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Abstract: Due to growing environmental concerns and economical and social problems in manufac-
turing sectors, there is a huge demand for the substitution of existing cutting fluids. Further, the
cutting fluids selected are expected to reduce the cutting force, improve the surface roughness and
also minimize the tool wear during machining operations. Hence, this paper discusses the tribological
and morphological behaviour of AISI 316L stainless steel while turning under minimum quantity
lubrication (MQL) such as oil–water emulsion, mineral oil, simarouba oil, pongam oil and neem oil
based on Taguchi L25 orthogonal array. From the extensive experimentation, it was observed that
neem oil MQL with cutting speed of (140, 140, 60 m/min), feed of (0.30, 0.20, 0.10 mm/rev) and
depth of cut of (1.0, 1.0, 1.0 mm) resulted in the lowest surface roughness (0.36 µm),cutting force
(235.34 N) and tool wear (100.32 microns), respectively. Further, main effects plots and analysis of
variance (ANOVA)can be successfully used to identify the optimum process input parameters and
their percentage of contribution (P%) on the output parameters during turning of AISI 316L steel
under MQL applications. The results clearly indicate that from both an ecological and economical
standpoint, neem oil is the most effective lubricant in reducing cutting forces, tool wear and surface
roughness during turning of AISI 316L stainless steel under MQL.

Keywords: AISI 316L stainless steel; cutting force; surface roughness; tool wear; TDOE; ANOVA

1. Introduction

Today among various types of engineering materials, AISI 316L stainless steel is one such
material which is used as an industrial structural material, viz., in automobiles, atmospheric
distillation structures, aircraft and marine structures due to its excellent properties such as
modulus of elasticity, toughness, corrosion resistance, durability, malleability, yield strength,
shear modulus, weldability and thermal expansion [1–3]. However, while machining metals
and alloys, the extreme heat and forces generated, result in maximum surface roughness and
an increased risk of tool wear [4–6]. Weinert et al. [7] concluded that cutting fluids are the
most popular method in the mechanical sector for controlling tool–workpiece friction and
temperature during the machining of metals and alloys. Further, they also suggested that the
use of cutting fluids resulted in a negative impact on both the environment and human health.
Due to environmental concerns, the metal cutting industries are in search of a technology that
reduces the use of lubricants during the process of the machining of metals, reducing water
pollution, land pollution, waste management, harmful air emissions, and natural resources
and raw material depletion [8,9]. Tawakoli et al. [10] suggested that an efficient system of
cutting fluid supply on to the chip–tool interface to reduce the cutting fluid consumption and
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increase the productivity is very much essential. They also suggested that MQL emerges as a
viable alternative that may be thoroughly considered to achieve the desirable and optimal
results. It was discovered that concerns regarding the environment, health, safety and cost
of cutting fluids during metal machining resulted in the increase in manufacturing cost [11].
Hadad et al. [12] concluded that during machining operation, minimal quantity lubricant
(MQL) can be the alternative for dry machining. Sadeghi et al. [13] suggested that the
application of cutting fluids while cutting difficult-to-cut materials results in increased tool life
and better surface characteristics. K. M. Li [14] suggested that minimum quantity lubrication
is an appealing option as it combines cooling functionality with exceptionally low fluid
consumption. Sharma et al. [15] reported that in many circumstances, small amounts of oil
are sufficient to reduce tool friction and avoid material adhesion. Further, they also suggested
that during MQL application, lubricant flow ranging from 5 to 500 mL/h at pressures ranging
from 2 to 8 bar and nozzle position at the chip–tool interface zone had a significant impact
on process output parameters. Attanasio et al. [16] concluded that when the nozzle was
projected on the rake face of the cutting tool, there was no evidence of cutting fluid on the
machining zone; however, when the nozzle was projected on the flank faces of the tool, there
was better cutting fluid penetration. Obikawa et al. [17] concluded that 45◦ nozzle orientation
on both the horizontal and vertical planes was the optimum choice for decreasing tool–work
friction. Karthik et al. [18] concluded that lubrication pressure at 0.4 to 0.6 MPa lowered
tool life and improved surface finish under MQL application.“Mineral based lubricants are
considered pollutants because they emit significant amounts of particulate matter (PM),
carbon monoxide (CO), and sulphur dioxide (SO2), all of which have a negative impact on
air quality” [19–25]. Abadalla et al. [26] carried out turning of stainless steel 316L using
MQL. They suggested that MQL application resulted in less residual stresses compared to
flood cooling. Various authors [27–29] reported the reduction in the coefficient of friction
on the tool rake face and chip thickness ratio during machining of AISI 316 stainless steel
under MQL application. Hossain et al. [30] concluded that the application of MQL had
optimized and reduced surface roughness significantly compared to flood lubrication using
both conventional and non-conventional cutting fluids in turning operation. Ibrahim et al. [31]
suggested that the addition of zinc oxide (ZnO) nanoparticles with vegetable oil (rice bran
oil) has been found to reduce cutting forces by about 10.68–18.48%, tool wear by about
9.33–51.96% and surface roughness by 3.86–12.84%. Javid et al. [32] concluded that SiO2
nanofluids-based minimum quantity lubrication (NF-MQL) improves surface roughness by
28.34% and MRR (material removal rate) by 5.09% over conventional MQL. Nareshbabu
et al. [33] concluded that the addition of silver nanofluids in MQL reduced cutting forces,
wear and surface roughness while turning SKD 11 steel. Arsene et al. [34] found that a
strong anti-wear and anti-friction film was formed in the interface when corn oil is used
as lubricant in MQL turning of AISI D2 steel. This improved surface roughness and tool
life by 15–20%. The research on cutting force, tool wear and surface roughness has been
the easiest way of understanding the machinability characteristics of alloys under MQL [35].
Taguchi’s Design of Experiments is an important statistical tool used for optimization of
multiple input parameters in experimentation. These techniques use three or more levels of
fractional factorial designs to conduct the experiments. However, Taguchi has presented a
number of significant new methods of the conceptualizing of an experiment that have proven
to be incredibly beneficial, particularly in the fields of product development and industrial
engineering [36–38]. However, there has been no effort conducted to measure the surface
characteristics, cutting forces, tool wear and microstructural changes during turning of AISI
316 stainless steel under MQL comparing using five different lubricants. Hence, this paper
deals with the tribological and morphological study for optimization and microscopic analysis
of the machined surface during turning of AISI 316 stainless steel under MQL application
using five different lubricants.
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2. Methodology

