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Abstract: We present a general approximate analytical solution for the normal contact of layered
and functionally graded elastic materials for almost axisymmetric contact profiles. The solution only
requires knowledge of the corresponding contact solution for indentation using a rigid cylindrical flat
punch. It is based on the generalizations of Barber’s maximum normal force principle and Fabrikant’s
approximation for the pressure distribution under an arbitrary flat punch in an inhomogeneous
case. Executing an asymptotic procedure suggested recently for almost axisymmetric contacts of
homogeneous elastic media results in a simple approximate solution to the inhomogeneous problem.
The contact of elliptical paraboloids and indentation using a rigid pyramid with a square planform
are considered in detail. For these problems, we compare our results to rigorous numerical solutions
for a general (bonded or unbonded) single elastic layer based on the boundary element method. All
comparisons show the quality and applicability of the suggested approximate solution. Based on our
results, any compact axisymmetric or almost axisymmetric contact problem of layered or functionally
graded elastic materials can be reduced asymptotically to the problem of indenting the material
using a rigid cylindrical flat punch. The procedure can be used for different problems in tribology,
e.g., within the framework of indentation testing or as a tool for the analysis of local features on a
rough surface.

Keywords: normal contact problem; layered materials; functionally graded materials; almost
axisymmetric contact; analytic solution; boundary element method

1. Introduction

The mechanics of layered [1] and functionally graded [2] elastic materials have re-
ceived a lot of interest in the framework of modeling tribological properties of, for example,
articular cartilage [3], coatings [4], biomaterials [5], or soils [6]. While tribology and the
materials science of layered or graded media are vast branches in science with exten-
sive literature studies conducted—see, e.g., the review articles ([7–9]) and the references
therein—we will focus on the more specific problem of the contact mechanical behavior for
these materials. In that regard, one should, however, bear in mind that several tribological
phenomena have their origin in the contact mechanical interaction [10].

As the material inhomogeneity severely complicates (or, to put it bluntly, apart from
some special cases such as the power-law graded elastic half-space [11], inhibits) an exact
closed-form solution of corresponding contact problems, analytical contact solutions of
layered materials are often in asymptotic form ([12–15]). Because of the approximate
character of these solutions, their predictions should be checked against rigorous numerical
simulations—a step which was significantly simplified recently for the case of a coated
elastic half-space, with the publication of a boundary element method (BEM) formulation
of the corresponding normal [16] and tangential contact problems [17]. For the respective
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normal contact, the BEM results were also validated using laboratory experiments for the
indentation of hard steel counter-bodies into soft elastic rubber sheets [18].

An ingenious principle to solve contact problems stems from Mossakovskii [19]. It is
based on the observation that the incremental difference between two subsequent contact
configurations with indentation depths d and d + dd can be understood as an infinitesimal
indentation dd using a flat punch, whose planform is given by the contact region at the
indentation depth d. Hence, general normal contact can be thought of as a series of
incremental flat punch indentations, and therefore, the solution procedure is split into
two tasks: the determination of the relation between indentation depth and contact region
(which encodes the correct series of flat punches to exactly reproduce the original contact),
and the solution of the corresponding flat punch problems.

For the case of axisymmetric indentation of an elastic half-space, both tasks are easily
solvable, which leads to the famous solution that is often attributed to Sneddon [20],
although it originated a lot earlier [21]. This (exact) axisymmetric solution was generalized
some years ago for layered and functionally graded materials [22], albeit in a form where
the pressure distribution under a cylindrical flat punch remains unspecified, as it cannot be
calculated analytically even in the case of a single homogeneous elastic layer of arbitrary
thickness. However, once this pressure distribution has been determined (numerically, e.g.,
based on the BEM), the corresponding (non-adhesive) normal contact problem of arbitrary
axisymmetric convex indenters is solved, as well as all classes of contact problems, which
can be reduced to it, e.g., the corresponding adhesive normal contact [23].

