
Citation: Li, W.; Guo, F.; Liu, C.; Ma,

Z. Experimental Study on the

Influence of Stearic Acid Additive on

the Elastohydrodynamic Lubrication

of Mineral Oil 2137. Lubricants 2023,

11, 446. https://doi.org/10.3390/

lubricants11100446

Received: 21 September 2023

Revised: 11 October 2023

Accepted: 14 October 2023

Published: 16 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

lubricants

Article

Experimental Study on the Influence of Stearic Acid Additive
on the Elastohydrodynamic Lubrication of Mineral Oil 2137
Wei Li, Feng Guo * , Chenglong Liu and Zhaoqun Ma

School of Mechanical & Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China;
shlw@qut.edu.cn (W.L.); liuchenglong@qut.edu.cn (C.L.); mzq8135@163.com (Z.M.)
* Correspondence: mefguo@qut.edu.cn; Tel.: +86-13863945503

Abstract: Using an optical elastohydrodynamic lubrication (EHL) test rig, oil film thickness and
the coefficient of friction (COF) were measured, and the influence of stearic acid additive on the
EHL performance of mineral oil 2137 was investigated. The results showed that 2137 with 0.3 wt%
stearic acid (denoted to as 2137s) achieved the same film thickness as 2137, while the COF of 2137s
was significantly lower than that of 2137 when the contact was under conditions of a fully lubricant
supply. Under conditions of limited lubricant supply, 2137 base oil was prone to oil starvation
with the increase of entrainment velocity. On the other hand, 2137s significantly mitigated the oil
starvation. This was attributed to the fact that lower surface energy by the adsorption of stearic
acid results in discontinuous oil-droplet distribution on the lubrication track and, therefore, early
pressure generation. Moreover, it is interesting to find that less 2137s supply quantity can produce
higher film thickness when the contact is at high speeds, which is attributed to the fact that a smaller
quantity of 2137s gives smaller droplets on the lubrication track, and the resultant small surface
area–volume ratio presents oil more resistance to the centrifugal force and results in less oil escaping
from the lubrication track. The addition of stearic acid reduced the average COF of 2137 mineral oil
by about 13.3%

Keywords: oiliness additives; film thickness; coefficient of friction; limited lubricant supply;
surface absorb

1. Introduction

Lubrication is the most effective way to reduce friction and wear of mechanical
components, extend equipment life, and reduce energy consumption, and choosing the ap-
propriate lubrication method is particularly important [1]. With the increasing demand for
environmental protection and energy conservation, precise lubrication has been receiving
more attention [2,3] in the tribology community. Limited lubricant supply (LLS) has become
one of the important methods in lubrication design, where the oil supply quantity is limited
in such a way that an optimal lubrication status can be achieved. However, when LLS
applied oil starvation at the inlet of a contact and this could not be avoided, strategies have
to be found to improve the oil replenishment on the lubrication track. Wedeven et al. [4]
first reported the elastohydrodynamic lubrication (EHL) under oil-starved conditions using
optical interferometry and provided a formula to describe the relationship between the
entrance distance (the distance between the entrance supply bend boundary and the con-
tact zone boundary) and the reduction in film thickness. Guangteng and Kingsbury [5,6]
conducted optical EHL tests with different lubricants and found that when oil starvation
occurred, the lubricating film thickness is reduced to an approximately constant thickness
of tens of nanometers, which was independent of speed. Fischer et al. [7] determined
the characteristic rotational speed that leads to starvation based on the composition of
the lubricating grease. Cann et al. [8] studied the transition between fully flooded and
oil-starved conditions in EHL using a ball-on-disc test and developed a parameter to
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identify the onset of oil starvation, which involves oil quantity, viscosity, speed, and load.
Maruyama et al. [9] examined the relationship between the supplied oil flow rate and oil
film thickness under steady starved lubrication. Recently, Ebner et al. [10] studied LLS
lubrication through a twin-disc test, showing that a very small amount of lubricating oil is
sufficient for lubrication, achieving EHL under high loads.

