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Abstract: In aerospace, aviation, nuclear power, and other high-tech fields, some essential moving
parts must operate under high vacuum, high load, intense radiation, and other conditions. Under
such extreme conditions, only solid lubricating materials can meet the lubrication requirements.
Traditional material modification methods have problems such as high energy consumption, severe
pollution, and narrow scope of application. Plasma modification technology can overcome these
shortcomings. This paper focuses on several commonly used plasma preparation techniques for solid
lubricating coatings, including plasma chemical heat treatment, physical vapor deposition, plasma
immersion ion implantation and deposition, plasma spraying, and plasma electrolytic oxidation.
Subsequently, the material systems of metal-based solid lubrication coatings are reviewed: soft metals,
oxides, sulfides, nitrides, and carbon-based materials. Finally, found that the development of new
solid lubricants, the improvement of existing preparation technology, and the development of new
processes are the key development directions in the future.

Keywords: solid lubrication; plasma surface engineering; coatings; physical vapor deposition

1. Introduction

In industrial production and manufacturing, friction and wear are ubiquitous, and
severe friction and wear will directly lead to the failure and scrap of mechanical parts [1–3].
According to statistics, the world’s annual energy consumption is due to friction, accounting
for about 30% of the total. More than 60% of the mechanical parts are due to severe wear
and tear failure. More serious is that friction and wear will cause malignant accidents in
automated facilities, resulting in losses in personnel and property [4,5]. The purpose of
lubrication is to reduce the coefficient of friction and reduce wear. Standard lubrication
methods include oil, grease, gas, and solid lubrication [6–8].

With the development of modern high-end equipment, the operating conditions of
friction systems have become increasingly demanding. Among them, solid lubrication
exhibits unique superior performance for mechanical parts that work under extreme
conditions such as high temperature, high pressure, high vacuum, and high speed, as
well as for some mechanical parts that cannot form hydrodynamic lubrication [9–11]. At
the same time, based on the development trend of environmental protection and green
manufacturing, the use of liquid lubricants is also increasingly restricted. The introduction
of solid lubrication has broken the limit of oil film lubrication. Therefore, researching
solid lubricating materials suitable for harsh environments has increasingly highlighted
their value. Solid lubricating coatings exhibit significant advantages due to their self-
lubricating function.

Solid lubrication technology is becoming a thriving field, with some layered disulfides,
soft metals, graphite, diamond-like carbon films, and oxides being famous solid lubrication
materials [6,12–16]. The traditional method of preparing concrete lubricating coatings
has problems such as high energy consumption, severe pollution, complex operation,
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and narrow applicability. At the same time, plasma preparation technology can precisely
overcome these shortcomings [17–19]. The plasma state is the fourth state of matter, a
quasi−neutral gas composed of charged and neutral particles, and exhibits a collective
behavior. It accounts for about 99% of cosmic significance. The modification effect of plasma
on materials comes from the presence of energetic electrons, ions, and metastable, excited,
and free particles in the ionized gas [20]. These particles are unstable and active, and
various forms of light radiation, such as infrared radiation, accompany plasma generation.
Energy particles and energy light radiation in mate-rials are prone to desorption, doping,
etching, sputtering, degradation, and cross-linking—a series of physical and chemical
reactions such as interfacial polymerization.

The plasma surface treatment method involves the generation of high-energy particles
that act on the surface of a material, causing chemical bonds to break and generate free
radicals. These free radicals undergo cross-linking and re-bond to form a network structure,
thereby improving the surface performance of the material [21,22]. By using different
plasma preparation techniques and solid lubrication material system components, the
lubrication performance of the coating improved to meet the needs of special working
conditions [23–27]. This article elaborates on the plasma preparation methods of lubrication
coatings, introduces relevant solid lubrication coating systems, and prospects for the future
development trend of solid lubrication coatings.

2. Solid Lubrication Layer Plasma Surface Preparation Technology
2.1. Plasma Chemical Heat Treatment Technology

Chemical heat treatment is a heat treatment process in which a workpiece is placed
in a device with an active medium, heated to a specific temperature, and maintained
there [28,29]. It utilizes chemical reactions, sometimes combined with physical methods, to
introduce desired elements into the surface of the workpiece, thereby altering its chemical
composition, structure, and properties. The infiltration rate of plasma chemical heat
treatment is faster than that of the traditional method. The deformation of the workpiece
after heat treatment is small, and the composition and structure of the infiltration layer can
be better controlled to obtain a high-quality infiltration layer. It has obvious advantages in
energy saving and environmental protection [30–32]. There are various methods of chemical
heat treatment, typically named after the infiltrated elements or compounds formed, such as
nitriding [33–35], carburizing [36–38], nitrocarburizing [39], sulfurizing [40], oxidizing [41],
among others.

Plasma chemical heat treatment can be divided into three stages: (1) the medium
undergoes chemical decomposition at a specific temperature, generating active atoms or
ions; (2) the active atoms or ions accumulate onto the workpiece; (3) the active atoms or ions
diffuse from the workpiece’s surface to the interior, forming a diffusion layer with a certain
thickness near the surface [42–44]. The workpiece can be regarded as a unique composite
material, with the interior being the original steel and the surface layer being a material
infused with alloying elements. The device schematic is shown in Figure 1 [45]. By ionizing
gas and bombarding the sample, nitrogen, carbon, and other ions can be injected into
the material surface to improve the surface performance and properties [46–49]. Plasma
nitriding/carbonitriding can increase the surface strength of the material, improve its
tensile and compressive abilities, and form a compound layer of nitride or carbonitride,
which can significantly reduce wear and friction [33,45,50–52]. In addition, the compound
can be formed, improving the material’s corrosion resistance and prolonging its service
life [53–55].

Plasma sulfurizing is an effective treatment method for forming a sulfide film on the
friction surface. It refers to sulfur infiltrating into the surface layer of metal parts and
reacting with the metal to form sulfides through a chemical heat treatment process. Surface
sulfurizing can improve the surface hardness, wear resistance, corrosion resistance, and
working life of the workpiece. Plasma sulfurizing is simple, convenient to operate, cost-
effective, and environmentally friendly compared to other sulfurizing processes. It can also
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impart unique properties to the surface, such as high-temperature resistance, anti-biting,
anti-fatigue, wear resistance, and corrosion resistance, while ensuring the toughness of the
base material. Wang et al. [56,57] successfully prepared FeS lubricating film layers with low
friction coefficients and good wear resistance on AISI 1045 steel, high-speed steel (M2), and
die steel (L6) substrates through plasma sulfurizing. The sulfurized layer plays a role in
cutting peaks and filling valleys on the surface, making the surface flatter, thus increasing
the actual contact area and reducing the contact stress.
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Figure 1. Schematic diagrams of the plasma chemical heat treatment furnace (a), the working hollow
cathode (b), and XRD results for untreated PN, PCN, PS, and PSCN surfaces (c) [45].

Moreover, the asperities on the surface of metal materials are covered with a layer
of soft sulfide, which delays the occurrence of occlusion. Han et al. [58] prepared a 3–
4 µm sulfide solid lubrication layer on the surface of cobalt-based alloy coatings using
laser cladding and plasma sulfurizing processes, which significantly reduced the friction
coefficient and wear under dry friction conditions compared to a single cladding layer. In
addition, the metal wear debris is buried in the sulfide layer or modified by the sulfide so
that the abrasive wear and fatigue wear can be reduced.

Compared with traditional sulfurizing technology, low-temperature plasma sulfuriz-
ing technology has the advantages of fast sulfur infiltration speed, good layer infiltration
effect, and non-toxic side effects, and has been in the surface modification of bearings,
gears, molds, and other typical friction parts to achieve a wide range of industrial applica-
tions [59,60]. Sulfur infiltration technology can reduce energy and material consumption
by improving the friction between moving pairs, increasing the service life and reliability
of parts, and has a broad application prospect. Researchers should comprehensively apply
the latest achievements in the field of computer technology, automatic control technol-
ogy, and composite surface engineering technology, further promote the application of
low-temperature sulfurizing technology to improve the friction situation of parts, improve
the service performance and service life of equipment, and make contributions to energy
saving, emission reduction, and sustainable development.

2.2. Physical Vapor Deposition (PVD) Technology
2.2.1. Magnetron Sputtering

Magnetron sputtering is a process of ionizing inert gases by applying a voltage be-
tween the cathode and anode of the furnace chamber under vacuum conditions, thereby
generating a glow discharge effect [61,62]. The source of the deposited material is that Ar
ions bombard the target or cathode, and the subsequent momentum transfer causes the
neutral atoms of the target source to be expelled. The power supply of magnetron coating
can be roughly divided into two categories: direct-current power and radio frequency
power. Radio frequency power supply is particularly suitable for preparing oxide films, al-
lowing direct use of non-conductive targets. The outstanding advantage of radio frequency
over direct-current power is its ability to sputter atoms in insulating materials. Unbalanced
magnetron sputtering technology increases the sputtering rate and target utilization by
30~40 %. The principle is that the technology makes the magnetic field of the magnetron
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sputtering target unbalanced by changing the magnetic flux, which dramatically increases
the plasma density in the coating area, thereby improving the coating quality. Thin films
of pure metals, alloys, and compounds can be prepared by magnetron sputtering coating
equipment. The thickness can reach 5 µm. Magnets are used in magnetron sputtering
on the back of the cathode to confine electrons above the target, preventing them from
bombarding the substrate and allowing faster deposition rates. The principle of magnetron
sputtering coating is shown in Figure 2a.

At present, the traditional magnetron sputtering has been optimized and improved by
people, such as the development of various new magnetron sputtering technologies, as well
as medium frequency pulse magnetron sputtering, unbalanced magnetron sputtering, radio
frequency magnetron sputtering, and high power pulse magnetron sputtering (HiPIMS) [63–66].
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deposition [67–71].

HiPIMS is a relatively new magnetron sputtering deposition method. It is charac-
terized by allowing the deposition of high-quality coatings at lower temperatures (room
temperature) [72]. The reason is that the power supply used is a low-duty cycle, low-
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frequency pulse power supply, which ensures a high peak current and avoids overheating
of the target. The high peak current (high electron density) leads to the ionization rate of Ti
by the sputtering material [73,74] as high as 90%. The large number of metal and sputtering
gas ions can control the energy and flux of the growing surface-bombarding species and
ensure a high energy transfer to the ever-increasing surface.

