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Abstract: In recent years, research on bearing fault modeling has witnessed significant advancements.
However, the modeling of bearing faults using digital twins (DTs) remains an emerging area of
exploration. This paper introduces a bearing digital twin developed by integrating a signal-based
response model with reinforcement learning techniques. Initially, a signal-based model is constructed,
comprising a unit fault impulse function and a decay oscillation function. This model illustrates the
bearing’s acceleration response under fault conditions and acts as the environmental component
within the bearing digital twin. Subsequently, a parameter estimation process identifies two critical
parameters from the signal-based model: the load proportional factor and the decaying constant. The
Deep Deterministic Policy Gradient (DDPG) algorithm is employed as the agent for online learning
of these parameters. The cosine similarity metric is employed to define the state and reward by
comparing the real acceleration measurements with the simulation data generated by the digital twin.
To validate the effectiveness of the digital twin, experimental data sourced from the three datasets
are utilized. The results underscore the digital twin’s capacity to faithfully replicate the bearing’s
acceleration response under diverse conditions, demonstrating a high degree of similarity in both the
time and frequency domains.

Keywords: bearing digital twin; signal-based response model; envelope spectrum; reinforcement
learning; Deep Deterministic Policy Gradient (DDPG)

1. Introduction

Rolling element bearings serve as critical components within rotating machinery,
exerting significant influence over the overall performance of the machine. Modeling
techniques are commonly employed to simulate the dynamic behavior of the bearings.
Technically, mechanism-based and signal-based methods find extensive application for
simulating the vibration response of rolling element bearings under both normal and fault
operating conditions [1,2].

The mechanism-based model is formulated through the derivation of force and mo-
ment balance equations based on Hertz contact theory. In 1985, S. Fukata introduced an
initial dynamic model featuring a two degrees of freedom (2-DoF) configuration, rooted in
Hertz contact theory [3]. The research undertaken by the Tiwari group expanded upon this
concept, exploring the dynamics of balanced and unbalanced rotors supported by rolling
element bearings, thereby characterizing them as nonlinear systems [4,5]. Subsequently,
S. Sopanen presented a more comprehensive bearing dynamics model that encompasses
the influence of various geometric defects, such as surface roughness, surface waviness,
as well as partial and distributed defects, thereby enhancing the fidelity of the bearing
model [6,7]. Nevertheless, it is worth noting that the mechanism-based model exhibits
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certain limitations. This endeavor necessitates a profound understanding of both kinemat-
ics and dynamics, resulting in the construction of a notably intricate model. Furthermore,
this complexity is compounded by the presence of numerous unmeasured parameters that
demand identification. This not only hinders modeling efficiency but also elevates the
complexity of real-time parameter identification.

In contrast to the mechanism-based model, the signal-based model boasts a simpler
structure and a reduced number of parameters requiring identification. The signal-based
modeling places its emphasis on the representation of vibration signals. McFadden and
Smith have previously developed a model to describe the high-frequency vibration gen-
erated by a single point defect on the inner race under radial load [8], and subsequently
extended this model to encompass the vibration produced by multiple point defects [9].
Additionally, Mohammadi introduced a method for detecting multiple defects in bearings
based on the time constant within the envelope detector. This technique is employed to
discern the characteristic pattern of amplitude variations in defect frequency harmonics
within the frequency domain [10]. Various bearing fault characteristics can theoretically
be simulated with the same model structure, while the signal-based model exhibits a
marginally lower level of accuracy when compared to the mechanism-based model, it
compensates with its remarkable modeling efficiency. This heightened efficiency enables
the real-time identification of parameters.

As a burgeoning modeling approach, the digital twin possesses the capability to repli-
cate a system using physical information and data gathered from sensors. This capability
renders it suitable for application in signal-based modeling. Digital twin applications in
bearings have yielded notable outcomes, encompassing three primary avenues: dynamics
modeling, fault classification, and remaining useful life prediction. Qin [11] integrated the
back-propagation neural network with the digital twin framework to construct a bearing
model capable of simulating the life cycle vibration signals. Addressing the challenge of lim-
ited data in bearing fault diagnosis, Zhang [12] proposed an innovative digital-twin-driven
approach featuring a transformer-based network and a selective adversarial strategy. This
approach achieved an 80% accuracy in identifying various types of rolling bearing faults.
Xiao [13] introduced a pioneering joint transfer network designed for unsupervised bearing
fault diagnosis. This network facilitates knowledge transfer from the simulation domain to
the experimental domain. Feng [14] devised an innovative digital-twin-enabled domain
adversarial graph network (DTDAGN) that exclusively relies on the structural parameters
of bearing dynamics. This novel approach is complemented by a transfer learning frame-
work based on graph convolutional networks. Piltan [15] harnessed machine learning and
intelligent digital twins to classify bearing faults and determine crack sizes. Remarkably,
accuracy rates of 99.5% and 99.6% were achieved, respectively. Zhang [16] employed the
integrated learning CatBoost method to construct a digital twin dataset and utilized fusion
features for the life prediction of rolling bearings. Zhao [17] introduced a hybrid approach
that combines virtual and real aspects of a bearing digital twin. This approach is based
on a modified CycleGAN (generative adversarial network) and Wasserstein distance. It
demonstrates the ability to predict the life of rolling bearings with a minimal mean absolute
error (MAE) of 0.13.