It is particularly important to maximize the effectiveness of a limited quantity of
lubricant in LLS, and current methods include surface texturing [11–13], surface chemical
modification [14,15], and the addition of oil-soluble additives [16,17]. In terms of surface
texture, Niu et al. [11] prepared a series of shallow concave textured surfaces with different
geometric parameters (area density, diameter, and depth) on the surface of medium carbon
steel and conducted friction and wear tests. They found that the surface with the best
texture depth can effectively extend the steady-state and reduce friction and wear in the
changing state, thus achieving a longer sliding distance under the condition of oil starvation
lubrication. Matthew et al. [12] designed and employed laser surface texturing techniques
to fabricate a set of dimples characterized by a circular cross-section and conical profile.
When these textures are strategically positioned outside the contact footprint track yet in
close proximity to the disc, they demonstrate a reduction in both the coefficient of friction
and wear. Hirayama et al. [13] experimentally studied the laser processing groove outside
the contact zone under the condition of point-contact elastohydrodynamic lubrication
(EHL) and studied its influence on the thickness of the lubrication film. It was found that
the groove depth and angle were the key parameters to determine the oil film thickness
because they control the amount of lateral oil leakage at the contact point. In terms of
surface chemical modification, Li et al. [14] adjusted the distribution of oil pools on both
sides of the contact region by constructing a wettability gradient, which was generated
by an oil–wet trajectory surrounded by two oil-repellent regions on the solid surface. Liu
et al. [15] constructed an oil-hydrophilic lubricating track bounded by an oil-phobic region
on the friction surface through surface chemical modification. Under the condition of
limited oil supply, step wettability can improve the oil supply effect on the contact track
and increase the thickness of the lubricating oil film. All these methods provide ideas for
the active control of the spent oil lubrication state produced in the friction process.

Additives play an important role in improving the performance of lubricating oils [18–22].
Oiliness agents or friction modifiers, as important members of additives, can effectively
enhance the anti-friction properties of lubricating oils. The study of oiliness agents began in
1918 when Wells et al. [23] dissolved low-concentration plant oil-derived free fatty acids in
mineral oil and found that it improved the anti-friction and anti-wear effects of mineral oil.
Doig et al. [24,25] used molecular dynamics simulations to investigate the adsorption behavior
of stearic acid on iron oxide surfaces, revealing the significant impact of oiliness additives on
friction performance. Fry et al. [26] studied the adsorption phenomenon of oiliness additives
in hexadecyl oil on silicon surfaces and confirmed the positive role of the adsorption layer
in improving contact friction. Most of the aforementioned studies focused on improving
boundary lubrication conditions, but oiliness additives also have significant effects under
EHL conditions. Kalin et al. [27] selected several simple oiliness additives (amines, alcohols,
amides, and fatty acids) and reduced the friction coefficient under elastohydrodynamic
lubrication in steel/steel contacts, indicating application potential of oiliness additives in
elastohydrodynamic lubrication. Zang et al. [28] conducted experiments on slider-on-disc
contact LLS lubrication and found that the formation of discrete oil droplets on the weakly
wetted surface created by ionic liquid additives facilitated the bearing of the lubricating
oil film. Li et al. [29] also demonstrated through numerical calculations that, under LLS
conditions, discontinuous oil droplets caused by differences in surface wetting could enhance
the lubrication of sliding bearings. The aforementioned studies indicate that oiliness agents,
by adsorbing onto tribo-surfaces and forming thin films with low surface energy, effectively
decrease the friction of lubrication films.

In summary, existing research is mostly focused on the impact of oiliness additives
on synthetic oil in boundary lubrication performance, with limited studies on the effect of
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stearic acid additives on EHL performance. Therefore, in this study, by adding stearic acid
to mineral oil 2137 and utilizing a light interference lubricating film measurement system,
the influence of stearic acid additives on the lubricating performance of mineral oil 2137
was investigated.

