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Abstract: The derivation of fast, reliable, and accurate modeling procedures for the solution of
thermal elastohydrodynamic lubrication problems is a topic of significant interest in the Tribology
community. In this paper, a novel model order reduction technique is introduced for the analysis of
thermal elastohydrodynamic lubrication problems. The method uses static condensation to reduce
the size of the linear elasticity part within the overall matrix system, followed by a splitting algorithm
to avoid the burden of solving a semi-dense matrix system. The results reveal the exactness of the
proposed methodology, which does not introduce any additional model-reduction approximations
to the overall solution. They also reveal the reduction in computational times, which is in the order
of 10–20% for line contacts, while it is in excess of 50% for circular contacts. The robustness of the
proposed method is displayed by using it to model some relatively highly loaded contacts whose
numerical solution is known to be rather challenging.

Keywords: thermal elastohydrodynamic lubrication; finite elements; model order reduction;
static condensation

1. Introduction

Elastohydrodynamic lubrication (EHL) is a full-film lubrication regime where two
mechanical components are separated using a high-viscosity fluid—known as the lubricant—
which is exposed to sufficiently high pressures to induce elastic deformation of the solid
elements. It is usually found in spur gears, roller-element bearings, etc. The significance
of this regime mainly lies in reducing the energy consumption of the machine by abating
frictional dissipation. In addition, it reduces the risk of damage by preventing metal-to-
metal contact between the machine’s components.

At the contact level, both mechanical components can be approximated by ellipsoids,
and the contact is generally assumed to be a “point contact” where the elastic deformation,
pressure, and film thickness can vary in both directions of the contact area. However,
according to the application, the contact can be assimilated into a “line contact”. In spur
gears or roller-element bearings, for example, one of the directions can be considered
infinitely long, which will make any gradient in this direction negligible, reducing the
dimension of the problem by one.

Additional assumptions are usually adopted in modelling EHL problems. Under
certain conditions (low sliding speeds and/or low loads), EHL is considered an isothermal
Newtonian process, therefore assuming a Newtonian lubricant response and negligible
temperature gradients. Thus, lubricant viscosity is assumed to be constant across the
lubricant film thickness. This approximation was long used and appeared to be valid,
especially for predicting lubricant film thickness and pressure. However, this conjecture
faces some difficulties when it comes to predicting film thickness for either high velocities
and/or high loads because of the manifestation of non-Newtonian and thermal effects.
These would lead to lubricant viscosity and density variations across the film thickness. It
also fails spectacularly in predicting friction under these conditions.
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Taking density and viscosity variations across the lubricant film thickness into con-
sideration would shift the regime to a thermal elastohydrodynamic (TEHL) one, which
is much more accurate in predicting the lubricant film thickness, as well as frictional dis-
sipation, especially for the different cases mentioned above. The effect of temperature
variations in EHL line contacts was first studied theoretically by Cheng [1,2]. A numerical
model for point contacts was developed and solved by Zhu and Wen [3] after nearly two
decades while assuming a Newtonian Response. This solution was succeeded by the work
of Guo et al. [4], Liu et al. [5], and Kim and Sadeghi [6], who ascertained the temperature
gradients for Newtonian and non-Newtonian lubricant behavior.