Updating the model and parameters represents a crucial aspect in the research of
digital twin models for diagnosis and prognosis. In the realm of applying digital twin
to diagnose faults in rotating machinery, Wang presented a fault diagnosis framework
empowered by digital twin technology [18]. In this framework, model updating is concep-
tualized as an optimization challenge, and it is addressed by employing the particle swarm
optimization technique to achieve real-time updates. Aivaliotis [19] employed periodic
estimation of modeling parameters utilizing the nonlinear least squares method. Similarly,
Xu [20] introduced a novel machine learning technique known as deep transfer learning.
This approach exhibits the capability to accurately forecast the evolution of performance
during the initial stages of actual manufacturing and to adapt to new working conditions
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swiftly. Inspired by this intriguing concept, this paper contemplates the utilization of a
reinforcement learning algorithm for model updating.

Drawing insights from the aforementioned literature, it becomes apparent that con-
ventional physics-based modeling approaches can leverage intricate mechanisms and
structures to establish highly precise models with commendable interpretability and gen-
eralizability. Nonetheless, the drawback of these methods lies in their inefficiency due to
the requirement of identifying a substantial number of parameters. In contrast, models
founded on signal response remedy this inefficiency by adopting a simpler structure and
necessitating the identification of fewer parameters. Recognizing this advantage, this study
introduces a lightweight bearing digital twin centered around the signal response. The
primary objective of this digital twin is to strike a balance between modeling accuracy and
efficiency. This is achieved by swiftly identifying a limited number of essential parameters
while maintaining interpretability by applying straightforward mechanisms.

• A bearing digital twin is created by fusing a signal-based model with reinforcement
learning techniques. The signal-based model is specifically designed to discern and
characterize the bearing’s vibration response, encompassing both normal operating
conditions and fault scenarios. DDPG is employed to acquire proficiency in learning
two crucial parameters integral to the signal-based model. This framework enables the
continuous refinement and enhancement of the bearing digital twin by incorporating
real-world measurement data.

• The effectiveness of the digital twin is assessed using experimental data obtained from
the three datasets. The envelope spectrum error is employed as a metric to compare
the acceleration data derived from the physical test bench with that generated by the
digital twin. The outcomes of these comparisons unequivocally affirm the viability
and soundness of the proposed framework.

The subsequent sections of this paper are organized as follows: Section 2 elucidates
the signal-based model devised for capturing bearing vibration responses. In Section 3,
the intricate process of bearing digital twin construction is explored, leveraging the signal-
based model and incorporating reinforcement learning techniques. Section 4 provides
comprehensive insights into the test bench setup and the acquisition of experimental data,
which are subsequently used for validation. Section 5 conducts a meticulous analysis of
the obtained results. Ultimately, in Section 6, this paper concludes by summarizing the
research’s key findings and contributions.

2. Vibration Response Modeling for Bearing with Defects

In this section, a signal-based model will be constructed to analyze bearing responses
under fault conditions, serving as the basis of the bearing digital twin. Broadly, the signal-
based model integrates various functions to depict the acceleration response characteristics
and dynamics of the bearing. These functions encompass load distribution, fault impulse
decay, defect-induced vibration, defect localization, and defect width. Subsequently, the
modeling theory and process will be introduced in the following sections.

2.1. Modeling for Load Distribution

The load directly determines the bearing’s vibration response. According to Stribeck,
the load around the circumference of a rolling element bearing under radial load can be
defined as [21]:

Q(ψ) = a ·Qmax[1−
1
2ε

(1− cos ψ)]n, (1)

where a is the load proportional factor, Qmax is the maximum load intensity, ε is the load
distribution factor, ψ is the angle between the defect and the line of application of load. n is
the bearing type factor, with n = 3

2 for ball bearings and n = 10
9 for roller bearings.
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2.2. Modeling for Fault Impulse Decay

When a bearing exhibits a defect, a sequence of impulses arises as the rolling element
traverses the affected area. These impulses undergo continuous oscillation and attenuation
owing to the inherent spring and damping characteristics. To capture the vibration response
characteristics of the bearing, an approach employing a unit fault impulse function along
with a corresponding decay oscillation function is utilized.