The experiments were carried out using a PSG A141 lathe (2.2 kW) using Cubic Boron
Nitride inserts (KB-90)under MQL condition (Figure 1) having principal rake angle (0◦),
nose radius (0.4 mm),approach angle (91◦) and clearance angle (7◦) while turning AISI
316L stainless steel. During MQL application, the various lubricants (Figure 2) (oil–water,
mineral oil, simarouba oil, pongam oil and neem oil) are supplied on to the chip–tool
interface zone by a specially developed MQL setup at a constant flow rate of 10 mL/min,
pressure of 5 Bar and 5 mm nozzle stand of distance. The properties of the lubricants are
presented in Table 1.
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Figure 2. Cutting Fluids. (a) Neem Oil (NO); (b) Simarouba Oil (SO); (c) Pongam Oil (PO); (d) Oil
–Water (OW); (e) Mineral Oil (MO).

Table 1. Physical properties of the lubricants used.

Properties Neem Oil
(NO)

Simarouba
Oil (SO)

Pongam Oil
(PO)

Oil–Water
(OW)

Mineral Oil
(MO)

Viscosity
(∼=40 ◦C) Pa s

(Pascal
second)

0.0245–0.028 0.0274–
0.03107

0.0369–
0.0415 0.027–0.0324 0.0826–0.087

% of Oxygen 0.2–0.5% 1.2–1.5% 0.5–0.8% 20.5–21% 1.5–2%
Density
(g/cm3) 0.875 0.914 0.924 0.900 0.870

Flash point 218 ◦C 178 ◦C 225 ◦C NA 135 ◦C

Figure 2 presents the different lubricants used under MQL. Dynamic viscosity of the
lubricants was measured using a Systonic S-9251 Viscometer and the range of results is
presented. The dissolved oxygen percentage of oils was measured using the diaphragm
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electrode method. Density of the lubricants was measured by volume and mass relation.
Flash point of the lubricants was measured using ABELS flash point tester apparatus. The
AISI 316L stainless steel workpiece in the form of round bars of 50 mm diameter had
been procured from Dhanalakshmi Steel Distributors, Mumbai. Physical and mechanical
properties of the workpiece as provided by the vendor is mentioned in Tables 2 and 3.