It cannot be denied that the studies mentioned above significantly improved the
predictive accuracy of EHL solutions, especially compared to traditional EHL models
(i.e., Isothermal Newtonian). However, the main drawback of these methods would be
increasing the size of their matrix system since the number of degrees of freedom (dofs)
associated with the temperature domain is considerably high. A simplification consisting
of reducing the dimension of the fluid temperature domain by one by assuming a parabolic
temperature profile across the lubricant film thickness was first adopted for line contacts
by Salehizadeh and Saka [7], Wolff and Kubo [8], and also Kazama et al. [9]. The same
simplification was applied to point contacts by Kim et al. [10,11], Jiang et al. [12], and
also Lee et al. [13]. However, Kazama et al. [9] showed that this assumption led to a
significant decrease in the solution accuracy, especially for temperature variations at the
contact inlet, because of the occurrence of complex inlet reverse flows. Moreover, the TEHL
analysis involves an additional complexity that is related to the evaluation of cross-film
integral terms to account for density and viscosity variations. The supplementary size
and complexity of the matrix system will both contribute to a remarkable increase in the
associated computational overhead. This becomes even worse when a weak coupling
technique is used. In fact, several early papers such as the pioneering work of Dowson
and Higginson [14] and the more developed work of Hamrock and Dowson [15] revealed
different difficulties faced when solving EHL problems. Solving the equations using a weak-
coupling technique (i.e., non-synchronized resolution of the different inherent equations)
usually leads to slow convergence rates.

To diminish the computational overhead associated with weak coupling techniques,
several works tried to develop a full-coupling technique, where all equations are solved
simultaneously, therefore leading to faster convergence rates. Rohde and Oh [16] were
among the first researchers to tackle this problem. Even though their developed work in [17]
converged rapidly with only a few iterations, their method suffered from a main drawback,
which is the density of the arising matrix system. In fact, the solid elastic deformation field
was resolved based on the half-space theory, which evaluates the deformation using integral
terms that relate each point of the discretized computational domain to all other points,
resulting in a dense Jacobian matrix. In addition, their method was only valid for light and
moderate loads. Furthermore, the simultaneous update of all pressures at all discretization
points meant tedious treatment of the free cavitation boundary arising at the outlet of
the contact. This encouraged Holmes et al. [18] to introduce a new model to evaluate
elastic deformation based on the finite element method (FEM). This model featured sparse
matrices, derived using the half-space theory to evaluate the elastic deformations. However,
especially for point contacts, the matrix system still had a considerable bandwidth requiring
a special technique to be solved. On the other hand, other works such as Bruyere et al. [19]
used Computational Fluid Dynamics (CFD) to solve the Navier–Stokes equations instead
of the simplified Reynolds equations for the fluid part, and linear elasticity equations for
the solid part using a full-system approach, which was also associated with prohibitively
high computational overhead.

Recently, Habchi et al. [20–22] introduced an approach that solves the constraints
mentioned above. First of all, the authors proposed solving the problem using a fully
coupled scheme, which assured a high rate of convergence. It was also proposed to use
classical linear elasticity theory for modeling the elastic domains, where each discretization
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node is only related to the other nodes in the same element, which leads to a relatively
sparse Jacobian matrix. In addition, stabilizing terms were added, extending the method
for high loads up to several Gigapascals. The cavitation boundary condition was treated
with a straightforward penalty technique developed by Wu [23].

Despite the simplicity of the model mentioned above, in terms of computational
overhead, the model implied the extension of the computational domain into the depth
of the solids. Even though the proposed model was optimized using a non-regular non-
structured meshing to achieve comparable performance to state-of-the-art existing models,
a major improvement was still available since the matrices are still considerably large,
especially for thermal point contact cases. In fact, deformations at nodes within the depth
of the solid domain are computed in vain since the deformation is only needed on the
contact surface. This encouraged the development of several techniques—known as Model
Order Reduction (MOR)—to decrease the size of the matrices.

Firstly, the “EHL-basis technique” was proposed by Habchi et al. [24] to reduce the
elastic domain. This technique was improved by Maier et al. [25,26] who reduced the
hydrodynamic domain to obtain even faster results. A novel reduction technique was
also introduced by Scurria et al. [27] based on Galerkin Projections for the structural part
and a hyper-reduction for the Reynolds equation. Even though these MOR techniques are
very efficient when it comes to computational speed, they face some significant downsides.
Primarily, these techniques cannot be generalized. The procedure consists of an exhausting
“Offline” phase, which is designed for a specific configuration. The papers cited previously,
for example, assumed isothermal Newtonian conditions. Consequently, if any new features
are to be considered, such as thermal effects, surface roughness, and non-Newtonian
effects, the reduced solution space should be redefined to account for the new features.
Additionally, the definition of a new solution space necessitates a high level of expertise,
which may make its use even more complicated for novice users. Lastly, the newly defined
reduced solution space is constructed from linear combinations of full model solutions
(i.e., mode superposition), which are, in turn, an approximation of the exact solution. In
addition to the additionally introduced approximations, mode superposition results in
micro-oscillations in the obtained solution. This can be considered a minor complication
though since deviations between the reduced and full solutions can be negligible, provided
a careful selection of the basis functions of the reduced solution space.