2.2.2. Arc Ion-Plated

The principle of arc ion plating (AIP) is to bombard the cathode target by arc discharge
and constrain the arc with the magnetic field [75]. The cathode target acts as an evaporation
source, ionizes gas molecules, ignites an arc source, forms a high-density plasma, and
produces a glow discharge phenomenon [76,77]. The ionized metal positive ions collide
with the reaction gas molecules and electrons. The ionized positive ions move to the surface
of the workpiece under the action of the electric field, and finally, the ions are deposited on
the surface of the workpiece to form a film.

Multi-arc ion plating (MAIP) combines the characteristics of evaporation and sputter-
ing, glow discharge, and vacuum evaporation cohesively [78,79]. MAIP has the advantages
of high electron ionization rate, high ion bombardment energy, and simple operation [80].
The film prepared by MAIP technology has excellent compactness and strong film-based
bonding strength. However, due to the high deposition power, many large metal particles
will be generated during the deposition process, causing serious particle pollution, affecting
the surface roughness of the layer, and reducing the coating quality. Many scholars’ studies
have shown that the performance of the coating is significantly affected by different experi-
mental parameters. The results show that the main parameters affecting the performance
of the layer include target current, gas flow rate, substrate temperature, and bias voltage.

Filtered cathode vacuum arc deposition (FCVAD) is a vacuum film deposition tech-
nique using vacuum arc discharge as an evaporation source [69,81,82]. It generates ions
by arc discharge on the cathode surface and carries on plasma deposition. By means of
magnetic plasma filtration technology, the large particles and neutral atoms produced by
the arc source are filtered out to obtain pure plasma beams, which can avoid the problems
caused by large particles and bring high-quality films.

Diamond/tetrahedral amorphous carbon composite films were synthesized by a two-
step preparation technique, including hot filament chemical vapor deposition (HFCVD)
growth for polycrystalline diamond and subsequent FCVAD deposition for tetrahedral
amorphous carbon [83]. The primary wear mechanism of the composite films in the
dry friction process against ceramic Si3N4 ball counterpart was abrasive wear. Shen
et al. [84] reported that the Ti-DLC coatings with various Ti contents were prepared by
filtered cathodic vacuum arc technique by adjusting the C2H2 flow rate. They found
that the amorphous materials show better corrosive resistant than the crystalline ones
due to the absence of crystallographical effects, and the amorphous carbon would lead
to the formation of a graphited lubrication layer, which can contribute to friction and
inhibit corrosion.

2.2.3. Ion Beam Assisted Deposition (IBAD)

Ion beam-assisted deposition (IBAD) technology involves sputtering a target material
with an ion beam composed of high-energy inert gas particles and then depositing it onto
the surface of the workpiece to form a thin film [85]. This method has the advantages of
low deposition temperature, good process controllability, wide adjustment range of ion
energy and particle flow density, etc. [86]. Therefore, the internal stress of the prepared film
is relatively small, and the adhesion between the film and the substrate is high. During the
sputtering deposition of thin films, ion beams bombard a specific area on the surface of the
target material, and the ion intensity distribution of the sputtering is uneven, resulting in
poor thickness uniformity of the deposited film and the inability to deposit on a large area
of substrate, thus significantly limiting the industrial application of large-scale models.
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2.3. Plasma-Enhanced Chemical Vapor Deposition (PECVD)

PECVD is a glow-discharge chemical vapor deposition technology that uses plasma to
activate. This method can reduce the opportunity temperature and control the deposition
rate [87–89]. It can manufacture solid lubricant coatings with different compositions
and microstructures. It allows people to change the film properties of different depths
continuously. PECVD is an improvement of the traditional CVD method. In conventional
CVD, heating is its activation method, thereby activating the working gas and achieving
film growth. The corresponding disadvantage is that the heating step in this method may
damage the deposited film. In PECVD, the technique of electron collision with working gas
molecules is used to obtain the precursor required for the reaction, and the temperature
of the plasma itself is not high during the response. Therefore, it can effectively avoid
thermal damage. Figure 3 shows the schematic diagram of pulsed PECVD equipment and
the construction of PECVD sputtering process schematic diagram.
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Figure 3. (a) Schematic of the DC-pulsed PECVD system, (b) Schematic construction of PECVD
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PECVD plasma reaction is very complex. Ion bombardment causes defects on the
surface, resulting in a decrease in density, and the film often contains more hydrogen. In
order to improve the above shortcomings, electron cyclotron resonance (ECR) is used to
strengthen the PECVD method. The gas molecules are ionized under the action of an
electric field, and the plasma is formed by the strong interaction between positive and
negative charges. In a low-pressure vessel, electrons can accelerate and collide with neutral
molecules or atoms due to their large mean free path.

2.4. Plasma Immersion Ion Implantation and Deposition (PIII&D)

Plasma immersion ion implantation and deposition (PIII&D) is a rapidly developing
new technology for material surface modification in recent years [92,93]. The outer surface
of the workpiece is completely immersed in a low-pressure, high-density uniform plasma,
and a high-voltage negative pulse bias voltage of several hundred Hertz and thousands
to tens of thousands of volts is applied to the workpiece. The schematic diagram of the
high-dose-rate PIII&D is shown in Figure 4. It overcomes the inherent directional defects of
traditional methods such as thin film deposition or ion implantation and, therefore, exhibits
unparalleled advantages in the surface modification process and technology of complex
three-dimensional workpieces. In contrast to the above-mentioned ion-based methods, PIII
uses energetic ions mostly at higher kinetic energies and in a pulsed mode. PIII&D has a
series of advantages [94]: (1) The plasma beam can be injected precisely to the required
depth; (2) the miscibility of the plasma beam will not occur; (3) the injected layer is a new
surface layer formed by a series of physical and chemical interactions between ions and
the substrate surface, and there is no stripping problem between the substrate and the
new layer.
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2.5. Plasma Spraying Technology

Plasma spraying technology uses a rigid non-transfer plasma arc as a heat source to
heat ceramic, alloy, metal, and other powder materials to a molten or semi-molten state
and then spray at high speed to the surface of the pretreated workpiece to form a firmly
attached surface layer [95–97]. The working gas is ionized into plasma in the arc formed by
the cathode and anode so that the powder transported from the powder port is melted or
semi-melted, and the plasma is sprayed onto the substrate surface to form a coating [98].
This technology has been widely used because of its advantages, such as good coating
quality, high bonding strength, various coating types, and little influence on the matrix.
According to the formation of plasma medium and environmental atmosphere, it can
be divided into multiple plasma spraying technologies; the most is mainly atmospheric
plasma spraying and vacuum plasma spraying.

2.5.1. Atmospheric Plasma Spraying

Atmospheric plasma spraying (APS) is the earliest and most widely used technology.
Ar, N2, and H2 are working media, and the spraying process is carried out in an atmospheric
environment [99]. Among them, the process parameters are the key factors affecting the
repair and strengthening quality of APS parts, so the matrix must be preheated before
the parts are sprayed, about 200 ◦C, which has a good effect on reducing the temperature
difference between the matrix and the coating and improving the bond strength. Suppose
the spraying electric power and powder delivery parameters are not set appropriately. In
that case, the powder composition will be destroyed, or the heating powder supply will be
insufficient, resulting in low working efficiency, low bonding strength, poor coating quality,
and other consequences.

2.5.2. Low-Pressure Plasma Spraying

Low-pressure plasma spraying (LPPS), also known as vacuum plasma spraying, refers
to the spraying technology under the condition of a low-pressure seal controlled by the
atmosphere [100], which was applied in the 1970s. Figure 5 shows the phenomenon of
atmospheric plasma spraying and the microstructure of different spraying technologies and
their modified layers. The principle of LPPS and ordinary plasma spraying is the same; the
main difference is that the working atmosphere is a low-pressure environment, resulting in
different process parameters, mainly to adapt to working in low vacuum conditions. The
operating pressure is generally 4~40 kPa; in different pressure environments, we need to
use other process parameters; the lower the general anxiety, the faster the particle speed.
Therefore, the spraying distance can be appropriately increased to enable the spraying
material to melt more thoroughly, such as the 300 ~ 350 mm spraying distance when 6.5 GPa.
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Low-pressure plasma spraying, because of the uniqueness of its working atmosphere and
its use in other spraying technology, cannot be processed in blank areas because it does not
contact the atmosphere to avoid the shortcomings of coating oxidation and composition
changes. At the same time, because of its low vacuum atmosphere characteristics, the size
of the low-pressure chamber limits its spraying, so the size and shape of the processed
parts are limited, and the investment is relatively significant.
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2.6. Plasma Electrolytic Oxidation

Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), is
based on ordinary anodic oxidation, which further increases the working voltage to the
breakdown voltage of the oxide film and causes micro-arc discharge on the surface of the
metal workpiece [103–105]. Figure 6 shows the deposition process of MgO, Mg2SiO4, and
ZrO2 composite coatings on bare AZ91 by PEO technology and the principle diagram of
PEO technology. Various thermochemical reactions are induced by the instantaneous high
temperature and high pressure generated by a micro-arc discharge, and a ceramic film
mainly composed of matrix metal oxides is formed on the metal surface [106–108]. The
PEO film is metallurgically bonded to the substrate with high bonding strength. At the
same time, the film has excellent properties such as high hardness, corrosion resistance,
and wear resistance, which can effectively improve the defects of low hardness, small
elastic modulus, and poor wear resistance of the valve metal surface [109–111]. In micro-arc
oxidation, electrolyte components will be introduced into the ceramic membrane. Different
electrolyte compositions and electrical parameters are used, and composite membrane
layers with multiple functions such as friction reduction, wear resistance, thermal barrier,
and corrosion resistance can be prepared, which has a comprehensive application prospect
in aerospace, equipment manufacturing, transportation, electronic appliances, and other
industrial fields and is expected to produce significant economic and social benefits [103].
The basic parameters of micro-arc oxidation include voltage, current, time, electrolyte,
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etc. [112–114]. Among them, the voltage and current are the main factors affecting the effect
of micro-arc oxidation [115,116].
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In recent years, research on micro-arc oxidation technology has focused on improving
the process, optimizing the parameters, and studying the microstructure and properties
of the ceramic layer [109,116,120,121]. Using the growth characteristics and porous char-
acteristics of micro-arc oxidation film, researchers try to reduce the porosity of micro-arc
oxidation film. Functional materials with tribological properties are introduced into the
micro-arc oxidation ceramic coating to improve the surface density and minimize the
friction coefficient and wear rate. Then, the micro-arc oxidation composite coating with
a self-lubricating function is obtained [122]. There are two leading preparation technolo-
gies for self-lubricating micro-arc oxidation composite film: one is to make self-lubricating
particles suspended or generated in electrolyte enter the growing film through electrophore-
sis, diffusion, and adsorption during the growth of the micro-arc oxidation ceramic film,
which can be called direct composite technology. The other is that after the micro-arc
oxidation ceramic film is formed, the lubricating material is introduced into the discharge
micropores inside the film by post-treatment processes such as impregnation sintering,
thermal spraying, magnetron sputtering, sol-gel, and electrophoretic deposition, which
can be called secondary composite technology. Among them, direct hybrid technology
includes solid particle addition, direct composite technology, and in -situ particle direct
composite technology.