Nonetheless, let us, for a moment, turn our attention back to the indentation of a
homogeneous elastic half-space. Recently, Popov [24] published an approximate analytical
solution for the slightly non-axisymmetric version of this contact problem, which has
proven (by comparison with rigorous numerical solutions) to give very satisfactory results.
In the follow-up publication [25], the authors thoroughly tested the quality of the suggested
approximate analytical solution for contact geometries that are far from axial symmetry and
found that it is even well-applicable to indenters with random three-dimensional shapes,
e.g., a single asperity of a rough surface.

Popov’s solution rests on two fundaments: On the one hand, Barber’s [26] extremal
principle that the contact region at a given indentation depth maximizes a specific integral
(which corresponds to the total normal force); and, on the other hand, Fabrikant’s approxi-
mation [27] for the pressure distribution under a flat punch of arbitrary (compact) planform.
As has been shown very recently by one of the authors of the present manuscript [28],
Barber’s principle applies to any elastic normal contact problem (at least, with compact
contact regions), which can be thought of as a series of flat punch indentations. That is
to say, it also applies to contacts of (sufficiently isotropic) layered or functionally graded
materials. On the other hand, the “essence” of Fabrikant’s approximation is to “scale”
the axisymmetric pressure distribution under a cylindrical flat punch to the asymmetric
arbitrary planform, a procedure which also can be executed very generally if the indented
material is sufficiently isotropic. Hence, both fundaments of Popov’s approximate solution
for the homogeneous half-space can be generalized for layered or functionally graded
materials (albeit in a slightly less rigorous sense, as will be discussed in the manuscript),
and it is thus expected the solution itself can be generalized for the application with layered
media, as well. This is the aim of the present manuscript. In other words, we extend
the approximate reduction in asymmetric elastic contact problems (with compact contact
domains) to the respective axisymmetric problem (and, in consequence, to the indentation
problem using a rigid cylindrical flat punch, as will be demonstrated)—which was recently
suggested and tested thoroughly for homogeneous and power-law graded media—to the
application for arbitrary layered or functionally graded materials.

The remainder of the manuscript is organized as follows: In Section 2, we will derive
the general approximate solution for the slightly non-axisymmetric normal contact of
layered materials, based only on the corresponding cylindrical flat punch solution, the
extremal normal force principle, and a newly suggested generalization of Fabrikant’s
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approximation for layered media. For the convenience of the reader, the derivation of the
known axisymmetric solution from the extremal principle (which is indispensable for the
understanding of the asymmetric solution) is also shown. The general solution can be
significantly simplified in the case of self-similar power-law indenters. In Section 3, we will
compare the predictions of the approximate solution with rigorous numerical simulations
based on the BEM for the case of a single elastic layer of arbitrary thickness. A short
discussion of the method and the obtained results finishes the manuscript.

2. Theory

Let us consider an isotropic, layered, or functionally graded elastic medium, which is
indented using a rigid counter-body without friction, as depicted in Figure 1. The layers
shall have Young’s moduli Ei and Poisson ratios υi (in the case of a functionally graded
material, the change in E(z) and υ(z) is continuous rather than discrete). The rigid indenter
shall have the profile f (x,y) in cartesian coordinates, and we control either the indentation
depth d or the total normal force F.
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Figure 1. Indentation of a layered elastic material using a rigid counter-body. Notations are explained
in the text.

2.1. Solution for a Cylindrical Flat Punch

For dimensional reasons, we can always write the pressure distribution resulting from
the unit indentation of the elastic material using a rigid cylindrical flat punch with radius a
in non-dimensional form as

p∗(r) =
E∗

πa
p
( r

a
; β
)

, r < a, β =
a
l

, E∗ =
E1

1− ν2
1

, (1)

with the radial coordinate r and some length scale l intrinsic to the material, e.g., some layer
thickness or grading depth. Depending on the exact form of the vertical inhomogeneity,
there might be several more dimensionless quantities involved in the determination of p*,
but for the contact problem, these are just constant parameters.