2. Experimental
2.1. Experimental Apparatus and Scheme

The experiment for measuring the film thickness and COF was conducted using a
self-developed optical elastohydrodynamic lubrication test rig in the authors’ laboratory.
During the experiment, both the interference images and the COF were simultaneously
acquired. The structure of the rig is shown in Figure 1. The speeds of the glass disc and
the steel ball could be set separately, allowing for different SRR tests. The film thickness
measurement utilized the principle of optical interference. Red (wavelength 640 nm) laser
and green (wavelength 525 nm) laser were employed. Interference fringes were obtained by
multiple reflection and refraction of the red and green lasers, which were then captured by a
CCD camera after magnification by a microscope. The captured images were processed by
the dichromatic intensity modulation approach (DIIM) [30] to obtain the profile of the oil
film. The measurement of the friction force was realized by a force sensor in contact with one
end of a lever with the ball-drive unit and loading weights. The signal was transmitted to
the computer through a data acquisition card. Oil film interferogram and friction coefficients
were acquired simultaneously. Under each working condition, the steel ball and glass disk
were set to run steadily for 1 min, during which the interference pattern was randomly
saved and the friction coefficient was recorded synchronously through pulse triggering.
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2.2. Experimental Conditions and Materials

Two lubricants were used in the experiments. One was 2137 base oil. 2137 is a refined
mineral oil, which is a type II mineral oil similar to 500 N, and its main components are
alkane compounds. The other was 2137s, which was 2137 base oil with 0.3 wt% stearic acid
(C18H36O2). As shown in Figure 2, the preparation process of 2137s was as follows. Firstly,
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0.3 g stearic acid powder was added to 99.7 g 2137 base oil. The mixture was stirred for
two hours at 60 ◦C to fully dissolve the stearic acid. After heating, the solution was cooled
and left to stand at room temperature for two days. It was observed that the solution was
transparent, homogeneous, and no substance precipitated, indicating full dissolution of
stearic acid in 2137 base oil. The properties of the two lubricants are listed in Table 1.
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Table 1. Properties of lubricants used.

Lubricant Dynamic Viscosity (mPa·s @22 ◦C) Refractive Index

2137 220.8 1.475
2137s 199.8 1.475

The glass disc material was BK7 glass. In order to improve the imaging quality, a thin
chromium (Cr) film with a thickness of about 20 nm was coated on the contact surface of
the glass disc. The roughness of the glass disc was Ra = 4 nm. The ball was made of AISI
521000 steel with a diameter of 25.4 mm and a surface roughness of Ra = 14 nm. The radius
of the circular trajectory was 60 mm. The experimental conditions are shown in Table 2.
The slide-roll-ratio (SRR) is defined as SRR = (ua − ub)/ue, where ue = (ua + ub)/2 is the
entrainment velocity, and ua and ub are the linear velocities of the contact point on the
disc and the ball, respectively. In the LLS test, a micropipette was used for quantitative oil
supply. Before starting the experiment, the ball and the disc were brought into approximate
contact. The lubricant was evenly distributed on the contact track of the glass disc, and a
10-min pre-running was performed.

Table 2. Conditions of the experiments.

Condition Value

Volume of the oil supply, V/µL 5, 10, 20, Fully flooded (1 mL)
Load, w/N 15, 30

Entrainment velocity, ue/mm·s−1 1–512
Slide-roll-ratio, SRR 0.1, 0.2, 0.4, 0.6, 0.8, 1.0
Temperature, T/◦C 22 ± 1