3. Solid Lubrication System
3.1. Soft Metals

Due to its low shear strength and excellent elasticity, some soft metals, including silver
(Ag), lead (Pb), tin (Sn), zinc (Zn), and copper (Cu) undergo plastic deformation during
sliding to adapt to the two interacting surfaces, reducing friction and wear. The friction
coefficient is very sensitive to the thickness of the soft metal layer, and when the thickness
is relatively thin (300–1000 nm), the obtained friction coefficient is relatively low. The
mechanical properties of the metal matrix and the wear resistance of the solid lubricant
are why the self-lubricating coating can significantly improve the wear resistance of the
parts [123,124]. These soft metals are used as solid lubricants and can be synthesized as an
alloy or employed in coatings and films using various coating techniques.

As a medium-temperature lubricant, Ag is the most widely used. Ag has a face-
centered cubic structure that is prone to intergranular slip [125–127]. Ag can significantly
improve the plasticity and toughness of coatings/films by refining grain size, thereby im-
proving the tribological properties of layers [128–130]. Ag uses defects and grain boundaries
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in the internal structure of the coating/film as diffusion channels and uses external tem-
perature and friction as driving forces to diffuse towards the friction surface quickly [131].
Finally, a layer of Ag transfer film is formed on the friction contact surface to reduce the
friction coefficient. A slight friction coefficient of 0.2–0.4 is maintained within its optimal
film thickness range, demonstrating good lubricity.

However, several limitations restrict the use of Ag. Firstly, as a precious metal, the
procurement cost of Ag is high, which poses a significant burden for large-scale applications.
Additionally, the preparation and processing of Ag require complex and costly technical
processes, thereby increasing the overall cost of engineering applications.

Moreover, the effectiveness of the Ag transfer film may be limited, and its durability
and stability could be problematic. Under high-temperature, high-pressure, or long-term
operating conditions, the Ag transfer film may be susceptible to damage or decomposition due
to friction and thermal forces, thereby affecting the sustainability of its frictional properties.

In conclusion, although Ag offers advantages as a medium-temperature lubricant,
factors such as its high cost, limitations in grain refinement effects, and the stability of
the transfer film restrict its cost-effectiveness and reliability in engineering applications.
Therefore, when considering Ag as a lubricant, it is essential to comprehensively evaluate
these issues and perform thorough economic and practical assessments.

3.2. Oxides

Oxides are potentially the best choice for solid lubrication in harsh conditions, including
extreme temperatures, since oxides are often structurally and chemically/thermodynamically
stable. These phases, such as PVD, are usually formed in the tribo-oxidation process or
used as deposition during synthesis [128]. Significant research focuses on using metal
compounds, which lead to developing an oxide lubricious layer in the temperature range.
Tribo-chemical reactions on the moving surface of metal friction pairs will form various
oxides. Then, the oxides will participate in the process of friction and wear, which will affect
the friction factor and wear form. The role of a particular class of oxides as a solid lubricant,
the so-called Magneli phases in high-temperature applications, has been researched quite
significantly [132]. A. Magneli [133] first discovered that Mo and W form oxides with
planar faults belonging to homologous series based on the common structural principles
MenO3n−1 or MenO3n−2. These materials are sub-stoichiometric oxides of transition metals,
including Mo, W, V, or Ti, with a weakly bonded lamellar microstructure leading to a
favorable lubrication mechanism. Table 1 summarizes standard solid lubricated oxide
coatings. Erdemir et al. [134] pointed out that the tribological properties of metal oxides
are related to the ionic potential (cationic charge/cationic radius). Oxides with higher
plasma potential of V2O5, B2O3, and Re2O7 have a smaller friction factor, maintaining
a friction factor of 0.13~0.25. In comparison, oxides with a lower plasma potential of
Al2O3, ZrO2, and FeO have a friction factor greater than 0.5. Vanadium oxides as Magneli
solid lubrication phases are reported by Franz and Mitterer, who demonstrated lubricious
behavior similar to titanium oxides [135].

Although oxide coatings exhibit good tribological performance, they may experience
higher friction coefficients at low temperatures. This is because the materials of the coatings
tend to become more brittle in low-temperature environments, and the chemical reaction
rate between interface materials slows down. As a result, lubrication is reduced, leading
to increased friction on the surface of the coating. Additionally, their wear resistance
may be relatively poor. Since oxide coatings are typically thin films, they are prone to
wear and fatigue during long-term use, especially under high loads and intense friction
conditions. This can result in a decrease in the performance of the coatings. In summary,
while oxide coatings exhibit good tribological performance, their friction coefficients at low
temperatures can be higher, and their wear resistance may be relatively poor. However, on-
going research and development efforts are focused on finding solutions to overcome these
limitations and improve the performance of oxide coatings in low-temperature applications.
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Solid solution oxides such as (Al, Cr)2O3 form the corundum phase in relatively low-
temperature PVD processes and may be promising for low friction and wear coatings but
may also be metastable at moderate temperatures [136]. W. Gulbiński et al. [137] reported
that the friction coefficient of single-phase Ag2MoO4 coating deposited by PVD decreased
with increasing temperature, from 0.35 at 100 ◦C to 0.25 at 500 ◦C. Ouyang et al. [138]
reported on ZrO2-BaCrO4 composites solid lubricants utilizing a low-pressure plasma-
sprayed technique, and they conducted tribological tests up to 800 ◦C. The denied ox-
ide/graphite composite coating mainly consisted of a combination of γ-Al2O3, α-Al2O3,
graphite, and amorphous alumina, which was successfully fabricated on prepared pure
aluminum bulk using a one-step PEO process [139].

The performance requirements of the surface anti-friction and wear resistance for the
motion components were studied from the perspective of regulating the organizational
structure of coatings. Multiple electrolyte systems were developed, and lubricating coatings’
formation process, structural characteristics, and tribological properties were compared.
The study showed that the composite coating with nano TiO2 grains embedded with an
amorphous SiO2 phase significantly improved the wear resistance of the titanium alloy
and reduced the friction coefficient to 0.15–0.2. To further reduce the friction coefficient,
solid lubricant graphite was introduced into the micro-pores and cavities on the micro-
arc oxidation surface, serving as a lubricant reservoir to continuously supply graphite
to the frictional surface. This approach significantly reduced the friction coefficient to
0.1 [140,141].

MoS2/Al2O3 self-lubricating ceramic coatings with optimized pore structures were fab-
ricated by in -situ synthesis of MoS2 combined with PEO under different duty cycles [142].
The anti-friction properties of the MoS2/Al2O3 coatings were improved compared to the
traditional PEO coating.

Most metal oxides have better tribological properties at high temperatures but have
higher friction coefficients at low temperatures. Therefore, the relationship between the
tribological properties of metal oxides and the size of the ion potential can be used to explore
further the tribological properties of metal oxides in low-temperature environments and
increase the application of oxide-based composite coatings across a wide temperature range.

Table 1. Tribological performance of solid lubricant oxide coatings.

No. Coating Material Process Phase
Structure

Compound
Layer/µm Friction Pair Load/N COF Refs.

1 Al2O3 + MoS2 Steel substrates Plasma
spraying

α-Al2O3,
MoS2

~450 SS316L 10 0.21 [143]

2 Al2O3 + ZrO2 SUS304 Plasma
spraying

Al2O3,
ZrO2

210~300 Al2O3 10 0.05~0.08 [144]

3 Al2O3–3TiO2/CaF2 Plasma
spraying

Al2O3,
TiO2, CaF2

- medium-carbon
steel 40 0.029~0.142 [145]

4 Al2O3-40 wt%
TiO2

Alumina-40
wt% Titania

Plasma
spraying

Al2O3,
TiO2

500 Si3N4 20 0.16 [146]

5 TiO2–SiAlON 316 stainless
steel

Plasma
spraying

TiO2,
Al2O3

0.2 Si3N4 5 0.1 [147]

6 ZrO2-BaCrO4 AISI 304 Plasma
spraying

ZrO2,
BaCrO4

200 Al2O3 50 0.3 [138]

7 Al2O3 + ZrO2 7075 Al alloy PEO ZrO2, Al,
Al2O3

14~24 WC/Co balls 2 0.22 [148]

8 Y2O3 + MAO ZK60 PEO
α-Mg,

MgZn2,
Y2O3

3~10 Si3N4 5 0.4 [149]