The non-dimensional pressure distribution in Equation (1) must be calculated some-
how, e.g., based on the boundary element method (BEM) or with finite elements (FE).
However, we will not bother with the details of that calculation and postulate that this
non-dimensional distribution is known and tabulated with sufficient precision.

We can also define the universal axisymmetric contact stiffness in non-dimensional
form as

K = 2π

a∫
0

p∗(r) rdr = 2E∗a
1∫

0

p(ρ; β) ρdρ = 2E∗a K(β). (2)
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This contact stiffness is universal because the incremental difference between two
axisymmetric contact configurations is equivalent to an incremental indentation using a
rigid flat punch, as has been discussed in the introductory section.

As an illustrative example, in the case of a homogeneous elastic half-space, we have

p(ρ) =
(

1− ρ2
)−1/2

, K = 1. (3)

2.2. Solution for an Axisymmetric Punch

According to Betti’s reciprocal theorem, the total normal force resulting from the
indentation using a rigid, smooth axisymmetric indenter at an indentation depth d equals
([29]; [30], p. 52)

F = 2π

a∫
0

[d− f (r)] p∗(r)rdr. (4)

Inserting the pressure distribution (1), we obtain

F = 2E∗K(β)[da − G(a; β)], (5)

with the transformed profile

G(a; a) = T{ f (r)}(a; β) =
1

aK(β)

a∫
0

f (r)p
( r

a
; β
)

rdr, g(a; β) =
∂G(a; β)

∂a
. (6)

As can be seen, T{} denotes a linear operator, specifically the integral transform of the
profile, using the flat punch pressure as the integral kernel. Note that β = a/l, i.e., G and g,
can be written as explicit functions of a, but for reasons that will become clearer later, we
will treat a and β as separate (albeit not independent) variables.

As was shown recently by one of the authors [28], due to the universality of contact
stiffness, Barber’s maximum normal force principle—the correct contact domain maximizes
the normal force for any given indentation depth—applies to any frictionless normal contact
problem with a compact contact domain, that can be thought of as series of incremental
flat punch indentations. Hence, the contact radius a can be determined by maximizing the
expression (5) with respect to a, and therefore [22],

d(a) =
[

d
da
(
aK(β)

)]−1 d
da
[
G(a; β)K(β)

]
. (7)

Note that these are total derivatives, i.e., the dependencies on β must be accounted for.
Up until here, all results have been exact. Let us now turn our attention to the

approximate contact solution for an arbitrary convex punch whose shape slightly deviates
from rotational symmetry.

2.3. Approximate Solution for Slightly Non-Axisymmetric Profiles

In the case of a general convex punch, the normal force integral resulting from the
reciprocity theorem reads ([30], p. 52)

F =
x

Ω

[d− f (x, y)] p∗(x, y)dxdy, (8)

with the contact domain Ω and the corresponding pressure distribution p* for the unit
indentation of the inhomogeneous elastic material using a flat punch with that planform.
As before, the correct contact domain maximizes the force (8) at any given indentation
depth d. However, to constructively apply that principle, we require an expression for the
general flat punch pressure distribution p*. For that purpose, let the contour of the domain
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Ω be given in polar coordinates by the closed curve r = a(ϕ), and let us assume that the
pressure distribution p* can be approximated well enough by the expression

p∗(r, ϕ) ≈ E∗

πa0
p
(

r
a(ϕ)

; β0

)
, r < a(ϕ), β0 =

a0

l
, a0 =

1
2π

2π∫
0

a(ϕ)dϕ, (9)

with the known non-dimensional pressure distribution under a cylindrical flat punch.
Equation (9) describes a “Fabrikant-type” approximation. In other words, the pressure

distribution under an arbitrary flat punch is assumed to be given approximately by the
distribution for a cylindrical punch, scaled to the asymmetric shape of the punch.