Table 2. Mechanical properties of AISI 316L stainless steel.

Property Typical Value

Hardness, Rockwell B 95
Ultimate Tensile Strength (MPa) 485

Yield Tensile Strength (MPa) 170
Modulus of Elasticity (GPa) 200

Poisson’s Ratio 0.3
Density(g/cm3) 7.90
Elongation (%) 40

Fatigue Strength (MPa) 146

Table 3. Chemical composition of AISI 316L stainless steel.

Element C Mn Si P S Cr Mo Ni N

Wt (%) 0.03 2 0.75 0.05 0.03 18 3 14 0.10

During turning of AISI 316L stainless steel, the cutting forces generated were measured
by a 9257BA KISTLER Dynamometer. Talysurf Surtronic 3+ surface roughness measuring
equipment was used to measure roughness of the cylindrical specimen, which follows the
principle where surface irregularities are traced by the probe/stylus and its subsequent
motion is converted into fluctuations in the electric current. For each run, a fresh KB-90
insert was used and was weighed both before and after machining to measure wear. A
total of 25 tools were used for the whole operation where each tool was passed one time
(250 mm length) while turning. OLYMPUS BX53M System Optical microscope has been
used to observe the surface microstructure of the workpiece. The workpiece was etched
using a reagent aqua regia (1:3 molar ratio) of hydrochloric acid and nitric acid.

The Taguchi L25 orthogonal array was obtained by using MINITAB software (Version
15). Analysis of L25 orthogonal array was conducted to find out the design parameters
majorly affecting the characteristics quality and to identify percentage contribution of each
input process parameter. The turning test parameters and levels chosen are mentioned in
Table 4. Experiments were carried out using an L25 orthogonal array (Table 5).

Table 4. Factors and Levels used in this Experimentation.

Trial No
Lubrication
Conditions

(A)

Cutting Speed
(m/min)

(B)

Feed
(mm/rev)

(C)

Depth of Cut
(mm)
(D)

1 Oil–Water 60 0.10 0.20
2 Mineral Oil 80 0.15 0.40
3 Pongam Oil 100 0.20 0.60
4 Simarouba Oil 120 0.25 0.80
5 Neem Oil 140 0.30 1.00
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Table 5. L25 Orthogonal Array.

Trial No
Lubrication
Conditions

(A)

Cutting Speed
(m/min)

(B)

Feed
(mm/rev)

(C)

Depth of Cut
(mm)
(D)

1 Oil–Water 60 0.10 0.2
2 Oil–Water 80 0.15 0.4
3 Oil–Water 100 0.20 0.6
4 Oil–Water 120 0.25 0.8
5 Oil–Water 140 0.30 1.0
6 Mineral Oil 60 0.15 0.6
7 Mineral Oil 80 0.20 0.8
8 Mineral Oil 100 0.25 1.0
9 Mineral Oil 120 0.30 0.2
10 Mineral Oil 140 0.10 0.4
11 Pongam Oil 60 0.20 1.0
12 Pongam Oil 80 0.25 0.2
13 Pongam Oil 100 0.30 0.4
14 Pongam Oil 120 0.10 0.6
15 Pongam Oil 140 0.15 0.8
16 Simarouba Oil 60 0.25 0.4
17 Simarouba Oil 80 0.30 0.6
18 Simarouba Oil 100 0.10 0.8
19 Simarouba Oil 120 0.15 1.0
20 Simarouba Oil 140 0.20 0.2
21 Neem Oil 60 0.30 0.8
22 Neem Oil 80 0.10 1.0
23 Neem Oil 100 0.15 0.2
24 Neem Oil 120 0.20 0.4
25 Neem Oil 140 0.25 0.6

3. Results and Discussions

AISI 316L stainless steel is a widely used structural material in various industries such
as construction, automobile and marine applications. Study on the machining character-
istics of AISI 316L stainless steel while turning under various MQL conditions provides
a better way of understanding their tribological and morphological behaviour. Thus, the
impact of process input parameters on surface roughness, cutting forces and tool wear
using an L25 orthogonal array has been discussed in the subsequent sections.