9 NiCr–BaCr2O4 NiCr alloy PEO BaCr2O4 Al2O3 5 0.2 [150]
10 MgO Mg alloy PEO MgO 10 GCr15 5–15 0.28~0.30 [148]

11 MgO AZ31
Mg alloy PEO Mg, MgO ZrO2 2–6 0.17 [151]

12 Ag-MoO3 Al2O3
Magnetron
sputtering Ag2MoO4 Al2O3 1 0.2 [137]

13 (Ag, Ta)Ox Inconel 718 Magnetron
sputtering

AgTaO3,
AgTaO5

2 Si3N4 2 0.16 [152]
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3.3. Nitrides

Nitride coatings mainly refer to transition metal nitrides and their binary, ternary, and
multivariate derivatives. TiN and CrN series compounds are the main corrosion-resistant
and wear-resistant nitride coatings because of their extremely high hardness and low fric-
tion coefficient [153–156]. Table 2 summarizes the friction of some common TiN-based
and CrN-based coatings. Nitride coatings have higher mechanical properties and thermal
stability than pure metal coatings. Corresponding oxides are generated during friction,
providing a certain degree of overall protection. Due to the different oxidation tempera-
tures and oxidation products of various coatings, their performance also varies [143,157].
Li et al. [158] reported that plasma nitriding (PN-480 and PN-500) and TiN coating de-
position treatment (MAIP-3 and MAIP-6) were respectively performed on the surface of
TA2 pure titanium. The specific results are listed in Figure 7. The tribological property
of the four samples was ranked from best to worst as PN-480 > MAIP-3/6 > PN-500. The
COFs of the treated samples oscillate steadily and repeatedly between 0.11 and 0.12, in-
dicating that the friction interface is in a boundary lubrication state. The nanostructured
TiN coating showed the best tribological characteristics due to a high Pb content and a
texture-less state with a low grain size. This coating had a low friction coefficient (~0.1)
over 50,000 test cycles.
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In order to improve the lubrication performance of unit metal nitrides, many studies
have shown that the comprehensive protection performance of coatings can be signifi-
cantly enhanced by doping reinforcement elements into layers. Standard doping features
include C, B, Si, Ni, Al, Mo, Y, W, and so on [159–165]. Doping C element in the coating
can refine the grain, reduce the friction coefficient to a certain extent, and improve the
wear resistance [166]. The CrBN coating [167] obtained by doping B element in the layer
forms an amorphous/nanocrystal mixed structure of amorphous BN and nanocrystal
CrN, which significantly improves the hardness of the CrBN coating and effectively im-
proves the fracture toughness and elastic strain resistance of the layer. The Si element
can play the dual role of refining grain and toughening, reducing the coating’s friction
coefficient and wear rate, and improving the lubrication performance of the layer in the
liquid lubrication environment [168]. The addition of Ni can significantly strengthen the
brittleness and hardness of the nitride coating and enhance the anti-crack formation ability
of the coating [169]. The coating system MoN-Ag is an exciting candidate for industrial
applications as a low-friction coating at elevated temperatures due to the formation of
lubricous molybdenum oxides and silver molybdates. The study of ternary nitride coating
is an extension of binary nitride coating, which mainly develops nitride coating with more
comprehensive properties through the combination of oxidation resistance, lubrication,
and load resistance nitride.

A considerable research system has been formed for high entropy alloy nitrides
because of their multi-components and cocktail effect. It has good hardness, higher melting
temperature, and high oxidation and wear resistance [170]. In Lin [171], (AlTiCrZrNb)N
coatings with different substrate bias voltages were deposited on single crystal Si and
cemented carbide substrates using arc ion plating. The lowest average friction coefficient
was 0.26, and the lowest wear rate was 8.86 ± 1.05 × 10−6 mm3·N−1·m−1. The excellent
mechanical properties contributed to reducing coating wear during friction and promoted
the generation of surface oxide layers, which acted as a lubricant during friction. As a new
research hotspot, high-entropy nitride ceramics may have a good application prospect in
various structural and functional fields. However, the research in corrosion-wear coupling
protection is still missing, which may be a hot spot in future service performance research
of high-entropy nitride ceramic coatings.

If the nitrided coating has defects such as penetrating cracks, it is easy to peel off
during friction. By designing the microstructure of the coating, the contradiction between
high hardness and poor toughness of the coating can be alleviated, the generation of
cracks, voids, and other defects can be reduced, and the wear resistance of the layer can be
effectively improved. After years of development, the coating microstructure has gradually
evolved from the traditional single-layer coating to different structures such as multilayer
coating, nano-multilayer coating, nano-composite coating, and gradient coating.

The multilayer architecture can be composed of ceramic and metallic layers or two
different ceramic layers [167,172–174]. The former can have both the toughness of metal
and the high hardness of nitride ceramics, and the metal layer and multi-layer interface can
simultaneously play a good role in inhibiting crack propagation. The latter can combine
the excellent characteristics of different metal nitrides and improve the hardness and wear
resistance of the coating. T. Polcar et al. [175] compared and prepared CrN and Cr/CrN
coatings prepared by AIP, and the tribological properties of multilayer structures were
better than those of single layers.

Elmkhah et al. [176] investigated that the effect of Cr/CrN multilayer coating on
improving the tribological properties is more significant compared to CrN coating using
cathode arc evaporation. Comacli [29] found that TiAlN/CrN multilayer coatings have
smaller grain size, higher surface hardness, and better adhesion to the substrate, which
makes the friction coefficient and wear rate significantly lower than that of the CrN and
TiAlN single-layer coatings. Wang et al. [177] prepared nano-multilayer CrN/CrCN and
Cr/CrxN and single-layer CrN and CrCN using arc ion plating technology. The excellent
lubrication properties of nano-layered CrN/CrCN coating are mainly attributed to the
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synergistic effect of hard Cr-C in the layer and the graphite lubrication phase formed
during friction, and the excellent barrier effect of the multi-layer transverse interface on
the corrosive medium in the coating microstructure. Duh [178] reported an architectural
design strategy to engineer the mechanical and high-temperature tribological properties of
a TiAlSiN/VSiN multilayer. The multilayer system exhibited a low friction coefficient of
0.28, which was revealed at a multilayer with a bilayer period of 16 nm during the wear
test at 700 ◦C. The self-lubricating V2O5 acted as the lubricant successfully and significantly
manipulated the friction coefficient during the high-temperature wearing process. The
TiSiN/Ag multilayer coatings showed a significantly improved toughness compared with
the TiSiN coating. The individual Ag layers of nano-multilayer coatings, not only as a self-
lubricating but also as a barrier that inhibited micro cracks propagation, the formation of
threading defects throughout all coatings, cause energy dissipation by passing through the
interface zones without making the coating fail and at the same time prevented aggressive
seawater through the micro-pores [179].

Table 2. Tribological performance of solid lubricant nitride coatings.

No. Coating Material Process Phase
Structure

Compound
Layer/µm Friction Pair Load/N COF Refs.

1 TiN Ti6Al4V Plasma nitriding TiN, Ti2N - GCr15 5 0.2~0.4 [180]
2 TiN Ti6Al4V Plasma nitriding TiN, Ti2N - Alumina ball 3 0.05~0.3 [181]
3 TiN Q235 steel PECVD TiN 500 AISI E52100 steel 490 0.37 [182]
4 TiN Ti6Al4V PECVD TiN 151 ± 11 Ti–6Al–4V 50 0.44 [183]
5 TiN AISI 1040 Plasma spraying TiN 120 AISI O2 steel 45 0.44 [184]

6 TiN 440C
stainless steel

Magnetron
sputtering 10 alumina and

aluminum 1 0.3 [185]

7 TiN Si wafers Magnetron
sputtering TiN 0.75~1 Al2O3 1 0.1 [186]

8 TiN HSS M2 Cathodic arc
evaporation TiN >1 WC (70%) 2.94 0.38 [184]

9 TiN Si HiPIMS TiN Sapphire steel
ball 20 0.26 [187]

10 TiSiN(Ag) WC HiPIMS TiN, SiN 2.2~2.8 Al2O3, TiAl6V4 5 0.5 [188]
11 TiAlN WC–Co HiPIMS TiN, TiAlN Steel ball 2 0.5 [188]

12 TiAlN HSS M2 Magnetron
sputtering 2.25 WC (70%) 2.94 0.42 [189]

13 TiAlSiN/VSiN Inconel 718 Magnetron
sputtering 1.2 Al2O3 1 0.28 [178]

14 TiAlN/TiAl Ti6Al4V FCVA 17.13 Si3N4 20 0.05 [178]
15 (TiAlCrN)C SUS 304 FCVA Si3N4 1 0.2~0.3 [190]

16 TiN–W 316L SS Multi-arc ion
plating 1.6 Si3N4 2 0.33 [191]

17 TiMoCN M2 Multi arc ion
plating 3.9 Si3N4 9.81 0.18 [192]

18 TiSiN/Ag Ti6Al4V Arc ion plating 2.0 WC + 6% Co 5 0.28 [179]

19 TiCN HSS M2 Cathodic arc
evaporation >1 100Cr6 (20%) 0.98 0.24 [184]

20 Ti–Cr–B–N
Si (100)

wafer/hard
alloy

Cathodic arc
evaporation 0.6 WC + 6% Co 5 0.45 [193]

21 Ti–Si–B–N
Si (100)

wafer/hard
alloy

Cathodic
arc-evaporation 1.5 WC + 6% Co 5 0.39 [193]

22 Ti–Al–Si–B–N
Si (100)

wafer/hard
alloy

Cathodic arc
evaporation WC + 6% Co 5 0.39 [193]

23 CrN 316L Multi-arc ion
plating CrN SiC 5 0.37 [194]

24 CrN 304 SS Cathode arc
evaporation CrN 2.0 Al2O3 2 0.52 [176]

25 CrN 440a Cathodic arc
deposition CrN 25 ± 1 Al2O3 5 0.39 [195]

26 Cr/CrN AISI 304 Cathode arc
evaporation

Cr
CrN 1.3 Al2O3 2 0.46 [176]

27 CrN WC-Co FCVA CrN 2 Si3N4 5 0.35 [196]
28 CrAlSiN 304 FCVA 0.9 ZrO 1 0.46 [197]
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Table 2. Cont.

No. Coating Material Process Phase
Structure

Compound
Layer/µm Friction Pair Load/N COF Refs.

29 CrN/CrAlN 430 Arc ion plating CrN 3.29 Al2O3 10 0.3 [198]

30 CrN/MoN/MoS nconel 718
alloyI

Magnetron
sputtering

CrN
Mo2N
MoS2

3.93 Al2O3 2 0.3 [199]

31 (CrAlTiNbV)Nx AISI 440C Magnetron
sputtering 0.8 AISI 440C 20 0.096 [200]

32 (CrAlTiNbV)Nx 9Cr18 Magnetron
sputtering 0.6~0.83 9Cr18 20 0.06 [201]

33 MoN–Ag Magnetron
Sputtering

δ-MoN
Mo

γ-Mo2N
1.7~2.4 Al2O3 10 0.23~0.26 [200]

34 MoAlTiN 17–4 PH Cathodic arc
evaporation

AlTiN
Mo2N 5.6 WC-6Co 10 0.28 [202]

35 Mo–S–N AISI 316 Plasma-assisted
deposition

Mo2S3
Mo3S4
MoS2

1 WC/Co 2 0.05~0.28 [203]

36 Mo–Se–N S600 Direct current
Sputtering WC/Co 45 0.22~0.015 [163]

37 MoN–Ag HSS M2 HiPIMS MoN,
MoAgx

2 Al2O3 10 ~0.25 [204]

38 W–S–N 100Cr6 Magnetron
sputtering 2.3 100Cr6 55.8 0.003 [205]

39 AlTiSiN +
TiSiN 316LVM Magnetron

sputtering

TiN
TiSiN

AlCrN
CrN

11.30 Al2O3 30 0.11 [206]

40 (AlTiCrZrNb)N YG6 Arc ion plating 2.07 Si3N4 2 0.26 [171]

Nanostructured coatings are coatings whose structure or components are controlled
at the nanoscale. For example, a nanostructured coating with hard TiAIN as the substrate
MoS and lubricating film is prepared by controlling PVD parameters. The superlattice
coating is an extension of the multi-layer, multi-component coating, which means that
the thickness of each single layer in the coating is between 1 and 50 nm. This structure
significantly improves the coating’s hardness, properties, and bonding strength, thereby
improving the friction and wear performance. Gradient coatings are also an extension of
multilayer multicomponent coatings, meaning that each layer in the coating is functionally
graded and periodically arranged. Intelligent coating is a new concept, which means that
the coating can change with the application conditions or external environment to meet the
use requirements of particular settings.