Relative humidity, RH/% 50 ± 5

3. Results and Discussion
3.1. The Effect of Stearic Acid on the 2137 Mineral Oil under Fully Flooded Condition

Under fully flooded conditions, Figure 3 shows the variation curves of film thickness
and COF with entrainment velocity for a load of 30 N and an SRR of 0.1 for two lubricants.
From the graph, it can be observed that the film thickness of both 2137 and 2137s lubricants
increased with increasing entrainment velocity, and there was not significant difference
between their film thickness. It is worth noting that under the same test conditions, the COF
of 2137s was significantly lower than that of the 2137 base oil. This is mainly because stearic
acid in 2137s can form an adsorption film on the contacting surface during the lubrication
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process. The formed adsorption film and the fluid film have a certain degree of slippage
between them, thereby reducing the COF. The COF of both lubricants shows decreased
followed by an increase with increasing speed. At lower speeds, the oil film thickness was
low, and the contact zone was in the mixed lubrication stage with contact of rough peaks.
As the speed increased, the oil film thickness increased, the lubrication state improved, and
the contact of rough peaks decreased, resulting in a continuous decrease in COF. When the
speed continued to increase, the lubrication state entered the fluid lubrication stage, where
the COF mainly came from the shear within the fluid. Moreover, the higher the speed, the
greater the shear force within the fluid, resulting in an increase in COF. The friction versus
speed in Figure 3 is correlated well to the Stribeck curve.
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Figure 3. Variation curves of film thickness and COF vs. entrainment velocity for 2137 and 2137s:
(a) central film thickness vs. ue; (b) COF vs. ue.

Figure 4 shows the variation of the COF of 2137 and 2137s with the entrainment
velocity under different SRRs. It can be seen from the curves at lower SRRs (0.1, 0.2), the
COF of 2137 and 2137s both show a trend of first decreasing and then increasing with the
increase of the entrainment velocity, which is consistent with the general Stribeck curve.
At higher SRRs (0.4, 0.6, 0.8, 1), nevertheless, the COF of 2137 and 2137s varied differently.
With the increase of the entrainment velocity, the COF of 2137 and 2137s showed a trend
of decreasing, then increasing, and then decreasing again. Under a large SRR, when the
entrainment velocity was high, the COF showed a significant decrease, and the larger the
SRR and entrainment velocity, the more obvious the decreasing trend of the COF. This is
because under the condition of a higher SRR, when the entrainment velocity is high, both
lubricants, 2137 and 2137s, exhibit obvious thermal thinning and shear thinning effects,
which weaken the fluid shear in the contact area and thus reduce the COF in the contact
area. To investigate the influence of the SRR on the effect of stearic acid additive, the
average value of COF within the range of entrainment velocity of 1–384 mm/s under
different SRRs was calculated, as shown in Figure 4c. It can be seen from the figure that the
COF of both lubricants increases with the increase of the SRR, which is because the increase
in the SRR leads to the increase of the shear at the friction interface, and hence increase in
COF. Moreover, the COF of 2137s is significantly lower than that of 2137, mainly due to
the adsorption of stearic acid on the friction surface. This friction-reduction performance
is more pronounced at lower SRRs, mainly because the damage to the adsorption film is
weaker at lower SRRs, while the adsorption film may be damaged to a certain extent at
higher SRRs, resulting in a weakening of the friction-reducing effect.
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The COF variation with the sliding–rolling ratio under different entrainment velocities
was studied. Figure 5 shows the curves of COF with SRR for two lubricants under three
entrainment velocities under sufficient oil supply conditions. When SRR was less than
0.4, the increase of COF with SRR for the lubricant followed a linear law approximately,
indicating a Newtonian fluid behavior. As the SRR increased, when SRR was greater than
0.6, lubricants showed different friction behaviors at different entrainment velocities. At
entrainment velocities of 64 mm/s and 192 mm/s, with the increase of SRR, COF showed a
slight increase at an entrainment velocity of 512 mm/s. When SRR was greater than 0.6,
both 2137 and 2137s exhibited a significant decrease in COF vs. SRR. At higher entrainment
velocities and larger SRRs, the lubricant is affected by the combined effects of shear thinning
and thermal effects.
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Figure 5. COF varies with SRR.: (a) 2137, 30 N; (b) 2137s, 30 N.

When the SRR is 0.1, the film thickness and COF of 2137 base oil under fully flooded
conditions was measured at loads of 15 N and 30 N, as shown in Figure 6. From Figure 6a,
it can be observed that the film thickness curves presented by 15 N and 30 N are relatively
close, indicating that the film thickness does not have marked dependence on load, which is
the intrinsic characteristics of elastohydrodynamic lubrication. In contrast to film thickness,
the influence of load on COF is more pronounced. The COF corresponding to the 30 N load
is significantly higher than that of the 15 N load. This is mainly because the increase in load
leads to an increase in the oil film pressure within the contact zone, enhancing the viscosity
and shear force in the contact zone and causing a noticeable increase in COF. Furthermore,
from Figure 6b, it can be observed that as the load increases, the speed decreases at which
the COF starts to rise.
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Figure 6. Film thickness and COF versus speed, 2137 base oil under loads of 15 N and 30 N: (a) Central
film thickness vs. ue; (b) COF vs. ue.

