirms that the chaotic behavior occurred at the higher tilting angles. It reveals that the 

nonlinear oscillations of the ball joint may have generated the chaotic signal under the 

relevant configuration. 

 
(a) 

Figure 10. Poincare map at y(t + τ) = 0 from 2.4◦, to 4.6◦.

For a given friction curve in Figure 3 and the differential Equation (8), the Lyapunov
exponents in Equation (23) were estimated by directly solving Equation (20) with respect to
the tilting angle variation. Figure 11a shows that the largest Lyapunov exponent was nearly
zero from 1.0◦ to 4.0◦, but it clearly became positive above the value of 4.0◦. Particularly,
the second and third Lyapunov exponents were also seen to be positive nearly from
5.0◦ to 8.0◦, which indicates the hyper-chaos. The bifurcation diagram in Figure 11b
confirms that the chaotic behavior occurred at the higher tilting angles. It reveals that the
nonlinear oscillations of the ball joint may have generated the chaotic signal under the
relevant configuration.
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4. Conclusions

This paper dealt with the nonlinear motions induced by friction in the ball joint system.
The different pattern of the motion was obtained from the nonlinear differential equations
based on the FE geometry and analytical contact kinematics. Simultaneously, the unstable
modes were calculated from the linearized equations of motion at the equilibrium of the
friction-engaged ball joint system. The results are summarized as follows:

• The proposed approach can solve the Lyapunov exponents of the complex FE model
with distributed frictional contacts;

• The unstable frequencies of the linear ball joint model were found to mismatch with
the ball joint squeak frequencies of the numerical nonlinear response;

• In the nonlinear analysis, one fundamental frequency appeared in the periodic motion,
and two incommensurate fundamental frequencies were seen in the quasi-periodic
and chaotic motions;

• The tilting angle of the reaction pre-load was shown to be the influential factor de-
termining the oscillation pattern. As the tilting angle increased, the periodic motion
turned to quasi-periodic, and eventually, chaotic behavior. It revealed that the fre-
quency spectrum and oscillation of ball joint squeaking can drastically change with
the tilting angle.
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