3.4. Sulfides

There are many solid lubricating materials, and sulfides are an essential and common
type. The most common solid lubricating materials are MoS2, FeS, and WS2 [48,207–209].
Standard preparation techniques for sulfide solid lubricating coatings include plasma
spraying and PVD. With the continuous improvement of surface treatment equipment, new
composite preparation techniques have emerged, such as laser cladding surface treatment,
non-equilibrium magnetron sputtering, and plasma-enhanced chemical vapor deposition.
Sulfide coatings are porous, allowing them to store and retain lubricating media, making
them widely applicable to various friction surfaces. Sulfurizing treatment can result in
a sulfur-rich layer containing solid lubricating phases on the surface of the workpiece,
significantly improving the anti-friction performance of different materials. Table 3 shows
the research progress of several common solid lubricating coatings.

FeS has a close-packed hexagonal structure like graphite. It has the characteristics
of low hardness, low resistance to deformation, plastic solid flow ability, and low shear
strength. Under the action of frictional force, it easily slips along the lattice plane and
moves to the mating surface, reducing direct contact between the metal matrix and thereby
reducing the friction coefficient and improving wear resistance [210–213]. FeS has a porous
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structure with small-capillary effects, which can absorb lubricating oil to form a stable
oil film. During the mixed lubrication friction process, when the lubricating oil film on
the mating surface becomes thin or damaged, more lubricating oil can be provided to the
surface, maintaining an excellent anti-friction effect. FeS has a simple and low-cost prepa-
ration process, making it widely used in industrial production with good development
prospects [214]. Figure 8 shows the FES coatings prepared by ion infiltration and plasma
spraying technology respectively and their tribological properties. In addition, it also
shows the anti-friction and anti-adhesion mechanism of the bearing just after infiltration.

FeS can be formed at lower temperatures, but when the processing temperature
increases, FeS2 is generated, which is detrimental to the material’s wear resistance. FeS2
has a different structure from FeS. It has a cubic crystal system, higher hardness, and
higher friction coefficient and shear strength. Therefore, if the processing temperature is
too high, it will lead to a higher amount of FeS2 generated in the material, which decreases
the material’s wear resistance. Therefore, proper control of the processing temperature to
ensure the formation of sufficient FeS and minimize the generation of FeS2 is crucial for
maintaining good wear resistance of FeS materials.

MoS2 is also a layered hexagonal crystal structure material [215–217]. The layers
consist of S-Mo-S three-atomic-layer structures held together by weak van der Waals forces
between the layers [194,218–220]. In the occurrence of sliding, the crystalline layers of MoS2
will easily slide and orient parallel to the direction of relative movement, which provides
the lubricating effect [209,221–223]. On the other hand, the solid ionic bond between S and
Mo provides the lamellae a high resistance to asperities penetration.

WS2 has a hexagonal lattice structure and is an essential lubricating material [224]. It
is suitable for lubrication under normal and harsh conditions such as high temperature,
high pressure, high vacuum, high load, radiation, and corrosive media [225,226].

Because of the small shear strength of the solid lubricating film, it plays a good role in
lubricating the friction surface between hard metals, and the contact area between friction
pairs has not increased significantly. Due to the low shear strength of the coated solid
lubricating film, it has a specific adhesion to the friction surface. In the process of friction,
the solid lubricating film coated on the substrate surface is easily transferred to the surface
of the dual material, forming a transfer film. In this way, friction can occur between the
transfer film and the lubricating film, which reduces the friction coefficient and effectively
protects the conflict. The three sulfides also exhibit distinct characteristics. FeS has a
higher friction coefficient compared to MoS2 and WS2. MoS2 offers an extraordinarily low
friction coefficient. However, the pure MoS2 lubricating film is challenging to employ for
prolonged periods in ambient air, particularly under humid conditions, due to its tendency
to oxidize and form MoO3, thus diminishing the lifespan of the MoS2 lubricating film. In
comparison, WS2 possesses a higher oxidative resistance temperature in ambient air and
exhibits superior adaptability to specific high-temperature environments.
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mechanism of the bearing steel after sulfurization [227,228].

Table 3. Tribological performance of solid lubricant sulfide coatings.

No. Coating Material Process Compound
Layer/µm Friction Pair Load/N COF Refs.

1 MoS2 AISI 52100 Magnetron
sputtering 0.9 0.08 [229]

2 MoS2 CF170 steel Magnetron
sputtering 1.4 SiC 5 0.056 [230]

3 MoS2
Monocrystalline

silicon PECVD 0.6 9Cr18 3 0.025 [231]

4 MoS2–V AISI 440 C steels Magnetron
Sputtering 1~2 AISI 440 C 3 0.04 [231]

5 MoS2/WS2
304 stainless steel

and silicon
Magnetron
sputtering 2.5~3 GCr15 5 0.08 [232]

5 FeS 35CrMo steel Plasma sulfurizing 0.1 AISI 52100 10 0.12 [233]
7 FeS Ni-based alloy Plasma sulfurizing 3~4 1045 steel 50 0.03~0.05 [234]
8 FeS AISI 4135 Plasma sulfurizing 10 AISI 52100 200 0.03~0.04 [235]
9 FeS AISI 1045 steel Plasma spraying 800 52100 steel 70 [236]

10 FeS St12 steel Plasma electrolysis AISI 52100 0.2 [237]

11 FeS/MoS2
CoCrFeMoNi high

entropy alloy Plasma sulfurizing 5 GCr15 50 0.15 [231]

12 WS2
AISI 440C

stainless steel
Magnetron
sputtering

AISI 440C
stainless steel 0.03~0.05 [238]

13 WS2 1045 steel Plasma spraying AISI 52100
steel 5 [239]

14 WS2
3Cr13 martensite

stainless steel
Magnetron
sputtering GCr15 0.5 0.06 [240]

15 WS2 Si Magnetron
sputtering

Si3N4 ceramic
balls 0.49 0~0.3 [241]
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3.5. Carbon-Based Coatings

As a multifunctional solution, carbon-based solid lubricant coatings have received
significant attention in various industrial applications for reducing friction and wear
problems. These coatings are typically composed of carbon elements such as graphite and
graphene. These carbon elements can form a molecular slip layer on the friction surface,
reducing the interaction between the characters and reducing friction and wear [242,243].
Carbon-based coatings can adsorb and disperse small particles, such as metal particles,
forming a protective layer between the friction surfaces and reducing direct contact and
wear. Additionally, carbon-based coatings may gradually release self-lubricating particles
during the friction process, reducing the coefficient of friction and further decreasing friction
and wear. These coatings also can prevent oxidation and chemical reactions, protecting
the substrate from the oxidation and corrosion caused by the friction surface [244], thereby
reducing wear. Standard carbon-based solid lubricant coatings include.

3.5.1. Graphite Coating

As a carbon-based solid lubricating material, graphite coating has excellent anti-
wear properties [245]. In graphite coatings, carbon atoms form a hexagonal honeycomb
structure in a specific arrangement [242,246]. Graphite exhibits a layered structure, and the
interaction between graphite layers is mainly driven by van der Waals forces, which are
weak attractions [243,247]. These van der Waals forces allow the graphite layers to slide
relative to each other in the plane, resulting in the lubricating properties of graphite.

Graphene is an ultra-thin two-dimensional carbon material with a single-layer thick-
ness of only 0.335 nm. The carbon atoms are densely arranged in a sp2 hybridization
in a two-dimensional hexagonal structure, forming a honeycomb lattice structure. This
structure gives graphene unique thermal, electrical, mechanical, and tribological properties,
such as high fracture strength and toughness, easy shear spreading, etc. Compared to
graphite, the larger specific surface area and ultra-thin layered structure allow graphene to
adhere more easily to frictional surfaces, making it a friction material with great potential
for applications.

PECVD is a commonly used method for preparing graphite coatings. In this method,
plasma and chemical vapor are used as a mixture, producing thin films with a thickness
of micrometers without the need for solvents and without damaging the material. This
method allows the initiation of chemical reactions through discharge in a gas environment,
further activating the CVD process. It is evident that compared to other ways, it can form
more uniform films and has characteristics such as low deposition temperature, fast coating
speed, control over coating thickness, and hydrophobic/hydrophilic properties of the
material surface. Graphite coatings prepared by PECVD can reduce the wear rate of the
substrate by more than twice [248].

3.5.2. Diamond-like Carbon Coatings

The molecular structure of diamond-like carbon coatings (DLC coatings) is usually
amorphous or nanocrystalline, which means that their system is not an ordered crystalline
structure but more random and irregular DLC coatings mainly comprise carbon and
hydrogen atoms, forming carbon-hydrogen and carbon-carbon bonds. Carbon atoms in
DLC coatings exist in sp2 and sp3 bonds and are a metastable form of amorphous carbon
without an explicit lattice structure. Therefore, DLC coatings have excellent properties
of both diamond and graphite. The performance of the coating depends on the ratio of
sp2 bonds to sp3 bonds. The higher the percentage of sp2 bonds in the layer, the more
graphitized the coating is, resulting in better self-lubricating properties and lower friction
coefficient. Still, the hardness will decrease, and the film resembles graphite. The higher the
ratio of sp3 bonds in the coating, the higher the hardness of the film, and the performance
is closer to natural diamond [249]. The connectivity and distribution of these bonds will
affect the properties of the coating, such as hardness and lubricity.
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The different preparation processes also lead to differences in the performance of DLC
coatings [250–253]. It can be observed from Figure 9 that the surface morphology and
friction coefficient of DLC films prepared by different processes differ greatly. DLC coatings
prepared by PECVD HiPIMS exhibit other tribological properties. DLC coatings prepared
by PECVD on ion-nitrided substrates exhibit the best tribological performance, with the
highest SP3 ratio and the highest H/E ratio. They demonstrate an overall failure mode of
delamination. Through dual treatment of active screen plasma nitriding and PECVD, the
adhesion of DLC amorphous hydrogenated carbon coatings can be significantly improved,
and the critical load can reach 15 N [254].