However, the important difference to the homogeneous half-space (and, thus, Fab-
rikant’s original approximation [27]) is the size parameter β, which does not exist for the
homogeneous half-space because the latter has no intrinsic length scale, and therefore the
contact problem does not exhibit size effects. One may argue that the size parameter also
varies over the contour, and therefore, instead of β0, one should use β(ϕ) as a variable size
parameter for the pressure distribution. This, however, would severely complicate the
following considerations, and we therefore decided to use the simplified version given in
Equation (9). As the final approximate results will be compared with rigorous numerical
simulations, anyways, one can dispense with a little mathematical rigor for the sake of the
applicability of the analytical results.

Inserting the approximation (9) into the force integral (8), we obtain

F ≈ E∗K(β0)

πa0

2π∫
0

da(ϕ)2 − a(ϕ)G(a(ϕ), ϕ; β0)dϕ, (10)

with the transformed profile

G(a(ϕ), ϕ; β0) = T{ f (r, ϕ)}(a(ϕ); β0), g(a(ϕ), ϕ; β0) =
∂G

∂a(ϕ)
, (11)

as in Equation (6). The following procedure for the approximate determination of the
contact contour a(ϕ) operates in analogy to the homogeneous case (see [24] for details) and
shall, therefore, only be given briefly.

The maximum principle requires maximizing the force (10) with respect to the con-
tact contour. Let us first maximize the force for a fixed value of a0 by introducing the
Lagrange functional

L = F− λ

 1
2π

2π∫
0

a(ϕ)dϕ− a0

, (12)

with the Lagrange multiplier λ. The necessary condition for an unconditional extremum of
the Lagrange functional leads to the algebraic equation

0 = 2da(ϕ)− G(a(ϕ), ϕ; β0)− a(ϕ)g(a(ϕ), ϕ; β0)−
λa0

2E∗K(β0)
. (13)

We can separate the slightly non-symmetric profile into an axisymmetric component
and a small non-symmetric deviation,

f (r, ϕ) = f0(r) + δ f (r, ϕ). (14)
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Accordingly, upon expanding the transformed profile, one obtains

G(a(ϕ), ϕ; β0) = G0(a(ϕ); β0) + δG(a(ϕ), ϕ; β0),
G0(a(ϕ); β0) = T{ f0(r)}(a(ϕ); β0), g0(a(ϕ); β0) =

∂G0
∂a(ϕ)

,

δG(a(ϕ), ϕ; β0) = T{δ f (r, ϕ)}(a(ϕ); β0), δg(a(ϕ), ϕ; β0) =
∂(δG)
∂a(ϕ)

.
(15)

Moreover, the contact area will also be almost axisymmetric,

a(ϕ) = a0 + δa(ϕ). (16)

Equation (13) has exactly the same structure as for the homogeneous half-space.
Therefore, we can immediately write, in perfect analogy to the homogeneous solution,

δa(ϕ) ≈ δG(a0, ϕ; β0) + a0δg(a0, ϕ; β0)

2d − 2g0(a0; β0)− a0g0′(a0; β0)
, (17)

where the prime denotes the first derivative with respect to the first functional argument.
Also, in analogy to the solution for the homogeneous half-space, the normal force (10)

simplifies to

F ≈ E∗K(β0)

πa0

2π∫
0

da2
0 − a0G0(a0; β0)dϕ = 2E∗K(β0)[da0 − G0(a0; β0)], (18)

which is the same as the axisymmetric result (5).
Hence, maximizing the force (18) with respect to a0 will result in the axisymmetric

relation (7) between the indentation depth and the effective contact radius a0, i.e.,

d(a0) =

[
d

da0

(
a0K(β0)

)]−1 d
da0

[
G0(a0; β0)K(β0)

]
. (19)

Equations (17)–(19) give a complete, analytic, general, approximate contact solution for
the slightly non-symmetric inhomogeneous case, based only on the pressure distribution
under a cylindrical flat punch (which gives the integral kernel for the profile transformation
f → G).

Note that also the asymmetric pressure distribution p can be calculated by superim-
posing the flat punch pressure distributions (9) over the whole indentation procedure, i.e.,
from d = 0 until d = dmax [24].