2.2.1. Unit Fault Impulse

The assumptions of building unit fault impulse under a certain radial load are as
follows. Firstly, it assumes that at t = 0, the defect is positioned at ψ = 0, and one of the
rolling elements enters into the defect zone, which means an impulse occurs exactly at
t = 0. Secondly, it assumes that the impacts are produced under a unit load distributed
uniformly around the bearing. Hence, the vibration produced by the defect can be modeled
as an infinite series of impulses with equal amplitude. The unit fault impulse function d(t)
is given by:

d(t) = d0

∞

∑
k=−∞

δ(t− kTd), (2)

where δ(t) stands for the Dirac delta unit impulse function, d0 represents the severity of
the defect, and Td is the time period between the fault impulses. The number of repeated
cycles k within one measurement sample can be derived as follows:

k = f loor(
ts
1
fd

), (3)

where ts is the measurement duration of one sample, and fd represents the defect frequency,
which can be substituted by different defect frequencies, such as for the outer race ( fBPFO),
inner race ( fBPFI), cage ( fFTF), and ball fault ( fBSF).

2.2.2. Decay Oscillation of Fault Impulse

The bearing can be conceptualized as a mass-spring-damping system, where the
vibrational impulse resulting from an impact within the defect zone gradually diminishes
over time. Hence, the oscillation of the fault impulse can be effectively modeled by the
integration of an amplitude function a(t) and an exponential decay function e(t). The
amplitude function is given by a sinusoidal function, as shown in Equation (4):

a(ψ) = a0 · cos(ψ) = a0 · cos(2π fnt), (4)

in which a0 represents the actual load applied onto the bearing, and fn is the bearing system
resonance frequency. The exponential function is given by

e(t) = e−Bt, (5)

where B is the decaying parameter. This determines the decay rate of the impulse and also
represents the bearing fault dynamics. Finally, the decay oscillation kd(t) of fault impulse
can be defined as the product of an amplitude function a(ψ) and an exponential decay
function e(t), as follows:

kd(t) = a(ψ) ∗ e(t). (6)

2.3. Modeling for Bearing Defect Vibration

By incorporating the effects of bearing load distribution Q(ψ), unit fault impulse d(t),
and decay oscillation of the fault impulse a(t) and e(t), the vibration signal produced by
bearing with defects can be reconstructed, as shown in Equation (7):

v(t) = [d(t) ·Q(ψ) · a(ψ)] ∗ e(t). (7)
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Since ψ can be substituted by 2π fnt, the response model can be rewritten, as shown in
Equation (8):

v(t) = [d(t) · q(t) · a(t)] ∗ e(t), (8)

in which all the parameters can be expressed in the time domain. Besides the general model
for vibration signals produced by bearing with defect, this study will also address the
modeling of fault position and fault size.

2.4. Modeling for Defect Position

Regarding the modeling of fault positions, it is essential to address distinct scenarios
for different bearing components. In the case of the outer ring, typically fixed within
the housing, the fault position remains stationary at its initial location, as denoted by
Equation (9). Conversely, the inner race, which rotates with the shaft, introduces a variable
fault position, as described in Equation (10). Similarly, when a fault occurs on the rolling
elements, their positions also change due to their rotation, albeit at different frequencies.
This variation is expressed in Equation (11), where fr represents the shaft rotation frequency,
and fB denotes the revolution frequency of the rolling elements.

ψOR(t) = ψinitial, (9)

ψIR(t) = (ψinitial(t) + 2π frt) mod 2π, (10)

ψB(t) = (ψinitial(t) + 2π fBt) mod 2π. (11)

2.5. Modeling for Defect Length

When the ball goes through the entry and exit points, impulses will be generated. As
a result, a time lag ∆t between these two impulses can be observed when the defect length
is noticeable. In this subsection, the time lag will be modeled.

As shown in Figure 1, the angle formed by entry point A, the center of ball O, and
exit point B are defined as θ. The distance between entry point A and exit point B is the
length of the defect and is approximately a straight line when θ is very small. The angle
between OC and OB is θ

2 . When the angle is small enough, the relationship between the
angle, radius, and the length of defect can be formulated as Equation (12):

θ = sin(θ) = 2×
AB
2

OB
. (12)

Consequently, the period between the rolling balls entering and leaving the defect
zone can be calculated as follows:

∆t =
θ

2π fBPFO
, (13)

where fBPFO is the defect frequency of outer race. With the combination of Equations (12) and (13),
the time lag of going through the defect can be generally identified as

∆t =
L

2π fd × r
, (14)

where L is the defect length, fd is the defect frequency, and r is the radius. For inner race
fault, r can be replaced by rinner and fd by fBPFI. Likewise, for ball fault, the r and fd should
be updated with rball and fBSF, respectively.
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Figure 1. A rolling element traveling into the defect zone located on the outer raceway [22].

3. Bearing Digital Twin Construction Based on Reinforcement Learning

After establishing the response model of bearing under different fault conditions, the
next step is to combine it with reinforcement learning to build a bearing digital twin model.

3.1. Bearing Digital Twin Construction

A digital twin encompasses both physical and virtual domains and delineates the
connection or interface between these realms [23]. The behavior of the physical system is
subject to alteration based on various factors, including geometrical configurations, ma-
terial attributes, process variables, operational states, and environmental surroundings.
Constructing a digital twin model relies on integrating physical data and sensor measure-
ments, which can be categorized into two core components: physics-based modeling and
parameter refinement. The objective of model refinement is to minimize the discrepancy
between the dynamic response predicted by the digital twin and the real-time response
observed in the physical system.