Figure 9. The aspect of the steel surfaces coated with DLC by (a) HiPIMS, (b) PECVD, and (c) PIID,
(d) the hardness of DLC coatings, (e) the friction coefficient of DLC on unnitrided steel, (f) The friction
coefficient of DLC on nitrided steel [250].

There is no widely accepted view on the friction and wear mechanism of DLC films.
The more representative theories are graphitization theory, chemical adsorption/passivation
dangling bond theory, and transfer film theory. These three mechanisms often interact
with each other. The graphitization theory suggests that the debris is usually graphi-
tized or stored in grooves during the wear process of DLC films. The chemical adsorp-
tion/passivation dangling bond theory proposes that when oxygen, hydrogen, and water
molecules are present, the carbon atoms on the film’s surface are passivated, and the degree
of covalent bond interaction becomes less noticeable. Even if some bonds are exposed, the
adsorbed molecules will quickly decompose them, resulting in low friction. The transfer
film theory suggests that when DLC films are in frictional contact with materials of high
hardness, during the frictional process, they will transform from a diamond-like structure
to amorphous carbon rather than graphite. The amorphous carbon will then transfer to the
counterpart to form a transfer film, reducing the coefficient of friction.
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Non-metallic elements doped into DLC films bond with carbon atoms, changing the
sp3/sp2 ratio and causing subtle structural changes, thereby improving thermal stability
and tribological performance [255,256]. With the addition of metals into DLC films, the
doped elements are incorporated into the amorphous carbon’s crosslinked network in the
form of solid solutions, nanocrystals, or carbides, forming a nanocrystalline/amorphous
composite structure [84,257–259]. In Figure 10, the friction coefficient and wear mechanism
of Cr-doped DLC film can be observed.
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models of Cr doped DLC coatings under friction-lubrication and oil-lubrication conditions [260].

The research on the tribological properties of DLC coatings doped with other different
elements is shown in the following Table 4.

Li et al. [256] used plasma-enhanced chemical vapor deposition to prepare Si-DLC
multilayer coatings with different modulation periods. The friction and wear performance
of the coatings were measured in an air environment. It was found that the friction
coefficient of the multilayer silicon-DLC coating was very low (~0.05) after running-in in the
air. The low friction in the air was attributed to the deep grooves capturing the wear debris
and the formation of a Si-rich transfer layer on the counter surface. M. Evaristo et al. [261]
evaluated the tribological performance of DLC coatings alloyed with different elements
and found no direct relationship between friction and wear. The third body formed on
the sliding surface significantly impacted the system’s tribological performance. Figure 11
demonstrates the influence of different element doping on the friction coefficient of DLC
thin films.

Table 4. Tribological performance of diamond-like carbon coatings.

No. Coating Material Process Phase
Structure

Compound
Layer/µm Friction Pair Load/N COF Refs.

1 DLC TiB2
Magnetron
sputtering SP3&SP2 C ~0.5 WC 5 0.2 [262]

2 DLC 304 stainless
steel

Magnetron
sputtering SP3&SP2 C 100Cr6 1 ~0.2 [263]

3 DLC Polished steel
disks

Magnetron
sputtering SP3&SP2 C 2.2 100Cr6 steel 5 0.15 [261]
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Table 4. Cont.

No. Coating Material Process Phase
Structure

Compound
Layer/µm Friction Pair Load/N COF Refs.

3 DLC AISI 4140 HiPIMS SP3&SP2 C 3 Al2O3 10 ~0.12 [250]
5 DLC AISI 4140 PECVD SP3&SP2 C 7 Al2O3 10 ~0.10 [250]

6 DLC AISI 4140
Plasma ion
immersion
deposition

SP3&SP2 C 7 Al2O3 10 ~0.05 [250]

7 DLC AISI 304L FCVA SP3&SP2 C 3~13 100Cr6 20 0.8 [264]
8 Ti–DLC AISI 304L FCVA SP3&SP2 C Si3N4 2 0.028~0.087 [84]

9 W–DLC Polished
steel disks

Magnetron
sputtering

SP3&SP2 C,
W 1.4 100Cr6 steel 5 0.43 [261]

10 W–DLC M2 tool steel Magnetron
sputtering, PECVD

WC,
SP3&SP2 C Diamond 0.5 0.07–0.09 [265]

11 WS2–DLC TiB2
Magnetron
sputtering

SP3&SP2 C,
WS2

~0.5 WC 5 0.05 [262]

12 Ag–DLC Polished
steel disks

Magnetron
sputtering

SP3&SP2 C,
Ag 1.2 100Cr6 steel 5 0.23 [261]

13 Si–DLC M2 tool steel PECVD SiC,
SP3&SP2 C Diamond 0.5 0.08–0.11 [265]

14 Si–DLC Polished
steel disks

Magnetron
sputtering

SP3&SP2 C,
Si 1.4 100Cr6 steel 5 0.09–0.12 [261]

15 SiO–DLC Polished steel
disks

Magnetron
sputtering

SP3&SP2 C,
SiO 1.4 100Cr6 steel 5 0.09–0.12 [261]

16 Ne–DLC AISI D2 HiPIMS SP3&SP2 C 0.001 [266]

17
Cu

Nanoparticles–
DLC

304L
Stainless steel

Magnetron
sputtering

SP3&SP2 C,
Cu 5.2 GCr15 100 ~0.13 [267]

18 S–F–DLC 304 stainless
steel PECVD SP3&SP2 C,

F, S 2 GCr15 1 0.01–0.02 [268]

19 H–DLC AISI–52100
steel PECVD SP3&SP2 C 1 AISI–52100

steel 10 0.12~0.15 [269]

20 Ta/TaN/Ta(C,N)/
Ta–DLC

Cemented
carbide

Arc ion plating,
HiPIMS

TaN, TaC,
SP3&SP2 C 1.22 Al2O3 5 0.15 [270]

21 Ti/(Cu,
MoS)–DLC

304 stainless
steel

Magnetron
sputtering

MoS2,
SP3&SP2 C,

CuO
SiC 5 0.036–0.064 [271]Lubricants 2023, 11, x FOR PEER REVIEW 22 of 34 
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Figure 11. SEM images of the cross-section and surface (a1,a2) DLC, (b1,b2) W-DLC, (c1,c2) Si-DLC,
(d1,d2) SiO-DLC, (e1,e2) Ag-DLC, respectively. Tribological characterization friction behavior of
pin-on-disk tests with steel balls: (f) friction curves at room temperature for all coatings, (g) friction
curves for all layers when tested at 100 ◦C, (h) average friction for all coatings at room temperature
and 100 ◦C, (i) specific wear rate at room temperature and 100 ◦C of coatings tribological tested
against steel balls [261].
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3.5.3. Graphene Thin Film

Graphene is a two-dimensional material with a single atomic thickness [272]. Due to its
unique electronic, electrical, mechanical, and thermal properties, it has attracted significant
attention in many fields [273,274]. In addition, graphene is also an excellent solid lubricant.
Compared with other solid lubricants, graphene has strong wear resistance in various
test environments and does not cause any adverse effects. In addition, its derivatives
are graphene oxide, fluorinated graphene, and graphene-based composite films. When
graphene is used as a lubricating additive, under the action of pressure and shear, the
graphene with a higher degree of exfoliation overlaps and changes in an orderly manner
and will revert to a layered friction film parallel to the sliding direction [275].

In addition to its excellent properties, graphene can significantly improve its tribologi-
cal properties when combined with other anti-friction and wear-resistant materials. The
wrinkled structure of graphene is beneficial to the growth of nano-copper. The combination
of graphene and silver is easy to agglomerate, affecting the weak interface bonding and
slightly reducing the wear. The TiC/graphene composite film deposited on titanium foil
by the PECVD method maintained a high yield strength after annealing [276]. The com-
bination of graphene and WC/Co can reduce the friction coefficient by about 30 %, but
the wear resistance is poor. This is because graphene forms a lubricating film on the WC
surface, but it is challenging to create a large-scale continuous lubricating film after being
worn out by the wear debris [277].

3.5.4. Fullerene-like Coatings

In amorphous carbon-based thin films, it is generally believed that the high hardness
of the film comes from sp3 bonding, while an increase in sp2 adhesion leads to a softer film.
However, highly crosslinked sp2 hybridized carbon forms a three-dimensional hybridized
network structure in FLC thin films, resulting in high hardness and film elasticity. Due to
the shorter sp2 bonding in the graphite-like planes than the sp3 bonding in diamond, single-
layer graphene slides and deforms under external forces, embedding it in the amorphous
network structure. This amorphous network composite structure gives the film an ultra-low
friction coefficient, even reaching super lubricity.

Fluorinated fullerene films were prepared using high-frequency pulsed plasma-enhanced
chemical vapor deposition technology, and the fluorine content was controlled by changing
the CF4/CH4 ratio [278]. It was found that when the fluorine content is low, the primary
carbon sites bond with adjacent carbon atoms, forming a short-range ordered fullerene-like
structure. C-F and C-CF bonds gradually accumulate with the increase in fluorine content,
and CF2 groups appear in the carbon matrix. These fluorine groups terminate the carbon
network and reduce the formation of large carbon rings and chains, making the fullerene
structure short-range disordered. As the atomic fraction of fluorine increases from 4.8% to
15.5%, the corresponding steady-state friction coefficient gradually increases from 0.052 to
0.175. At the same time, the wear rate and depth are positively correlated with the fluorine
content [279]. To further study the effect of nitrogen content, direct current magnetron
sputtering technology was used to introduce nitrogen gas at controlled ratios of 13% to
19% (denoted as 1CNx, 2CNx, . . ., 7CNx) [280]. The highest elastic modulus (94%, 92%)
and hardness (21 GPa, 20 GPa) were obtained in 3CNx and 4CNx. The linear fitting of
the measured friction coefficient results shows that the decrease of friction coefficient in
samples 3CNx and 4CNx is related to the increase of sp3 bond and C-N hybridization, elastic
modulus and recovery rate. The increase of friction coefficient in sample 7CNx is related to
the decrease of nitrogen atom percentage.Hydrogen doping is the most common method
for studying fullerene thin films, using techniques such as chemical vapor deposition
and magnetron sputtering [281]. A series of FL-C: H films were prepared for research
by introducing CH4 at a flow rate of 10 mL/min and varying H2 flow rates at 0, 2.5, 5,
7.5, and 10 mL/min [282]. The H2 flow rate significantly influences the evolution of the
FL structure. When there are more odd-numbered rings, the film exhibits lower friction
coefficients, and a higher fraction of odd-numbered calls indicates a higher FL structure
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content. The lowest friction coefficient and wear were achieved when the H2 flow rate
was 5 mL/min. By combining plasma nitriding technology with PECVD, iron elements
can be introduced into the steel substrate during coating deposition, and the Fe elements
are uniformly distributed in the FL-C: H film, significantly improving its anti-friction and
wear-resistant properties [283].