2.4. Power-Law Indenters

The general asymmetric solution shown above can be simplified considerably if the
indenter profile can be written in the self-similar power-law form

f (r, ϕ) = rnψ(ϕ), f0(r) = rn〈ψ〉, δ f (r, ϕ) = rn[ψ(ϕ)− 〈ψ〉], n > 0, (20)

where the brackets denote averaging over the polar angle. It is

T{rn}(a; β) =
an+1

K(β)

κn(β)

n + 1
, κn(β) = (n + 1)

1∫
0

p(ρ; β) ρn+1dρ, (21)

and therefore, according to Equation (19), the relation between indentation depth and the
effective contact radius is given by

d(a0) =
[
K(β0) + β0K′(β0)

]−1
[

κn(β0) +
β0

n + 1
κn
′(β0)

]
〈ψ〉an

0 , (22)



Lubricants 2023, 11, 450 7 of 16

and the asymmetric solution follows from Equation (17) as

δa(ϕ) = a0
〈ψ〉−ψ(ϕ)
〈ψ〉

n+2
n+1

1
n+2−2d∗(β0)

,

d∗(β0) =
K(β0)

K(β0)+β0K′(β0)

(
1 + β0

n+1
κn
′(β0)

κn(β0)

)
.

(23)

In the homogeneous case, we have d* = 1, and therefore, of course, the respective
known results [25] are recovered.

3. Case Studies

In this section, we will compare our approximate solution to rigorous numerical
calculations for the indentation of a single elastic layer with thickness h, resting on a
rigid foundation, based on the boundary element method [16]. The corresponding nu-
merical solution for the pressure distribution under a rigid cylindrical flat punch—which
is an indispensable prerequisite to the approximate solution—has been provided in the
supplementary material of [23].

One may distinguish different boundary conditions between the layer and the rigid
foundation: an “unbonded” layer rests on the foundation without (significant) friction, e.g.,
in the case of delaminated layers, while a “bonded” layer is fixed rigidly to the substrate.
Note that for the unbonded layer, only compressive normal stresses can be transmitted to
the substrate; in other words, in some configurations, loading of the layer surface could
result in loss of contact between the layer and the foundation [31], which corresponds to a
receding contact. We will neglect this effect in our analysis; Greenwood & Barber [32], in
the framework of indentation of an elastic layer with an infinite-length cylinder, argue that
the corresponding tensile stresses (between the layer and its base) necessary to establish
contact are too small to significantly alter the contact configuration.

3.1. Contact of an Elliptical Paraboloid with a Single Elastic Layer

First, let us consider the contact with the elliptical quadratic indenter profile

f (r, ϕ) = r2
(

A cos2 ϕ + B sin2 ϕ
)

. (24)

Without loss of generality, we put A < B and define the eccentricity of horizontal
indenter cross-sections, e.g.,

eg =

√
1− A

B
. (25)

In general, the contact domain does not have to be—except for special cases such as the
homogeneous half-space—perfectly elliptical. However, we can introduce the “half-axes”
of the contact domain as b1 = a(ϕ = 0) and b2 = a(ϕ = π/2), and hence the contact eccentricity
e as

e =

√
1−

b2
2

b2
1

. (26)

In Figure 2, the BEM-based numerical results are shown for the difference between the
contact eccentricity and the indenter eccentricity as a function of the indenter eccentricity
and the logarithmic normalized layer thickness for the indentation of an unbonded elastic
layer. The scatter in the contour line with the level 0.002 is due to the finite grid length
of the boundary elements. Figure 3 gives the corresponding results based on the general
approximate analytical solution developed in the previous section. The agreement between
the approximate solution and the rigorous numerical calculations is quite good. Note that
the contour line diagrams show a difference between the contact area eccentricity and the
indenter eccentricity; i.e., as the contact eccentricity is of the order of 0.1, the error of the
contact eccentricity in the approximate solution compared with the rigorous BEM results is
less than 10% (and in most parameter ranges significantly less than 10%).
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However, for the unbonded layer, the contact eccentricity will never be smaller than
the indenter eccentricity. Therefore, slightly negative values for the difference, as in the
upper right corner of Figure 3, are unphysical. Also, the half-space solution (at the left edge
of both diagrams), according to the numerical simulation, seems to be valid a lot “longer”
(until h ≈ 10a0) than estimated by the approximate solution.