3.1. Surface Roughness

AISI 316L stainless steel is abundantly used as a structural material among various
applications. However, the components of AISI 316L stainless steel are frequently coated for
improving surface properties;the roughness of the surface plays a key role in the adhesion of
the coating material to the surface. Thus, study on surface roughness characteristics of AISI
316L stainless steel during turning under various minimum quantity lubrication conditions
is an important way of understanding its tribological behaviour in different machining
environments. Figure 3a–c present the comparison of surface roughness under different
machining and lubrication conditions such as oil–water, mineral oil, simarouba oil, pongam
oil and neem oil. From the extensive experimentation, it is seen that the surface roughness
decreasesunder neem oil MQL while compared to oil–water, mineral oil, simarouba oil
and pongam oil. This is due tothe higher oiliness and wettability characteristics of neem
oil followed by its optimum viscosity (0.0245–0.028 Pa s)compared to other lubricants
employed in the experimentation. Further, optimum viscosity facilitates deep penetration
of the lubricantinto the tool–chip interface while decreasing the vibration and chatter, and
avoidingthe adhering of the chip on the flank face.
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Figure 4 presents the microscopic images of the machined surface under different
lubrication conditions. From Figure 4, it was observed that neem oil as cutting fluid showed
better surface roughness with less surface irregularity compared to other cutting fluids.
Figure 5 presents the surface roughness profiles of AISI 316L stainless steel under neem oil
minimum quantity lubrication conditions.
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On the basis of evaluation of the percentage of contribution (P%) for different factors
selected for S/N ratio (Table 6), for surface roughness, it can be seen that lubrication
conditions have the highest contribution of about 98.1%; thus, lubrication conditions are
an important factor to be taken into consideration while machining AISI 316L stainless
steel under MQL. Further, for the selected range of input parameters, the cutting speed
(P = 1.74%), feed (P = 0.03%) and depth of cut (P = 0.04%) have minimal effect on surface
roughness characteristics.
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Table 6. Analysis of Variance for S/N ratios for Surface roughness (microns).

Source DF P P (%)

Lubrication Conditions (A) 4 0.9810 98.1
Cutting Speed (m/min) (B) 4 0.0174 1.74

Feed(mm/rev) (C) 4 0.0030 0.03
Depth of Cut(mm) (D) 4 0.0040 0.04

Residual Error 8
Total 24

From Figure 6, indicating the main effects plot for surface roughness, the selection of
neem oil, cutting speed (140 m/min), feed (0.30 mm/rev) and depth of cut (1.0 mm)have
resulted in the best combination to get the lowest surface roughness value (0.36 µm) during
turning of AISI 316L stainless steel under MQL.
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3.2. Cutting Force

During machining of any metals and alloys, the cutting force variable is the major
component to analyse machinability characteristics. Hence, in this section, the cutting force
induced during turning of AISI 316L stainless steel under MQL has been discussed.