Figure 2 presents the main procedure for constructing a bearing digital twin. Generally,
it includes six steps, as follows:

(1) The data obtained from the test bench necessitate thorough analysis, and it is impera-
tive to establish the specific conditions under which these data were collected. The
condition parameters governing the digital twin, such as the test bearing’s specifica-
tions, operational settings, and defect definitions, should align precisely with those
employed in the actual test bench.

(2) The digital twin model will be set up based on the signal-based model. The parameters
within this digital twin model can be categorized into two distinct parts: those that are
predefined and those that remain unknown. The predefined parameters are derived
from the previous step, while the unknown parameters are subject to updates as part
of our model updating strategy.

(3) The data obtained from both the test bench and the digital twin will undergo initial
pre-processing. Following this, an envelope spectrum analysis will be performed to
establish the foundation for the cost function.

(4) This cost function will then be computed to quantify the disparity between the data
derived from the test bench and those from the digital twin.

(5) Reinforcement learning will identify the unknown parameters.
(6) The values of unidentified parameters will be incorporated into the digital twin.

Each episode will go through step (2)–step (6) until the error between the test bench
and the digital twin is as small as expected.
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Figure 2. Bearing digital twin structure.

3.2. Analysis of Parameters to Be Identified

After introducing the construction of the bearing digital twin, it becomes evident that
the updated parameters hold a pivotal role. In this subsection, an analysis will be conducted
to determine the parameters requiring updates. The vibration response model generally
comprises two primary components: one for load distribution and another for fault impulse
decay. The parameters selected for identification will be drawn from these two functions.
More specifically, the load proportional factor a plays a critical role in modeling load
distribution, defining the range of load distribution around the bearing’s circumference.
For a visual representation, please refer to Figure 3, which displays the envelope spectra
derived from the vibration response signals under varying load proportional factors.

Figure 3. Envelope spectra under different load factors.
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We can find that the load proportional factor affects the modeling results directly. In
the envelope spectrum, the amplitudes at fault peaks will be magnified 100 times when the
load proportional factor changes from a = 0.001 to a = 0.1. Therefore, the load proportional
factor can be selected as a parameter for the digital twin’s online updating. Additionally,
the decaying parameter B is crucial for modeling the decay of fault impulse. It affects the
decaying rate of the fault impulse. Generally, a large value of B will cause the fault peaks to
decay quickly. Otherwise, a small value of B will slow the decaying process. Based on the
above analysis, a and B will be selected as the updated parameters in the bearing digital
twin model.

3.3. Deep Deterministic Policy Gradient (DDPG)

Once the signal-based model and the relevant parameters have been established, the
subsequent crucial step involves devising an appropriate method for parameter identifi-
cation. In this study, DDPG is employed as the strategy for updating the bearing digital
twin model. DDPG is theoretically derived from Policy Gradient (PG) and its extension,
Deterministic Policy Gradient (DPG). Unlike DPG, a core enhancement in DDPG is utilizing
a convolutional neural network (CNN) instead of the traditional policy structure and value
function. Furthermore, these networks are trained using deep learning techniques. For a
comprehensive view of the DDPG structure and algorithm, please refer to Figure 4, which
illustrates the nine main steps summarized in Algorithm 1.

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q and actor network µ with weights θQ and θµ.
Initialize target network Q′ and µ′ with weights θQ′ ← θQ θµ′ ← θµ.
Initialize replay buffer R.
for episode = 1: M do

Initialize a random process N for action exploration.
Receive initial observation state s1.
for t = 1: T do

Select action at = µ(st|θµ) +Nt according to the current policy and exploration
noise.

Execute action at and observe reward rt and observe new state st+1.
Store transition (st, at, rt, st+1) in R.
Sample a random mini-batch of N transitions (si, ai, ri, si+1) from R.
Set target yi = ri + γQ′(si+1, µ′(si+1|θµ′)|θQ′).
Update critic network by minimizing the loss: L = 1

N ∑i(yi −Q(si, ai|θQ))2.
Update the actor policy network using the sampled gradient:
5θµ µ|si ≈ 1

N ∑i5aQ(s, a|θQ)|s=si ,a=µ(si)
5θµ µ(s|θµ)|si .

Update the target networks:
θQ′ ← τθQ + (1− τ)θQ′ ,
θµ′ ← τθµ + (1− τ)θµ′ .

end for
end for
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Figure 4. Structure of DDPG.

3.4. Parameters Identification Based on DDPG

The previous sections introduce the DDPG algorithm and the structure of bearing
digital twin. This section will focus on the application of DDPG into digital twin in detail.

3.4.1. Training Environment

The reinforcement learning algorithm has five main elements: agent, environment,
state, reward, and action. Their interactions within the DDPG-based bearing digital twin
are illustrated in Figure 5.

Figure 5. Structure of bearing digital twin’s parameters identification based on DDPG.