Figure 4 (BEM) and Figure 5 (approximate analytical solution) show the results that
are analogous to Figures 2 and 3 but for a bonded incompressible layer. The quality of the
approximate procedure seems to be a bit worse, which is due to the fact that the material
behavior is actually more complicated because of the incompressibility (as the material has
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to “flow somewhere” if it is pushed by the indenter) than captured by the approximate
solution. However, one has to keep in mind that in the diagrams, differences between
contact and indenter eccentricities are shown; accordingly, the relative error of the absolute
value of contact eccentricity in the approximate solution is still less than 10%.

Lubricants 2023, 11, x FOR PEER REVIEW 9 of 16 
 

 

Figure 3. Contour line diagram of the difference between the contact eccentricity e and the indenter 
eccentricity eg as a function of the indenter eccentricity and the logarithmic normalized layer thick-
ness, for the contact of an elliptical paraboloid with a single unbonded elastic layer. Approximate 
analytical solution. 

Figure 4 (BEM) and Figure 5 (approximate analytical solution) show the results that 
are analogous to Figures 2 and 3 but for a bonded incompressible layer. The quality of the 
approximate procedure seems to be a bit worse, which is due to the fact that the material 
behavior is actually more complicated because of the incompressibility (as the material 
has to “flow somewhere” if it is pushed by the indenter) than captured by the approximate 
solution. However, one has to keep in mind that in the diagrams, differences between 
contact and indenter eccentricities are shown; accordingly, the relative error of the abso-
lute value of contact eccentricity in the approximate solution is still less than 10%. 

 
Figure 4. Contour line diagram of the difference between the contact eccentricity e and the indenter 
eccentricity eg, as a function of the indenter eccentricity and the logarithmic normalized layer thick-
ness, for the contact of an elliptical paraboloid with a single bonded incompressible elastic layer. 
Numerical results based on the boundary element method (BEM). 

 

Figure 4. Contour line diagram of the difference between the contact eccentricity e and the inden-
ter eccentricity eg, as a function of the indenter eccentricity and the logarithmic normalized layer
thickness, for the contact of an elliptical paraboloid with a single bonded incompressible elastic layer.
Numerical results based on the boundary element method (BEM).

Lubricants 2023, 11, x FOR PEER REVIEW 9 of 16 
 

 

Figure 3. Contour line diagram of the difference between the contact eccentricity e and the indenter 
eccentricity eg as a function of the indenter eccentricity and the logarithmic normalized layer thick-
ness, for the contact of an elliptical paraboloid with a single unbonded elastic layer. Approximate 
analytical solution. 

Figure 4 (BEM) and Figure 5 (approximate analytical solution) show the results that 
are analogous to Figures 2 and 3 but for a bonded incompressible layer. The quality of the 
approximate procedure seems to be a bit worse, which is due to the fact that the material 
behavior is actually more complicated because of the incompressibility (as the material 
has to “flow somewhere” if it is pushed by the indenter) than captured by the approximate 
solution. However, one has to keep in mind that in the diagrams, differences between 
contact and indenter eccentricities are shown; accordingly, the relative error of the abso-
lute value of contact eccentricity in the approximate solution is still less than 10%. 

 
Figure 4. Contour line diagram of the difference between the contact eccentricity e and the indenter 
eccentricity eg, as a function of the indenter eccentricity and the logarithmic normalized layer thick-
ness, for the contact of an elliptical paraboloid with a single bonded incompressible elastic layer. 
Numerical results based on the boundary element method (BEM). 