4. Conclusions

Plasma surface engineering technology has many advantages over other technologies,
such as low processing temperature, environmental friendliness, and excellent surface
properties with fewer materials. It has apparent effects of energy saving, material saving,
and pollution reduction. In today’s context of scarce resources and increasing environmen-
tal pollution, the development of plasma surface engineering will gain new opportunities
and vitality. Therefore, research can be conducted from the following three aspects.

• Deeply explore the self-lubricating mechanism of coatings, significantly the current
carrying tribological performance mechanism of coatings under harsh working condi-
tions, further optimize the quality of coatings, integrate existing lubrication materials,
processes, and test results, and use computer simulation technology to provide lubri-
cation solutions for different needs and working conditions.

• The plasma preparation process of solid lubrication coatings is becoming increasingly
prosperous and advanced, and different process methods can be selected according to
additional requirements. Duplex techniques often lead to performance breakthroughs,
such as combining multi-arc ion plating and magnetron sputtering, plasma chemical
heat treatments, and magnetron sputtering.

• The development of gradient functional coatings and self-healing coatings has initially
formed a system, and intelligent solid lubrication coatings have also shown hope in
recent research, leading to developments in the lubrication field.

Author Contributions: Writing—review and editing, Y.L.; Writing—original draft, Z.Z.; Supervision,
Y.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 52175192.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: Thanks for the technical assistance from the state key laboratory of tribology in
advanced equipment. We would like to express our heartfelt gratitude to Lu Jinpeng, Yan Jiwen, Dou
Haichun, and Wang Zhengwei for their invaluable support in data collection.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Meng, Y.G.; Xu, J.; Jin, Z.M.; Prakash, B.; Hu, Y.Z. A review of recent advances in tribology. Friction 2020, 8, 221–300. [CrossRef]
2. Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284.

[CrossRef]
3. Scharf, T.W.; Prasad, S.V. Solid lubricants: A review. J. Mater. Sci. 2013, 48, 511–531. [CrossRef]
4. Pawlus, P.; Koszela, W.; Reizer, R. Surface Texturing of Cylinder Liners: A Review. Materials 2022, 15, 8629. [CrossRef] [PubMed]
5. Ramezani, M.; Ripin, Z.M.; Jiang, C.-P.; Pasang, T. Superlubricity of Materials: Progress, Potential, and Challenges. Materials 2023,

16, 5145. [CrossRef] [PubMed]
6. Zhao, J.; He, Y.Y.; Wang, Y.F.; Wang, W.; Yan, L.; Luo, J.B. An investigation on the tribological properties of multilayer graphene

and MoS2 nanosheets as additives used in hydraulic applications. Tribol. Int. 2016, 97, 14–20. [CrossRef]
7. Ma, L.R.; Zhang, C.H.; Liu, S.H. Progress in experimental study of aqueous lubrication. Chin. Sci. Bull. 2012, 57, 2062–2069.

[CrossRef]
8. Guo, J.; Si, Y.; Liu, Q.; Cao, X.; Cheng, J.; Yang, J.; Liu, W. The lubrication regimes and transition laws of gallium liquid-metal.

Tribol. Int. 2023, 188, 108838. [CrossRef]
9. Kumar, R.; Hussainova, I.; Rahmani, R.; Antonov, M. Solid Lubrication at High-Temperatures—A Review. Materials 2022, 15,

1695. [CrossRef]

https://doi.org/10.1007/s40544-020-0367-2
https://doi.org/10.1007/s40544-017-0183-5
https://doi.org/10.1007/s10853-012-7038-2
https://doi.org/10.3390/ma15238629
https://www.ncbi.nlm.nih.gov/pubmed/36500125
https://doi.org/10.3390/ma16145145
https://www.ncbi.nlm.nih.gov/pubmed/37512418
https://doi.org/10.1016/j.triboint.2015.12.006
https://doi.org/10.1007/s11434-012-5031-4
https://doi.org/10.1016/j.triboint.2023.108838
https://doi.org/10.3390/ma15051695


Lubricants 2023, 11, 473 24 of 34

10. Qi, W.; Wang, W.; Zong, R.; Yang, X.; Yang, Y. Evolution of the structure and properties of (Zr1-xHfx)B2 solid solution ceramics
from first-principle theory. Vacuum 2022, 203, 111283. [CrossRef]

11. de Mello, J.D.B.; Juste, K.C.; Kapsa, P.; Binder, C.; Klein, A.N. Influence of Surface Finishing on the Tribological Behavior of
Self-Lubricating Iron-Based Composites. Tribol. Trans. 2018, 61, 560–568. [CrossRef]

12. Xia, Y.; Lu, Y.; Yang, G.; Chen, C.; Hu, X.; Song, H.; Deng, L.; Wang, Y.; Yi, J.; Wang, B. Application of Nano-Crystalline Diamond
in Tribology. Materials 2023, 16, 2710. [CrossRef] [PubMed]

13. Goyal, D.; Dang, R.K.; Goyal, T.; Saxena, K.K.; Mohammed, K.A.; Dixit, S. Graphene: A Path-Breaking Discovery for Energy
Storage and Sustainability. Materials 2022, 15, 6241. [CrossRef] [PubMed]

14. Bakhtiari-Zamani, H.; Saebnoori, E.; Bakhsheshi-Rad, H.R.; Berto, F. Corrosion and Wear Behavior of TiO2/TiN Duplex Coatings
on Titanium by Plasma Electrolytic Oxidation and Gas Nitriding. Materials 2022, 15, 8300. [CrossRef]

15. Liu, X.Y.; Cai, W.M.; Zhang, Y.; Wang, L.Q.; Wang, J.J. Tuning microstructure and mechanical and wear resistance of ZrNbTiMo
refractory high-entropy alloy films via sputtering power. Front. Mater. 2023, 10, 1145631. [CrossRef]

16. Rosenkranz, A.; Costa, H.L.; Baykara, M.Z.; Martini, A. Synergetic effects of surface texturing and solid lubricants to tailor friction
and wear—A review. Tribol. Int. 2021, 155, 106792. [CrossRef]

17. Sevilla, P.; Gseibat, M.; Peláez, J.; Suárez, M.J.; López-Suárez, C. Effect of Surface Treatments with Low-Pressure Plasma on the
Adhesion of Zirconia. Materials 2023, 16, 6055. [CrossRef]
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Mechanical and Tribological Properties of Ag/TiBx Nanocomposite Thin Films with Strong Antibacterial Effect Prepared by
Magnetron Co-Sputtering. Coatings 2023, 13, 989. [CrossRef]

129. Ye, F.; Lou, Z.; Wang, Y.; Liu, W. Wear mechanism of Ag as solid lubricant for wide range temperature application in micro-beam
plasma cladded Ni60 coatings. Tribol. Int. 2022, 167, 107402. [CrossRef]

130. Mu, Y.T.; Liu, M.; Wang, Y.X.; Liu, E.Y. PVD multilayer VN-VN/Ag composite coating with adaptive lubricious behavior from 25
to 700 ◦C. Rsc Adv. 2016, 6, 53043–53053. [CrossRef]

131. de Castilho, B.; Munagala, V.N.V.; Alidokht, S.A.; Sharifi, N.; Bessette, S.; Makowiec, M.E.; Gauvin, R.; Stoyanov, P.; Moreau, C.;
Chromik, R.R. Insights on Silver Migration Mechanisms and their Influence on the Wear Behavior of Thermally Sprayed
Self-lubricating Coatings Up to 350 ◦C. Tribol. Lett. 2022, 70, 120. [CrossRef]

132. Akhtar, S.S. A critical review on self-lubricating ceramic-composite cutting tools. Ceram. Int. 2021, 47, 20745–20767. [CrossRef]
133. Magnéli, A. Structures of the ReO3-type with recurrent dislocations of atoms: ‘Homologous series’ of molybdenum and tungsten

oxides. Acta Crystallogr. 1953, 6, 495–500. [CrossRef]
134. Erdemir, A. A crystal chemical approach to the formulation of self-lubricating nanocomposite coatings. Surf. Coat. Technol. 2005,

200, 1792–1796. [CrossRef]
135. Franz, R.; Mitterer, C. Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: A review.

Surf. Coat. Technol. 2013, 228, 1–13. [CrossRef]
136. Najafi, H.; Karimi, A.; Dessarzin, P.; Morstein, M. Correlation between anionic substitution and structural properties in

AlCr(OxN1-x) coatings deposited by lateral rotating cathode arc PVD. Thin Solid Films 2011, 520, 1597–1602. [CrossRef]
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175. Polcar, T.; Martinez, R.; Vítů, T.; Kopecký, L.; Rodriguez, R.; Cavaleiro, A. High temperature tribology of CrN and multilayered
Cr/CrN coatings. Surf. Coat. Technol. 2009, 203, 3254–3259. [CrossRef]

176. Jasempoor, F.; Elmkhah, H.; Imantalab, O.; Fattah-alhosseini, A. Improving the mechanical, tribological, and electrochemical
behavior of AISI 304 stainless steel by applying CrN single layer and Cr/CrN multilayer coatings. Wear 2022, 504–505, 204425.
[CrossRef]

177. Wang, Y.; Zhang, J.; Wang, Y.; Wang, C.; Guo, W.; Lu, X.; Sui, Y.; Lan, J. Inhibiting tribocorrosion damage of Cr/CrxN coatings by
multi-layer design. Ceram. Int. 2021, 47, 842–850. [CrossRef]

178. Wang, T.-C.; Hsu, S.-Y.; Lai, Y.-T.; Tsai, S.-Y.; Duh, J.-G. Microstructure and high-temperature tribological characteristics of
self-lubricating TiAlSiN/VSiN multilayer nitride coatings. Mater. Chem. Phys. 2023, 295, 127149. [CrossRef]