Recently, Habchi et al. [28] introduced the Static Condensation with Splitting (SCS)
technique to solve the isothermal steady-state EHL problem. It was mainly divided into
two parts: First, a “static condensation” or “Guyan condensation” [29], which is used
to reduce the size of the matrices by eliminating all the unnecessary nodes in the elastic
domain and injecting their effect into the needed ones. The only drawback of this method
is that the matrix obtained is dense compared to the sparse matrices usually obtained
in finite elements. Consequently, a “Splitting” algorithm was introduced to maintain
a standard finite-element sparsity pattern. Even though this method leads to a lesser
reduction, it mitigates the limitations mentioned above since a complete solution space
is used, which retains its generality. In fact, injecting the effect of the eliminated nodes in
the needed ones keeps the solution exact compared to the full model, i.e., no additional
MOR-inherent approximations. Moreover, this method is rather simple, only requiring
some basic knowledge of linear algebra.

Following the extension of this method to the transient isothermal Newtonian line
contact EHL problem with Habchi [30], the current paper details how the computational
overhead for the TEHL problem can be substantially reduced by using the SCS technique
while taking into consideration the temperature variations across the film thickness and in
the solids. This method will be applied for both line and circular contacts since the matrices
in both cases have large sizes when temperature gradients are considered. In addition,
the fully coupled scheme introduced by Habchi [31] for TEHL problems will be used for
enhanced convergence rates.
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2. Governing Equations

The following section describes the governing equations of the TEHL problem. Assum-
ing a fully-flooded regime where the surfaces are completely separated by the lubricant,
both line and circular contacts are considered. A line contact occurs when the two com-
ponents have an infinite radius of curvature in one spatial direction. Thus, the geometry
can be reduced to that of an elastic cylinder of radius R in contact with a rigid flat plane as
shown in Figure 1 (left). On the other hand, point contact occurs when both components
are ellipsoidal. For equal radii of curvature in the x- and y- directions (i.e., spherical solids),
the contact is circular, and its geometry can be reduced to that of an elastic ball of radius
R in contact with a rigid flat plane as shown in Figure 1 (right). Throughout this paper,
subscripts 1 and 2 denote the flat plane and cylinder/ball, respectively, while subscript f
denotes the fluid/lubricant. Out of simplicity, only circular contacts are considered here
with unidirectional surface velocities u1 and u2 in the x-direction (v1 = v2 = 0). However,
the proposed methodology may be extended to cover elliptical contacts in a straightfor-
ward manner. It is also important to note that only steady-state operation is studied by
considering constant velocities u1 and u2 in the x-direction, as well as a constant applied
load F. All equations are provided using dimensionless variables defined using Hertzian
dry contact parameters as a function of the elastic material properties (E1, υ1) and (E2, υ2)
of the two contacting solids as follows:

Line Contacts : a =
√

4RF
πE and ph = 2F

πa

Circular Contacts : a = 3
√

3RF
4E and ph = 3F

2πa2

Where : E = 1
1−υ2

1
E1

+
1−υ2

2
E2

(1)

where a is the Hertzian contact half-width or radius for line and circular contacts, respec-
tively, and ph is the maximum Hertzian pressure. The contact dimensionless operating
parameters are defined as follows:

X = x
a , Y = y

a , Z = z
a (Solids) or Z = z

h (Lubricant Film)

H = h R
a2 , U = u R

a2 , V = v R
a2 , W = w R

a2 , P = p
ph

T = T
T0

, ρ = ρ
ρR

, η = η
ηR

, τzx = τzx
τ0

, τzy =
τzy
τ0

(2)

where ρR and ηR are the lubricant density and viscosity, respectively, calculated at the
reference temperature, pressure, and shear stress, h is the lubricant film thickness, u, v, and
w are the x-, y-, and z-components of the solid elastic deformation field, p and T are the
lubricant pressure and temperature, and τzx and τzy are the x- and y-components of the
lubricant shear stress. Moreover, T0 corresponds to the ambient temperature.
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2.1. Line Contact

The governing equations for the line contact are detailed in this section. These equa-
tions mainly consist of the linear elasticity, hydrodynamic, and load balance equations
followed by the conservation of energy equations to study temperature variations, and the
shear stress equation that governs shear stress variations throughout the lubricating film.

Since, for line contacts, the conjunction is considered to have an infinite length in
the y-direction, gradients in this direction are considered negligible. Therefore, the solid
computational domain is a square, whereas the contact zone Ωc is located on the upper
side. It is important to note here that the dimensionless side length of the square was
carefully chosen to be 60 according to [21] who proved that this length is sufficient to attain
a half-space configuration. The dimensionless length of the contact zone, on the other hand,
was chosen to be 6 as shown in Figure 2 going from X = −4.5 (inlet) to X = 1.5 (outlet).
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The first governing equation to be stated is the generalized Reynolds equation [32]
applied to the 1D contact domain Ωc, as introduced by Yang and Wen [33]. It governs the
dimensionless hydrodynamic pressure P:

− ∂
∂X

(
ε ∂P

∂X

)
+ ∂(ρ∗H)

∂X = 0
Where :

ε =
(

ρ
η

)
e

H3

λ ,
(

ρ
η

)
e
=

ηeρ′e
η′e
− ρ′′ e and λ = umR2ηR

a3 ph
with um = u1+u2

2

ρ∗ =
ρ′eηe(u2−u1)+ρeu1

um
, ρe =

1∫
0

ρ dZ

ρ′e =
1∫

0
ρ

Z∫
0

dZ′
η dZ, ρ′′ e =

1∫
0

ρ
Z∫
0

Z′dZ′
η dZ

1
ηe

=
1∫

0

dZ
η , 1

η′e
=

1∫
0

Z dZ
η

(3)

where Z = 0 and Z = 1 correspond to the plane and the cylinder surfaces, respectively.
This equation requires two main sets of boundary conditions. First of all, the Reynolds
cavitation boundary condition requires the following:

p ≥ 0 on Ωc and p =
∂P
∂x

= 0 on cavitation boundary (4)
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These conditions are met by applying the penalty method proposed by Wu [23], which
consists of adding a penalty term to the Reynolds equation, which becomes:

− ∂

∂X

(
ε

∂P
∂X

)
+

∂(ρ∗H)

∂X
+ ξ P−︸︷︷︸

Penalty Term

= 0 (5)

where P− is defined as P− = Pθ(−P) where θ—known as the Heaviside function—is nil
for a positive value of P and equal to unity for a negative one. Provided that the arbitrary
constant ξ has a sufficiently large value, the penalty term dominates the rest of the equation
whenever P− has a value different than zero. Therefore, for any negative pressure value,
the penalty term will dominate the equation, forcing the value of the pressure towards zero.
The second set of boundary conditions is applied by setting both inlet and outlet pressures
to nil.