3.2. Influence of Stearic Acid under Limited Lubricant Supply Conditions

In practical engineering, excessive lubrication is often used for mechanical components,
which can sometimes be detrimental to the operation of the machine. A small amount of
lubricant is sufficient to achieve effective lubrication for tribo-pairs such as air-oil lubrication
in high-speed bearings, which can avoid temperature rise by oil churning. Therefore,
this section studies the influence of stearic acid on the tribology performance of base oil
2137 under limited oil supply conditions. Figure 7 shows the influence of oil supply amount
on the central oil film thickness of the two lubricants with a load of 15 N and a SRR of 0.1.
From Figure 7a–c, it can be observed that the central film thickness of the base oil 2137 first
increases and then decreases, and there exists a critical speed where the film thickness starts
to decrease. This critical speed represents the transition of the lubrication from adequate
oil supply to insufficient oil supply. When the oil supply amount is 5 µL, the critical speed
of 2137 is 64 mm/s. When the speed exceeds the critical speed, the central film thickness of
2137 decreases significantly. When the oil supply amount reaches 10 µL, the critical speed
is 128 mm/s, and when the oil supply amount is 20 µL, the critical speed is 256 mm/s.
With the increase in oil supply amount, the critical speed of the base oil continues to rise,
indicating that increasing the oil supply amount can effectively improve the lubrication.
From Figure 7d, it can be seen that under sufficient oil supply, the central film thickness
increases with increasing speed. Under limited oil supply, the measured film thickness
of 2137s presents better film formation behavior than that of the base oil 2137. Therefore,
under limited oil supply conditions, 2137s can improve the oil supply and lubrication state
within a certain range of operating conditions.

To investigate the influence of stearic acid on the oil film thickness shown in Figure 7,
Figure 8 gives the entrance oil pool of the two oils at various oil supply amounts (5 µL,
10 µL, 20 µL, and full flooded) under various entrainment velocities. The dashed line in
the figure indicates the oil–air meniscus boundary in the entrance region, and the distance
from the meniscus boundary to the contact center reflects the degree of oil depletion. From
Figure 8a, it can be observed that when the volume of oil supply is 5 µL, the 2137 base oil
exhibits obvious oil depletion, and this depletion phenomenon intensifies with increasing
entrainment velocity. When the entrainment velocity is 128 mm/s, the oil–air meniscus
boundary in the entrance region reaches the contact area edge, and the 2137 base oil in the
central region experiences significant collapse. When the volume of oil supply is increased
to 10 µL, the oil depletion is somehow improved, and at a speed of 256 mm/s, oil film
collapse occurs. When the volume of oil supply is increased to 20 µL, no oil depletion
occurs at 64 mm/s, and even at a speed of 384 mm/s, the oil–air meniscus boundary in
the entrance region does not reach the contact area edge. The interferograms of 2137s are
shown in Figure 8b, from which we can see that, under the same test conditions, the inlet oil
pool of 2137s is more than that of 2137. The oil–air meniscus boundary of 2137s gradually
approaches the contact area edge with increasing speed. It is interesting to find that a larger
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oil supply quantity results in a more abundant oil pool at the inlet at low speeds. And
conversely, with speed increasing, a smaller oil supply quantity leads to a larger distance
between the oil–air meniscus boundary and the contact center. That is, there is a more
abundant oil supply.
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Figure 7. Central film thickness varies with entrainment velocity at different oil supply amounts.
(w = 15 N, SRR = 0.1): (a) V = 5 µL; (b) V = 10 µL; (c) V = 20 µL; (d) fully flooded.