 

Figure 5. Contour line diagram of the difference between the contact eccentricity e and the inden-
ter eccentricity eg, as a function of the indenter eccentricity and the logarithmic normalized layer
thickness, for the contact of an elliptical paraboloid with a single bonded incompressible elastic layer.
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Let us now turn our attention to the relations between the macroscopic contact quanti-
ties, i.e., indentation depth d, normal force F, and average contact radius a0. In Figure 6,
the numerical and approximate analytical results are shown for the normalized average
contact radius a0/h as a function of the normalized indentation depth for different values
of layer thickness in the case of an unbonded layer. Figure 7 presents the corresponding
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solutions for the total normal force normalized for the maximum value in the case of a
homogeneous half-space. The agreement between the approximate analytical procedure
and the (rather time-consuming) rigorous numerical calculations is very good.
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Figure 7. Total normal force, normalized for the maximum value for the homogeneous half-space,
as a function of the normalized indentation depth, for different values of layer thickness, for the
contact of an elliptical paraboloid with a single unbonded elastic layer. Lines: approximate analytical
solution. Markers: Numerical results based on the boundary element method (BEM).

In Figures 8 and 9, the results analogous to Figures 6 and 7 are shown, but for a bonded
incompressible layer. Once again, the agreement between the approximate and numerical
solutions is very good.
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Figure 8. Normalized average contact radius a0/h as a function of the normalized indentation depth
for different values of layer thickness for the contact of an elliptical paraboloid with a single bonded
incompressible elastic layer. Lines: approximate analytical solution. Markers: Numerical results
based on the boundary element method (BEM).
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Figure 9. Total normal force, normalized for the maximum value for the homogeneous half-space,
as a function of the normalized indentation depth, for different values of layer thickness, for the
contact of an elliptical paraboloid with a bonded incompressible layer. Lines: approximate analytical
solution. Markers: Numerical results based on the boundary element method (BEM).

3.2. Indentation of a Single Elastic Layer Using a Rigid Pyramid with Square Planform

As a second example, let us consider the indentation of a single elastic layer using a
shallow, rigid pyramid with a square planform. The small inclination angle of the pyramid
shall be α. Figure 10 gives comparisons between the approximate solution and BEM-
based numerical results for the contact boundary in normalized variables in the case of
an unbonded layer (left) and a bonded incompressible layer (right). The prediction of the
contact domain by the analytic procedure is very good, except for the sharp corners of
the indenter. This is expected because the “Fabrikant-type” approximation (9) can only
capture edge-singularities of the pressure distribution (for flat punches that are smooth
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along the contact boundary); as the stress singularity at the corner is more severe (i.e., of
higher order), the contact area is not estimated correctly along the corner of the indenter
cross-sections. Interestingly, that effect is smaller for the bonded incompressible layer due
to the special (smoother) edge and corner behaviors of the pressure distribution for that
material class.
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Figure 10. Normalized contact boundary a(ϕ) tanα/d for the indentation of a single elastic layer of
thickness h = a0 using a shallow, rigid pyramid with square planform. Red line: approximate analytic
solution. Grey: contact domain in the BEM simulation. (Left) unbonded layer. (Right) bonded
incompressible layer.

Turning to the relations between macroscopic quantities, in Figure 11, the approximate
and numerical results are shown for the normalized average contact radius as a function
of the normalized indentation depth for different values of layer thickness. As before, the
agreement between analytical and numerical calculations is very good.
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Figure 11. Normalized average contact radius a0/h as a function of the normalized indentation
depth for different values of layer thickness for the indentation of an unbonded elastic layer using a
rigid pyramid with square planform and inclination angle α. Lines: approximate analytical solution.
Markers: Numerical results based on the boundary element method (BEM).

Figure 12 presents the corresponding solutions for the total normal force, normal-
ized for the maximum value in the case of a homogeneous half-space. Again, the agree-
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ment between the suggested approximate analytical solution and the numerical results is
almost perfect.
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element method (BEM).

For reasons of space, we will omit showing the analogous results for the bonded
incompressible layer. However, in that case, the agreement between the analytical and
numerical calculations is almost perfect.