Figure 7a–c present the cutting force values generated under different cutting con-
ditions. From the figure, it was observed that the cutting force is lower in the neem oil
application compared to oil–water, mineral oil, simarouba oil and pongam oil. In neem oil
application, the easy flow of cutting fluid penetrates into the capillaries existing between
the tool–chip interfaces. This causes reduction in friction, which in turn reduces the cut-
ting force. Further, when neem oil is used as cutting fluid in MQL, the cutting fluid gets
fragmented into tiny globules, the size of which is inversely proportional to the pressure
of injection. The velocity varies as a function of the square root of the injection pressure.
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This high velocity facilitates better penetration of the neem oil to the underside of the chip
resulting in the reduction of friction [37]. Figure 8 presents the cutting force signals during
turning of AISI 316L stainless steel under different lubrication conditions.
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While evaluating the percentage of contribution (P%) for different factors selected for
S/N ratio and means (Table 7), for cutting force, it is evident that lubrication conditions have
the highest contribution of about 91.9%; thus, lubrication conditions are prominent factors to
be taken into consideration while machining AISI 316L stainless steel under MQL. Further,
cutting speed (P = 4.25%), feed (P = 2.86%) and depth of cut (P = 0.99%) have lesser statistical
and physical significance on cutting force for the range of input parameters selected.
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Table 7. Analysis of Variance for S/N ratios for Cutting Force, Fz(N).

Source DF P P(%)

Lubrication
Conditions 4 0.919 91.9

Cutting Speed
(m/min) 4 0.0425 4.25

Feed(mm/rev) 4 0.0286 2.86
Depth of Cut(mm) 4 0.0099 0.99

Residual Error 8
Total 24

Figure 9, indicating the main effects plot for cutting force, suggests the selection of
neem oil, cutting speed (140 m/min), feed (0.20 mm/rev) and depth of cut (1.0 mm) result
in the best combination to get the lowest cutting forcevalue (235.34 N) during turning of
AISI 316L stainless steel under MQL.

Lubricants 2022, 10, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 8. Cutting force signals during turning of AISI 316L stainless steel under different lubrication 
conditions. (a) Oil–Water Oil; (b) Mineral Oil; (c) Simarouba Oil; (d) Pongam Oil; (e) Neem Oil. 

While evaluating the percentage of contribution (P%) for different factors selected for 
S/N ratio and means (Table 7), for cutting force, it is evident that lubrication conditions 
have the highest contribution of about 91.9%; thus, lubrication conditions are prominent 
factors to be taken into consideration while machining AISI 316L stainless steel under 
MQL. Further, cutting speed (P = 4.25%), feed (P = 2.86%) and depth of cut (P = 0.99%) 
have lesser statistical and physical significance on cutting force for the range of input pa-
rameters selected. 

Table 7. Analysis of Variance for S/N ratios for Cutting Force, Fz(N). 

Source DF P P(%) 
Lubrication Conditions 4 0.919 91.9 
Cutting Speed (m/min) 4 0.0425 4.25 

Feed(mm/rev) 4 0.0286 2.86 
Depth of Cut(mm) 4 0.0099 0.99 

Residual Error 8   
Total 24   

Figure 9, indicating the main effects plot for cutting force, suggests the selection of 
neem oil, cutting speed (140 m/min), feed (0.20 mm/rev) and depth of cut (1.0 mm) result 
in the best combination to get the lowest cutting forcevalue (235.34 N) during turning of 
AISI 316L stainless steel under MQL. 

  
(a) (b) 

Figure 9. Main effects plot for cutting force (N): (a) S/N ratio; (b) Means.

3.3. Tool Wear

During machining, the study related to tool wear plays a major role in terms of
machining cost and product quality. Hence, in this section, optimum input parameters for
tool wear minimization will be discussed. From Figure 10a–c, it is very much clear that tool
wear is lesser under neem oil application compared to oil–water, mineral oil, simarouba oil
and pongam oil application. This is because the neem oil penetrates easily on to chip–tool
interface resulting in minimum tool wear compared to other cutting fluids.

Further, as the cutting speed, feed and depth of cut increases the temperature induced,
thermal softening of AISI 316L stainless steel results in increase of tool wear. Figure 11
presents the microscopic images of cutting tools after turning of AISI 316L stainless steel
under different lubrication conditions. From Figure 11, we can observe that higher cutting
speeds, feed and depth of cut results in built-up edge formation, flank wear progression
and flaking under different machining conditions.

While evaluating the percentage of contribution (P%) for different factors selected for
S/N ratio and means (Table 8), for tool wear, it can be seen that lubrication conditions have
the highest contribution of about 84.1%; thus, lubrication conditions are an important factor to
be taken into consideration while machining AISI 316L stainless steel under MQL. Further,
cutting speed (P = 7.46%), feed (P = 3.46%) and depth of cut (P = 4.98%) have a minimal
statistical and physical significance on tool wear for the selected range of input parameters.
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Table 8. Analysis of Variance for S/N ratios for Cutting Force, Fz (N).