As shown in Figure 9, the central film thickness of 2137s and base oil 2137 changes
with the entrainment velocity under two oil supply quantities. It can be found from the
figure that the central film thickness of base oil 2137 increases with the increase of oil
supply, which is the same as what we expected. However, when the entrainment velocity
is less than 256 mm/s, the central film thickness of 2137s has no obvious difference for
the oil supply volumes of 5 µL and that of 10 µL. When the entrainment velocity exceeds
256 mm/s, there is an abrupt film collapse for 10 µL oil supply and, consequently, the film
thickness of 5 µL oil supply is much higher than that of 10 µL oil supply, which is beyond
our general understanding. This is due to the joint action of centrifugation and adhesion of
oil droplets to the surface. More discussions will be given in the subsequent section.

To further explore the influence of stearic acid on the lubricating performance of
2137 base oil under limited lubricant supply conditions, the variation of COF with speed
was investigated as shown in Figure 10. The tests were conducted with a load of 15 N
and a SRR of 0.1, under 5 µL, 20 µL, and fully flooded conditions for both lubricants. The
COFs of 2137 and 2137s both exhibited a decreasing-then-increasing change with increasing
speed. Moreover, the COF of 2137s was consistently lower than that of 2137 under all
three oil supply amounts, with the difference being most pronounced at low speeds. When
the volume of oil supply was 5 µL, the difference in COF between 2137 and 2137s was
also significant at low speeds, mainly due to their lubrication states. At high speeds,
2137 exhibited obvious oil depletion, while 2137s maintained better lubrication, resulting
in lower COF for 2137s. Furthermore, when the oil supply amount was increased to 20 µL,
both 2137 and 2137s showed a significant decrease in COF compared to the 5 µL condition.
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conditions: (a) central film thickness of 2137; (b) central film thickness of 2137s.
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Figure 10. COF vs. entrainment velocity with different oil supply amounts (w = 15 N, SRR = 0.1):
(a) V = 5 µL; (b) V = 20 µL; (c) fully flooded.

3.3. Lubrication Mechanism Analysis

The above experimental results show that stearic acid significantly improves the
lubricating performance of 2137 base oil as additives, whether under fully flooded or
limited lubricant supply conditions. In order to simulate the stearic acid adsorption on
tribo-surfaces, adsorption tests were carried out on glass and steel surfaces using 2137s.
The glass block and the steel block used in the adsorption tests were the same as those used
in the optical EHL experiments. The glass block and steel block were ultrasonically cleaned
in petroleum ether and alcohol for 10 min, and then dried. Subsequently, the glass block
and steel block were immersed in 2137s for 6 h. After immersion, the block samples were
wiped with petroleum ether and alcohol to remove surface lubricant, and contact angle
tests were conducted on both the original surface and the treated surface (with 2137s) using
2137 base oil. The results are shown in Figure 11. It can be observed from the figure that
the contact angle on the surface of the samples immersed in 2137s is higher than that of
the original surface. This indicates that the stearic acid adsorbed on the sample surface
changes the surface tension between the solid and liquid interfaces, reducing the surface
energy of the tribo-pair contact surface.
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Since the adsorption of stearic acid has an influence on the distribution of the oil on
the running track, after the tests with a load of 15 N, SRR of 0.1, speed of 10 mm/s, and
an oil supply amount of 5 µL, the lubrication tracks of the two lubricants were recorded
using a camera. Figure 12a shows the oil distribution patterns of 2137 and 2137s lubricants
on the running track of the glass disc, respectively. It can be observed that after the tests,
the lubrication track with 2137 exhibited a typical continuous thin oil layer with two side
ridges, while 2137s exhibited discrete droplet distribution. The discrete droplet distribution
of 2137s on the lubricating track is attributed to the absorbed stearic acid layer on the
surface, which has low surface energy and induces the dewetting of oil. Figure 12b shows
the distribution of droplets on the glass disc for different oil supply amounts of 2137s. It
can be seen clearly that the size of the droplets and their spacing increase with the increase
in oil supply amount. When the oil supply amount is 20 µL, the droplets and their spacing
become larger. On the other hand, the oil supply amount of 5 µL presents smaller droplet
size with less spacing.
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Numerical methods have shown that lubricant supply in the form of droplets is more
effective in establishing lubricant film than a uniform oil layer, mainly due to the oil film
pressure formed in the early stage when the droplets enter the bearing contact [26]. As
shown in Figure 13, the discrete oil droplets can fill the inlet gap, resulting in a larger area
of load-bearing and higher induced oil film thickness.
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distribution.