Finally, it should be noted that, in the case of a thin elastic layer, the material asymp-
totically behaves similarly to a power-law graded elastic half-space, with the exponent k of
the power-law grading given by k = 1 for an unbonded or bonded compressible thin layer,
and by k = 3 for a bonded incompressible thin layer. Hence, the corresponding asymptotic
contact solutions can be obtained from the general asymptotic contact solution for the
indentation of a power-law graded elastic half-space using a slightly non-axisymmetric
indenter, which has been published very recently by one of the authors [28].

4. Discussion

We have presented an analytical approximate procedure for the solution of the general
(non-symmetric) frictionless normal contact problem (with a compact contact domain) of
arbitrary layered functionally graded elastic materials—based only on the solution for the
pressure distribution under a rigid cylindrical flat punch indenting the inhomogeneous
elastic medium of interest. Thus, the flat punch superposition idea—one of the most power-
ful tools in analytic contact mechanics—has been extended explicitly to non-homogeneous
materials and non-axisymmetric profile geometries. It should be noted that the application
of the superposition idea is, generally, not straightforwardly possible for the contact of two
elastic bodies if the materials involved exhibit different functional forms of inhomogeneity.

The pressure distribution under a cylindrical flat punch needs to be obtained in
the beginning, either using a numerical simulation or from the literature. If one is only
interested in the solution of one specific contact problem (and the respective flat solution is
not immediately available), it might be debatable whether it is not easier to directly and
rigorously solve that problem instead of solving the flat punch problem and constructing
an approximate solution for the problem of interest from the flat punch solution. On
the other hand, if many contact problems shall be solved for one specific material (e.g.,
in the context of parameter studies or profile optimization) or the flat punch solution is
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known, it will speed up the analysis by several orders of magnitude, to only work in the
“superposition framework”. In that regard, considering the obvious importance of the flat
punch indentation problem, it might be a useful task for future work to create an openly
accessible library of flat punch solutions for different types of inhomogeneous materials.

The approximate contact solution presented here is applicable to different tasks in
tribology and engineering. It can be used for the fast analysis of macroscopic contacts with
complex (or even random) shapes or as a tribological tool for the interaction description of
single micro-contacts (“asperities”) in the contact of rough surfaces—with several impli-
cations regarding friction and wear [33]. Moreover, the analytic approximate procedure
can be used to solve other classes of contact problems, which can be reduced to the elastic
normal contact problem, e.g., the viscoelastic contact problem—via the elastic-viscoelastic
correspondence principle [34].

Applying the suggested analytic solution, one, however, should be aware of its ap-
proximate character. While the macroscopic contact relations, i.e., for the force-indentation
curve and, thus, the contact stiffness, seem to be captured extremely well by the analytic
solution—at least, for the case studies considered in the present manuscript—local quan-
tities, such as the precise shape of the contact domain, or the contact stress distribution,
might differ (slightly) from a rigorous numerical solution of the same problem.
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Nomenclature
Latin Symbols
a contact radius; contour of the contact domain in polar coordinates
b1, b2 half-axes of the contact domain
A, B profile constants
d indentation depth
d* short-cut variable
dmax maximum indentation depth
e contact eccentricity
eg eccentricity of horizontal indenter cross-sections
E Young’s modulus
E* effective Young’s modulus
f profile function
F normal force
g derivative of the profile transform G
G transformed profile
h layer thickness
k exponent of the power-law of the elastic grading
K contact stiffness
n exponent of the profile power-law
p* pressure distribution under a cylindrical flat punch with unit indentation depth
r polar radius
x, y, z Cartesian coordinates



Lubricants 2023, 11, 450 15 of 16

Greek Symbols
β non-dimensional layer thickness parameter
ν Poisson ratio
κn stretch factor, corresponding to the exponent n
ϕ polar angle
ψ angular function

The index “0” corresponds to the axisymmetric part of a non-axisymmetric variable. A bar over
a variable denotes a non-dimensional version of the variable. Brackets denote averaging over the
polar angle. A “δ” denotes the deviation of a non-axisymmetric variable from the axisymmetric part.
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