179. Dang, C.; Li, J.; Wang, Y.; Chen, J. Structure, mechanical and tribological properties of self-toughening TiSiN/Ag multilayer
coatings on Ti6Al4V prepared by arc ion plating. Appl. Surf. Sci. 2016, 386, 224–233. [CrossRef]

180. Fu, Y.-D.; Zhu, X.-S.; Li, Z.-F.; Leng, K. Properties and microstructure of Ti6Al4V by deformation accelerated low temperature
plasma nitriding. Trans. Nonferrous Met. Soc. China 2016, 26, 2609–2616. [CrossRef]

181. Samanta, A.; Bhattacharya, M.; Ratha, I.; Chakraborty, H.; Datta, S.; Ghosh, J.; Bysakh, S.; Sreemany, M.; Rane, R.; Joseph, A.; et al.
Nano- and micro-tribological behaviours of plasma nitrided Ti6Al4V alloys. J. Mech. Behav. Biomed. Mater. 2018, 77, 267–294.
[CrossRef]

182. Feng, W.; Yan, D.; He, J.; Li, X.; Dong, Y. Reactive plasma sprayed TiN coating and its tribological properties. Wear 2005, 258,
806–811. [CrossRef]

183. Proudhon, H.; Savkova, J.; Basseville, S.; Guipont, V.; Jeandin, M.; Cailletaud, G. Experimental and numerical wear studies of
porous Reactive Plasma Sprayed Ti–6Al–4V/TiN composite coating. Wear 2014, 311, 159–166. [CrossRef]

184. Rodríguez, R.J.; García, J.A.; Medrano, A.; Rico, M.; Sánchez, R.; Martínez, R.; Labrugère, C.; Lahaye, M.; Guette, A. Tribological
behaviour of hard coatings deposited by arc-evaporation PVD. Vacuum 2002, 67, 559–566. [CrossRef]

185. Zimmerman, J.H.; Guleryuz, C.G.; Krzanowski, J.E. Fabrication and tribological properties of titanium nitride coatings incorpo-
rating solid lubricant microreservoirs. Surf. Coat. Technol. 2008, 202, 2023–2032. [CrossRef]

186. Guleryuz, C.G.; Krzanowski, J.E. Mechanisms of self-lubrication in patterned TiN coatings containing solid lubricant microreser-
voirs. Surf. Coat. Technol. 2010, 204, 2392–2399. [CrossRef]

187. Tiron, V.; Velicu, I.-L.; Cristea, D.; Lupu, N.; Stoian, G.; Munteanu, D. Influence of ion-to-neutral flux ratio on the mechanical and
tribological properties of TiN coatings deposited by HiPIMS. Surf. Coat. Technol. 2018, 352, 690–698. [CrossRef]

188. Cavaleiro, D.; Veeregowda, D.; Cavaleiro, A.; Carvalho, S.; Fernandes, F. High temperature tribological behaviour of TiSiN(Ag)
films deposited by HiPIMS in DOMS mode. Surf. Coat. Technol. 2020, 399, 126176. [CrossRef]

189. Borgioli, F.; Galvanetto, E.; Galliano, F.P.; Bacci, T. Sliding wear resistance of reactive plasma sprayed Ti–TiN coatings. Wear 2006,
260, 832–837. [CrossRef]

190. Wu, S.; Zhao, Y.; Zhang, L.; Liu, S.; Qin, L.; Liao, B.; Zhang, X.; Chen, L.; Zhang, T. Effect of C doping on structure and properties
of TiAlCrN coatings by filter cathode vacuum arc deposition. Vacuum 2022, 201, 111093. [CrossRef]

191. Tian, B.; Yue, W.; Fu, Z.; Gu, Y.; Wang, C.; Liu, J. Microstructure and tribological properties of W-implanted PVD TiN coatings on
316L stainless steel. Vacuum 2014, 99, 68–75. [CrossRef]

192. Yi, B.; Zhou, S.; Qiu, Z.; Zeng, D.C. The influences of pulsed bias duty cycle on tribological properties of solid lubricating TiMoCN
coatings. Vacuum 2020, 180, 109552. [CrossRef]

193. Shtansky, D.V.; Sheveiko, A.N.; Petrzhik, M.I.; Kiryukhantsev-Korneev, F.V.; Levashov, E.A.; Leyland, A.; Yerokhin, A.L.;
Matthews, A. Hard tribological Ti–B–N, Ti–Cr–B–N, Ti–Si–B–N and Ti–Al–Si–B–N coatings. Surf. Coat. Technol. 2005, 200, 208–212.
[CrossRef]

194. Zhang, J.; Li, Z.; Wang, Y.; Zhou, S.; Wang, Y.; Zeng, Z.; Li, J. A new method to improve the tribological performance of metal
nitride coating: A case study for CrN coating. Vacuum 2020, 173, 109158. [CrossRef]

195. Cheng, Y.H.; Browne, T.; Heckerman, B. Mechanical and tribological properties of CrN coatings deposited by large area filtered
cathodic arc. Wear 2011, 271, 775–782. [CrossRef]

196. Mo, J.L.; Zhu, M.H. Tribological characterization of chromium nitride coating deposited by filtered cathodic vacuum arc. Appl.
Surf. Sci. 2009, 255, 7627–7634. [CrossRef]

197. Zhang, L.; Shen, Y.-Q.; Zhao, Y.-M.; Chen, S.-N.; Ouyang, X.; Zhang, X.; Liang, H.; Liao, B.; Chen, L. Structure control of
high-quality TiAlN Monolithic and TiAlN/TiAl multilayer coatings based on filtered cathodic vacuum arc technique. Surf.
Interfaces 2023, 38, 102836. [CrossRef]

198. Soleimani, M.; Fattah-alhosseini, A.; Elmkhah, H.; Babaei, K.; Imantalab, O. A comparison of tribological and corrosion behavior
of PVD-deposited CrN/CrAlN and CrCN/CrAlCN nanostructured coatings. Ceram. Int. 2023, 49, 5029–5041. [CrossRef]

199. Ren, Y.; Niu, Y.; Jia, J.; Cao, X.; Zhang, G. Design and tribological performance of CrN/Mo2N/MoSx composite coating in wide
temperature range inspired by oxidation kinetics principle. Tribol. Int. 2023, 180, 108229. [CrossRef]

https://doi.org/10.1016/j.rinp.2021.104132
https://doi.org/10.1016/j.triboint.2023.108562
https://doi.org/10.1016/j.surfcoat.2009.04.005
https://doi.org/10.1016/j.wear.2022.204425
https://doi.org/10.1016/j.ceramint.2020.08.196
https://doi.org/10.1016/j.matchemphys.2022.127149
https://doi.org/10.1016/j.apsusc.2016.06.024
https://doi.org/10.1016/S1003-6326(16)64387-X
https://doi.org/10.1016/j.jmbbm.2017.09.013
https://doi.org/10.1016/j.wear.2004.09.057
https://doi.org/10.1016/j.wear.2014.01.012
https://doi.org/10.1016/S0042-207X(02)00248-8
https://doi.org/10.1016/j.surfcoat.2007.08.038
https://doi.org/10.1016/j.surfcoat.2010.01.012
https://doi.org/10.1016/j.surfcoat.2017.11.048
https://doi.org/10.1016/j.surfcoat.2020.126176
https://doi.org/10.1016/j.wear.2005.04.004
https://doi.org/10.1016/j.vacuum.2022.111093
https://doi.org/10.1016/j.vacuum.2013.04.019
https://doi.org/10.1016/j.vacuum.2020.109552
https://doi.org/10.1016/j.surfcoat.2005.02.126
https://doi.org/10.1016/j.vacuum.2019.109158
https://doi.org/10.1016/j.wear.2011.03.011
https://doi.org/10.1016/j.apsusc.2009.04.040
https://doi.org/10.1016/j.surfin.2023.102836
https://doi.org/10.1016/j.ceramint.2022.10.016
https://doi.org/10.1016/j.triboint.2023.108229


Lubricants 2023, 11, 473 31 of 34

200. Lu, X.; Zhang, C.; Wang, C.; Cao, X.; Ma, R.; Sui, X.; Hao, J.; Liu, W. Investigation of (CrAlTiNbV)Nx high-entropy nitride coatings
via tailoring nitrogen flow rate for anti-wear applications in aviation lubricant. Appl. Surf. Sci. 2021, 557, 149813. [CrossRef]

201. Lu, X.; Zhang, C.; Zhang, X.; Cao, X.; Kang, J.; Sui, X.; Hao, J.; Liu, W. Dependence of mechanical and tribological performance
on the microstructure of (CrAlTiNbV)Nx high-entropy nitride coatings in aviation lubricant. Ceram. Int. 2021, 47, 27342–27350.
[CrossRef]

202. Yang, Q. Wear resistance and solid lubricity of molybdenum-containing nitride coatings deposited by cathodic arc evaporation.
Surf. Coat. Technol. 2017, 332, 283–295. [CrossRef]

203. Hudec, T.; Mikula, M.; Satrapinskyy, L.; Roch, T.; Truchlý, M.; Švec, P.; Huminiuc, T.; Polcar, T. Structure, mechanical and
tribological properties of Mo-S-N solid lubricant coatings. Appl. Surf. Sci. 2019, 486, 1–14. [CrossRef]

204. Fenker, M.; Balzer, M.; Kellner, S.; Polcar, T.; Richter, A.; Schmidl, F.; Vitu, T. Formation of Solid Lubricants during High
Temperature Tribology of Silver-Doped Molybdenum Nitride Coatings Deposited by dcMS and HIPIMS. Coatings 2021, 11, 1415.
[CrossRef]

205. Gustavsson, F.; Jacobson, S.; Cavaleiro, A.; Polcar, T. Ultra-low friction W–S–N solid lubricant coating. Surf. Coat. Technol. 2013,
232, 541–548. [CrossRef]

206. Chetcuti, R.; Dearnley, P.A.; Mazzonello, A.; Buhagiar, J.; Mallia, B. Tribocorrosion response of duplex layered CoCrMoC/CrN
and CrN/CoCrMoC coatings on implant grade 316LVM stainless steel. Surf. Coat. Technol. 2020, 384, 125313. [CrossRef]

207. Wang, J.; Han, B.; Chen, Z.; Wang, C.; Li, Y.; Neville, A.; Morina, A. Investigation on the Tribological Properties of FeS, Cu2S,
MoS2, and WS2 Sulfide Films Under Water Lubrication. Tribol. Trans. 2023, 66, 551–564. [CrossRef]
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