The agent is the DDPG algorithm, the environment is set up based on bearing digital
twin, and the actions are the parameters to be identified: load proportional factor a and
decaying parameter B. Both state and reward are defined based on the cost function (C).
Specifically, the state is defined as the value of C, while the reward is defined as a piece-wise
function of C, as follows:
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Reward =

{ −100× C C > Cmax,
−10× C Cmin < C < Cmax,
10
C C < Cmin,

(15)

where Cmin and Cmax are the lower and upper limits of the cost function defined by the user.
This particular reward function is defined based on the mechanism. Firstly, segmentation
is required, as it allows for quicker convergence in regions with larger errors. Secondly,
specific coefficients for each segment are selected using the trial-and-error method. In the
following, the construction of the cost function will be introduced.

3.4.2. Cost Function Construction

The construction of the cost function holds particular significance as it directly influ-
ences the definitions of state and reward. In this context, the load proportional factor and
decaying parameter play a crucial role in shaping the time-domain response of the digital
twin. Consequently, the cost function is formulated based on the time domain. To facilitate
the training and validation of the digital twin, this study utilizes data spanning a complete
fault period. However, before proceeding, the data necessitate pre-processing. The number
of data points within one defect period (Ls) can be calculated with defect frequency and
sampling rate, as follows:

Ls = ceil(
1
fd
× fs), (16)

where fd is the corresponding defect frequency, fs is the sampling rate, and ceil stands for
the upward rounding function. The maximum value in one defect period has the strongest
possibility of being the fault peak. Then, both simulated and test data could be aligned
through locating the position of the fault peak. Moreover, only the positive values of the
data will be used for cost function calculation.

Regarding the cost function, it is constructed based on cosine similarity, which is
a measure of similarity between two non-zero vectors. The cosine similarity is defined
as follows:

cos(θ) =
~bsim · ~breal

|| ~bsim|| × || ~breal||
, (17)

where ~bsim and ~breal are two vectors, which will be substituted by simulated data and
test data here. θ is the angle between them. When ~bsim and ~breal are two vectors with
n-dimensions, like ~bsim = [bsim,0, bsim,1, ..., bsim,n] and ~breal = [breal,0, breal,1, ..., breal,n], the
cosine similarity between them should be calculated by every two adjacent points and
then averaged over all the cosine similarities. The average value is regarded as the cosine
similarity of these n-dimensional vectors. It can be expressed as:

cos < ~bsim, ~breal >=

n
∑

i=1

(bsim,i−1,bsim,i)·(breal,i−1,breal,i)
||(bsim,i−1,bsim,i)||×||(breal,i−1,breal,i)||

n
, (18)

where vectors ~bsim and ~breal are simulated data and test data with n-dimensions, respectively.
Finally, the cost function based on cosine similarity can be constructed as follows:

C = 1− cos < ~bsim, ~breal > . (19)

3.4.3. Parameters Setting for DDPG

DDPG algorithm is developed based on the actor–critic method. Both the actor and
critic adopt CNN in DDPG. Figure 6 illustrates the structure of the critic and actor networks
in bearing digital twin.
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(a) Critic network structure. (b) Actor network structure.

Figure 6. Critic and actor-network structure of DDPG.

The configuration of the critic network is detailed in Table 1, while the actor network’s
setup is summarized in Table 2. Several key parameters deserve attention. Firstly, there is
a notable disparity in the learning rates between the actor and critic networks. Typically,
the critic network employs a learning rate approximately an order of magnitude larger
than that of the actor network. For example, if the critic network’s learning rate is set to
1 ×10−3, then it is advisable to set the actor network’s learning rate at 1 × 10−4. This choice
is motivated by the fact that the gradient used to update the actor network is derived from
the critic network. Secondly, a gradient threshold is introduced as a parameter. Lastly, L2
regularization is employed, introducing a penalty term into the cost function to enhance
model robustness, mitigate overfitting, and improve overall accuracy. Specific values for
these parameters are provided in Table 3. In addition to neural network parameters and
regulations, agent settings are also outlined in Table 4.

Table 1. Parameters of DDPG critic network.

Network Layer Matlab Network Layer Number of Inputs

Observation Feature input layer 1
CriticStateFC1 Fully connected layer 30

CriticRelu1 Relu layer /
CriticStateFC2 Fully connected layer 30

Action Feature input layer 2
CriticStateFC2 Fully connected layer 30

Add Addition Layer 2
CriticCommonRelu Relu layer /

CriticOutput Fully connected layer 1

Table 2. Parameters of DDPG actor network.

Network Layer Matlab Network Layer Number of Inputs

Observation Feature input layer 1
ActorStateFC1 Fully connected layer 25

ActorRelu1 Relu layer /
ActorStateFC2 Fully connected layer 2
ActionTanh1 Tanh layer /
ActorScale1 Scaling layer /
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Table 3. Parameters of DDPG neural network.

Parameters Reference Values

Learning rate of critic network 1 × 10−3

Learning rate of actor network 1 × 10−4

Gradient threshold 1
L2regularization factor 1 × 10−4

Table 4. Parameters of DDPG agent.