Source DF P P (%)

Lubrication
Conditions 4 0.8410 84.1

Cutting Speed
(m/min) 4 0.0746 7.46

Feed (mm/rev) 4 0.0346 3.46
Depth of Cut (mm) 4 0.0498 4.98

Residual Error 8
Total 24
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Figure 11, indicating the main effects plot for cutting force, suggests that the selection
of neem oil, cutting speed (60 m/min), feed (0.10 mm/rev) and depth of cut (0.2 mm) result
in the best combination to get the lowest tool wear value (100.32 microns) during turning
of AISI 316L stainless steel under MQL. Figure 12 provides the microscopic images during
turning of AISI 316L stainless steel under Oil–Water, Mineral Oil, Simarouba Oil, Pongam
Oil, Neem Oil lubrication conditions.
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4. Conclusions

During turning of AISI 316L stainless steel under MQL using L25 orthogonal array for
optimization of process output variables of machining, such as surface roughness, cutting
force and tool wear, the following conclusion can be drawn:

• The surface roughness value was found to be minimal under neem oil application
compared to other lubricants because of the optimum viscosity, penetrability and high
flash point of the neem oil. From the examination of the percentage of contribution (P%)
for the selected range of input parameters, it can be seen that lubrication conditions
have the highest contribution of about 98.1% compared to cutting speed (P = 1.74%),
feed (P = 0.03%) and depth of cut (P = 0.04%). Further, the selection of neem oil
as lubricant with cutting speed (140 m/min), feed (0.30 mm/rev) and depth of cut
(1.0 mm) has resulted in the best combination among the selected range of input
parameters to obtain the lowest surface roughness value of 0.36µm.

• A similar observation was found for cutting force. As neem oil flows easily, it reduces
frictional forces by deeply penetrating into the capillaries existing between the tool–
chip interfaces. From the examination of the percentage of contribution (P%) for the
selected range of input process parameters, lubrication condition had the highest
contribution of 91.9% compared to cutting speed (P = 4.25%), feed (P = 2.86%) and
depth of cut (P = 0.99%). Further, the selection of neem oil as lubricant with cutting
speed (140 m/min), feed (0.20 mm/rev) and depth of cut (1.0 mm) resulted in the best
combination to get the lowest cutting force value (235.34 N).

• Tool wear was lesser under neem oil application because neem oil penetrates easily
on to chip–tool interface and creates a fine film resulting in minimum friction and
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tool wear compared to other cutting fluids. From the evaluation of the contribution
percentage (P%), it can be seen that lubrication conditions have the highest contribution
of about 84.1%, while cutting speed (P = 7.46%), feed (P = 3.46%) and depth of cut
(P = 4.98%) have a minimal statistical and physical significance on tool wear for the
selected range of input parameters. Further, the selection of neem oil as lubricant with
cutting speed (60 m/min), feed (0.10 mm/rev) and depth of cut (0.2 mm) resulted in
the best combination to get the lowest tool wear value (100.32 microns).

Concluding from the above findings, neem oil is found to have performed better
than other lubricants employed in the study. Because of the lowest viscosity, density and
oxygen percentage, neem oil is able to positively lubricate in MQL conditions compared
to conventional cutting fluids. As neem oil is non-toxic and biodegradable in nature, it
offers better sustainability under MQL. Further, the developed L25 orthogonal array can be
effectively used to obtain optimum process input parameters for better surface roughness,
cutting force and tool wear.
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Nomenclature and Abbreviations:
AISI American Iron and Steel Institute
MQL Minimum Quantity Lubrication
ANOVA Analysis of Variance
S/N Ratio Signal to Noise Ratio
Fz Cutting Force
Vb Tool Wear
Ra Roughness Average
OW Oil–Water
MO Mineral Oil
PO Pongam Oil
SO Simarouba Oil
NO Neem Oil
DF Degrees of Freedom
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