From Figure 12b, we can see that the distribution of 2137s on the lubrication track is
different for the oil supply quantities of 5 µL, 10 µL, and 20 µL. When the volume of oil
supply is 5 µL, 2137s stays uniformly and densely in the form of small droplets on the
lubricating track. Under the conditions of 10 µL and 20 µL oil supply, the oil is distributed
sparsely in the form of large droplets on the lubricating track, and most of the oil droplets
are kept outside the lubricating track. During the test, due to the rotation of the glass
disc, with the increase of entrainment velocity, the centrifugal force effect on the droplet is
gradually enhanced, and the droplet has a tendency to leave the lubricating track. For the
droplet on the lubricating track, the droplet is subjected to the combination of adhesion
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and centrifugal force on the surface of the glass disc when the glass is circling. Assuming
that the droplet is a spherical crown. The contact angle with the surface of the glass disc
is θ. The radius of the bottom circle is r. And when the unit area adhesion force of the
solid–liquid interface is constant, the ratio of the adhesion force (Fadh) to the centrifugal
force (Fcentri) can be estimated according to Equations (1)–(3).

Fadh ∝ r2 (1)

Fcentri ∝ r3 f (θ) (2)

Fadh
Fcentri

=
1
r

f (θ) (3)

According to Equation (3), the ratio of adhesion force to centrifugal volume force
increases with the decrease of droplet size, that is, the centrifugal force per unit volume of
droplet is the same. The large droplet will be removed from the lubricating track before the
small droplet. It can be seen that due to this scaling effect, the actual oil supply provided by
the 5 µL lubricating oil in the aforementioned test is better than that provided by the 10 µL
volume lubricant. It should be pointed out that the above analysis is only a conceptual
explanation, and theoretical modeling and numerical analysis are needed to describe it
quantitatively. Therefore, when the entrainment velocity is higher than 256 mm/s, the
central oil film thickness of 5 µL is greater than that of 10 µL.

4. Conclusions

Using the optical interference lubricating film measurement system, experiments were
conducted to investigate the effect of stearic acid adsorption on the lubricating performance
of mineral oil 2137 under sufficient oil supply and limited lubricant supply conditions. The
results can be summarized as follows:

(1) Under conditions of sufficient oil supply, 2137 and 2137s achieve similar oil film
thickness, but the COF of 2137s is significantly lower than that of 2137, indicating a
weak affinity at the oil film/adsorption layer interface. Overall, the average COF of
2137s is 13.3% smaller than that of 2137.

(2) Under conditions of sufficient oil supply, the SRR has an important influence on the
lubricating performance. At a high SRR and high entrainment velocity, the lubricant
is prone to thermal thinning, resulting in a significant decrease in COF.

(3) Under conditions of limited lubricant supply, 2137 base oil is prone to oil starvation
as the entrainment velocity increases, and the less the oil supply, the earlier the
occurrence of oil starvation. Compared to 2137, 2137s significantly improves the
oil starvation phenomenon, which is related to the discrete oil distribution due to
adsorption of stearic acid on the contact surface.

(4) The adsorption film formed by 2137s on the glass disc surface reduces surface energy,
and the lubricating oil with a discrete droplet distribution on the lubricating track due
to “dewetting” is beneficial for early load-bearing at the entrance of the contact area,
thereby reducing the COF.

(5) With increase in the disc speed, it is interesting to find that less 2137s supply quantity
can produce higher film thickness, which can be explained by the fact that a smaller
2137s supply quantity generates droplets with a smaller size, and presents oil with
more resistance to the centrifugal force to leave the lubrication track.
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