Parameters Reference Values

Experiment buffer length 1 × 10−3

Discount factor 0.99
Mini batch size 128

4. Experimental Datasets and Data Processing

After the bearing digital twin has been built, the next step is to validate the model
with experiment data. In this section, the test bench used for validation and necessary data
pre-processing are introduced.

4.1. Introduction of Bearing Datasets

We employ the Case Western Reserve University (CWRU) dataset as a prime illus-
tration to elucidate the intricate procedures entailed in data processing and meticulous
experimental validation [24]. Additionally, to provide further validation of the proposed
method’s effectiveness, we conducted comparative experiments employing the Society for
Machinery Failure Prevention Technology (MFPT) dataset [25] and the Paderborn Univer-
sity (PU) dataset [26]. Table 5 summarizes the bearing specifications of these datasets.

Table 5. Bearing specifications of different datasets.

Dataset CWRU MFPT PU

Number of rolling elements 9 8 8
Rolling element diameter (mm) 7.94 0.235 6.75

Pitch diameter (mm) 39.04 1.245 28.55
sample rate (kHz) 12.0 48.8 64.0

As shown in Figure 7, the bearing test bench from CWRU consists of an electric motor,
a torque transducer/encoder, a dynamometer, and control electronics. The test bearing
connects with the shaft. Table 5 summarizes the bearing specifications. The dataset from
the drive end of the motor is collected using accelerometers. There are three bearing defect
types: inner race fault, ball fault, and outer race fault. Each bearing fault type has four
different fault diameters (0.1778 mm, 0.3556 mm, 0.5334 mm, and 0.7112 mm) and four
different motor working loads (745.7 W, 1491.4 W, 2237.1 W, and 2982.8 W).
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Figure 7. Bearing test bench from CWRU.

4.2. Loss Function Based on Envelope Spectrum

Envelope spectrum analysis is an essential tool for bearing diagnostics, from which
the unique resonant frequency can be isolated from vibration signals. Thus, the envelope
spectrum reveals the repetition frequency of the impulse response series, and the repetition
frequency is the bearing fault frequency. The theoretical value of fault frequencies can be
calculated as follows, with fBPFO, fBPFI, fFTF, and fBSF for the outer race, inner race, cage,
and ball fault, respectively [27]:

fBPFO =
n fr

2
(1− d

D
cos θ), (20)

fBPFI =
n fr

2
(1 +

d
D

cos θ), (21)

fFTF =
fr

2
(1− d

D
cos θ), (22)

fBSF =
D fr

2d
(1− [

d
D

cos θ]2), (23)

where n is the number of rolling elements, fr is the shaft frequency, θ is the initial contact
angle. d and D are the ball diameter and pitch diameter of a bearing, respectively.

To verify the performance of the digital twin, an essential validation function is
defined based on the envelope spectrum. The amplitude and frequency serve as two critical
indicators within envelope spectrum analysis after normalization, considering their typical
differences in scale [28]. The normalization of amplitudes is subtracting their mean value
from the amplitudes of its first five orders and then dividing them by the standard deviation.
As given in Equation (24), where AFF stands for the amplitudes at fault frequencies, as
shown with the three red circle positions in Figure 8, Aµ is the mean amplitude of the first
five orders, and σA is their standard deviation.

A′FF =
AFF − Aµ

σA
. (24)

The normalization of frequency is to divide the actual defect frequencies of the first five
orders by the theoretical defect frequencies of the fifth order, as formulated in Equation (25):

f
′
i =

fi
ftheo × norder

, (25)

where fi is the i-th order of actual fault frequency obtained from the envelope spectrum,
ftheo represents the first order of theoretical defect frequency, and norder is the highest order
of peak, defined as 5 in this study. After the normalization of amplitudes and frequencies,
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the deviation between the physical system and the digital twin can be calculated by
constructing a validation function:

V( f ) =
1
n
·

n

∑
i=1

(|Ai
real − Ai

sim|2 + |Fi
real − Fi

sim|2), (26)

where Ai
real and Ai

sim represent the amplitude of the i-th order fault peak from the test bench
and digital twin, respectively. Fi

real and Fi
sim are the frequency of i− th order fault peak from

the test bench and digital twin. This function is employed to evaluate the performance of a
digital twin model by quantifying the error in the envelope spectrum when compared to the
real measurements obtained from the test bench. The error is determined by comparing the
peak information of the digital twin’s simulated data with the test data from the physical
system. This error calculation will be refined as the model updates. A digital twin can
be considered a suitable substitute for the physical system when the error approaches
zero. Conversely, when the error value becomes significantly large, the digital twin model
necessitates revision.

Figure 8. Inner race fault defect frequencies of first five orders.

5. Results and Analysis

This section presents the training results of the bearing digital twin. The test data
consist of measurement samples obtained from the CWRU dataset, encompassing defects
on the outer ring, inner ring, and ball components. These data were acquired with a
sampling frequency of 12,000 Hz from the drive end under a load of 745.7 W, while the
motor operated at a speed of 1772 rpm.

The selected actions consist of the load proportional factor a and the decaying parameter
B. The allowable ranges for these two parameters are defined through the output layer of the
actor network, specifically set as [0.001, 0.1] and [100, 400], respectively. The training process
commences with the dataset sample containing an outer ring defect. At each step, a random
value within the same data sample is initiated, and subsequently, the error between the
test data and their corresponding simulated data is calculated. Each episode encompasses
80 such steps. The resulting agent undergoes training across 120 episodes and can be
effectively applied in diverse environments. To ascertain the agent’s ability to make accurate
selections in alternative scenarios, the agent, initially trained on data involving outer ring
faults, will be evaluated within environments featuring inner ring and ball defects.

Based on the training results involving states, which represent errors calculated using
the cosine similarity cost function, the process entails selecting the smallest state value and
subsequently identifying its corresponding action values. These action values are then
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integrated into the digital twin model. Table 6 displays the step numbers associated with
the minimum states and their corresponding values, which have been acquired through
reinforcement learning. Concurrently, Table 7 provides an overview of the corresponding
actions. Figure 9 depicts the learning trajectory of the load proportional factor, denoted
as ’a,’ and the decaying parameter B. Meanwhile, Table 8 illustrates the minimum mean
error achieved through digital twin training and the calculated mean error resulting from
the trained actions. Notably, it is evident that following the identification of the load
proportional factor a and decaying parameter B through the DDPG algorithm, the disparity
between the simulation data and accurate measurements is greatly reduced.

Upon careful examination of Tables 6 and 8, it becomes apparent that the errors ob-
tained through digital twin training do not precisely align with the theoretical errors. This
discrepancy may be attributed to two key factors. Firstly, an agent trained within a spe-
cific environment excels within that environment, resulting in the lowest error percentage
when applied to outer ring defect data. Introducing a new environment may potentially
impact the performance of the pre-trained agent. Secondly, the initial point of each episode
and each step within an episode is characterized by random, unknown values. Conse-
quently, the data employed for comparison and validation differ from those utilized in the
DDPG process.

Table 6. Optimal states in training of DDPG.

Defect Type Step of Minimum State Minimum State Value

Outer race 66 0.3203
Inner race 47 0.3130

Ball 23 0.3180

Table 7. Optimal actions identified by DDPG.

Defect Type Load Proportional Factor a Decaying Parameter B

Outer race 0.0262 273.5928
Inner race 0.0264 273.0613

Ball 0.0263 272.9066

Table 8. Validation results based on cosine similarity.

Defect Type Error from DT Theoretical Error

Outer race 0.3203 0.2375
Inner race 0.3130 0.2098

Ball 0.3108 0.1123

(a) Load proportional factor. (b) Decaying parameter.

Figure 9. Training results of digital twin under different environments.
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After training, the digital twin model can generate the acceleration response of the
bearing under various fault conditions. Figure 10 compares the acceleration data produced
by the digital twin and that obtained from the CWRU test bench in both the time and
frequency domains. In Figure 10a, “test data” refers to the actual measurement data from
the bearing test bench, while “simulated data” signifies the data generated by the digital
twin. It is evident that the data generated by the digital twin closely resemble the actual
measurement data in terms of overall trends and local features.

(a) Outer ring defect—time domain. (b) Outer ring defect—frequency domain.

(c) Inner ring defect—time domain. (d) Inner ring defect—frequency domain.

(e) Ball defect—time domain. (f) Ball defect—frequency domain.

Figure 10. Training results of digital twin (time domain and frequency domain).

Figure 10b compares the frequency domain. Notably, the digital twin accurately
captures the fault frequency of the actual measurement sample. However, significant
disparities are observed in the time domain of simulated signals. Several factors may
contribute to amplitude deviations. Firstly, noise in the actual measurements can influence
the envelope spectrum, a factor not addressed in the digital twin model. Secondly, dis-
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crepancies in the identification of parameters a and B can lead to variations in response
amplitude. Lastly, the simplified signal-based model may not fully represent the intricate
dynamics of a real bearing test bench. These same observations and conclusions apply to
the acceleration data generated by the digital twin for inner race faults and ball faults.

We conducted ablation experiments using the hyperparameters listed in Table 9 as
the baseline configuration. The impact of these hyperparameters on the digital twin can
be assessed through the experimental outcomes presented in Table 10. Among the four
parameters, the spectrum error exhibits the highest sensitivity to variations in the discount
factor, followed by the mini-batch size. Specifically, their respective average errors reach
between 0.5904 and 0.5633, while the average errors observed in other models fall within
the range of 0.5503–0.5576.

As the discount factor gradually approaches unity, the standard deviation (SD) of
the spectrum error increases, aligning with the trend of error changes associated with the
maximum step number. Notably, the samples generated by the baseline model exhibit
minimal mean error and relatively low standard deviation compared to the actual samples.
This finding substantiates the optimality of the parameters listed in Table 9 for the proposed
bearing digital twin.

Table 9. Hyperparameters used in digital twin as baseline.

Parameter Mini-Batch Size Discount Factor Experience bBuffer Size Max. Steps

Value 128 0.99 1 × 106 80

Table 10. Spectrum error in ablation experiment results.

Hyperparameter Max. Min. Mean SD

Mini-batch size

32 0.8884 0.5477 0.5633 0.0369
64 0.5671 0.1082 0.5529 0.0503

128 0.5996 0.4550 0.5519 0.0158
256 0.5704 0.2257 0.5538 0.0374

Discount factor

0.93 0.5985 0.3459 0.5904 0.0276
0.95 0.5984 0.3459 0.5903 0.0276
0.97 0.8533 0.5552 0.5671 0.0324
0.99 0.5996 0.4550 0.5519 0.0158

Experience buffer size

1 × 105 0.5704 0.1256 0.5532 0.0484
1 × 106 0.5996 0.4550 0.5519 0.0158
1 × 107 0.5669 0.0003 0.5510 0.0622
1 × 108 0.5765 0.1032 0.5503 0.0325

Max. steps

60 0.5705 0.4832 0.5576 0.0110
80 0.5996 0.4550 0.5519 0.0158

100 0.5635 0.2992 0.5553 0.0260
120 0.5704 0.4459 0.5576 0.0119

Baseline 0.5996 0.4550 0.5519 0.0158

The MFPT dataset and the PU dataset are used for comparative experiments. The
results are shown in Table 11. In the case of the MFPT dataset, the average error consistently
remains below 0.9250. Notably, the SD of the error for the outer race is markedly lower
than that for the inner race, a pattern analogous to the findings in the CWRU dataset. When
employing the PU dataset, the average error consistently remains below 0.1741, surpassing
the performance observed with the CWRU dataset. Moreover, the SD of the errors exhibits
a comparable range. These results collectively indicate that the utilization of the PU and
MFPT datasets leads to reductions in both the mean and standard deviation of errors. It is
reasonable to infer that this improvement can be attributed to the higher sampling frequency,
enabling a more faithful representation of the bearing’s true dynamic characteristics. This
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observation serves to validate the effectiveness of the proposed methodology across diverse
bearing datasets.

Table 11. Spectrum error in modeling using different datasets.

Dataset Speed (rpm) Fault Type fd (Hz) Mean Error SD a B

CWRU 1772 Outer race 105.66 0.5919 0.0158 0.026 274
Inner race 160.11 1.0304 0.1164 0.026 273

MFPT 1500 Outer race 81.12 0.7616 0.0261 0.014 389
Inner race 118.88 0.9250 0.1019 0.014 239

PU 900 Outer race 45.81 0.1741 0.0684 0.007 412
Inner race 74.19 0.1619 0.0743 0.008 618

6. Summary and Conclusions
6.1. Work Summary

Modeling of bearing acceleration response under fault conditions is significant as
it provides data to study bearing fault dynamics and can provide data for training fault
diagnostics models. This paper proposed a new method to simulate the bearing response
by constructing a bearing digital twin. The work finished in this study can be summarized
as follows.

• A signal-based model, consisting of a unit impulse function and decay oscillation
function, is built to describe the bearing’s acceleration response under different fault
conditions, with fault position and length considered.

• A bearing digital twin model is constructed. The signal-based model is taken as
the environment, DDPG is adopted as the agent, and the online learning of two
parameters (load proportional factor, decaying parameter) from the signal-based
model is regarded as the action of the digital twin. In addition, the cosine similarity
between the real acceleration and simulation data from the digital twin is utilized to
define the reward and state.

• Experimental data from the CWRU test bench are used to validate the proposed
bearing digital twin. The acceleration similarity between physics space (test bench)
and virtual space (digital twin) in the time and frequency domains is compared.

6.2. Conclusions

Based on the aforementioned work, the following conclusions can be drawn.

• The signal-based model can represent the bearing response under normal and fault
conditions. The parameters of the load proportional factor (a) and decaying parameter
(B) can be used to identify the fault position and fault dynamics.

• The digital twin can be used to generate the bearing’s acceleration response with high
similarity in both time and frequency domains to the real measurement data from the
test bench.

6.3. Outlook

The bearing fault modeling is only the basis for a series of follow-up studies in
prognostics and health management (PHM). The signal simulated by the bearing digital
twin may contain information on the bearing health status and degradation dynamics.
Therefore, related further research can include the following directions:

• Exploring the extension of the current signal-based model to characterize defect
profiles and accommodate multiple defects is a potential direction for further research.

• Integrating more complex physics models into the digital twin is another area of
interest. For instance, combining the Archard model with the signal-based model
would enable the modeling of dynamic wear loss and profiles, moving beyond the
current focus on static defect size.
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• The implementation of the digital twin in an edge system is a topic that merits addi-
tional investigation.

• One of the ongoing research directions is the derivation and optimization of hyperpa-
rameters in DDPG, which has the potential to improve both modeling accuracy and
efficiency significantly.
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