It is important to note that viscosity and density vary with both pressure and tem-
perature. On the other hand, viscosity also varies with shear stress, i.e., ρ = ρ(P, T) and
η = η(P, T, τ). The term τ = ‖τ/τ0‖ is the dimensionless shear stress determined using
the following equation:

Ha2τ0

ηRR

1∫
0

τzx

η
(

P, T, τ
)dZ = u2 − u1 with : τzx = τ0

zx +
Haph
Rτ0

Z
∂P
∂X

(6)

where τ0
zx is the dimensionless lubricant shear stress on the plane’s surface (Z = 0). The

last variable to be developed in Reynolds’ equation (Equation (3)) is the dimensionless film
thickness H, which is defined as follows:

H(X) = H0 +
X2

2
−W(X) (7)

where H0 is the rigid body separation term and W is the dimensionless elastic deformation
of the solids in the z-direction, in the contact zone Ωc. It is important to note that the deflec-
tions are obtained by assuming that the plane is rigid whereas the cylinder is elastic and
accounts for both deformations. This is achieved by applying equivalent solid properties
(E, υ) to the cylinder, where E was defined in Equation (1) and υ = 0. Then, the compound
elastic deflection of both components is obtained using a classical linear elasticity approach.
The governing equations after simplification are reduced to:

− ∂2U
∂X2 − ∂

∂Z

[
1
2

(
∂U
∂Z + ∂W

∂X

)]
= 0

− ∂
∂X

[
1
2

(
∂U
∂Z + ∂W

∂X

)]
− ∂2W

∂Z2 = 0
(8)

where U and W are the total dimensionless elastic deflections in the x- and z-directions,
respectively. In terms of boundary conditions for the linear elasticity equation, a zero-
displacement boundary condition is applied to the boundary ∂Ωb. In addition, there is no
tangential stress on the contact boundary (i.e., σt = 0 over Ωc). On the other hand, normal
stress σn is applied over the contact domain due to the hydrodynamic pressure applied,
which can be represented as follows:

∂W
∂Z

= −P
2

(9)

For the remaining boundaries, a free displacement boundary condition is applied
(σn = σt = 0). Next, to consider the equilibrium of forces between the external load and the
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pressure within the lubricating film—this will be achieved by monitoring the value of H0
as discussed in later sections—a load balance equation is introduced as follows:∫

Ωc
P dX =

π

2
(10)

On the other hand, the governing equations considering the thermal effects describe
the heat generation and dissipation between the solids and the lubricant in both the x-
and z-directions since the length in the y-direction is considered infinite. Therefore, the
computational domain is formed by three consecutive rectangles shown in Figure 3 where
the upper one is for the cylinder (Ω2), the one in the middle is for the fluid (Ω f ), and the
lower one is for the plane (Ω1). Concerning the depth required to ensure a zero temperature
gradient within the depth of the solid domains, Kaneta et al. [34] and Wang et al. [35]
proposed that a dimensionless depth of 3.15 is enough. In this paper, the dimensionless
depth of the solid domains is taken to be 3.5. On the other hand, since the dimensionless
depth is the ratio of the depth over the film thickness for the lubricant film as seen in
Equation (2), it has a value of unity.
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− ∂
∂X

(
k1
a

∂T
∂X

)
− ∂

∂Z

(
k1
a

∂T
∂Z

)
+ ρ1c1u1

∂T
∂X = 0 (Solid p)

− ∂
∂X

(
k2
a

∂T
∂X

)
− ∂

∂Z

(
k2
a

∂T
∂Z

)
+ ρ2c2u2

∂T
∂X = 0 (Solid s)

− ∂
∂X

(
kH
R

∂T
∂X

)
− ∂

∂Z

(
kR

Ha2
∂T
∂Z

)
+ ρRρc u f

Ha
R

∂T
∂X = Qcomp + Qshear (Lubricant Film)

With : Qcomp = −H a ph
RT0

T
ρ

∂ρ

∂T
u f

∂P
∂X and Qshear =

η ηR Ha2

RT0

.
γ

2
zx

(11)

where ρ, c, and k denote the density, specific heat, and thermal conductivity, respectively,
while Qcomp and Qshear correspond to the heat generation within the lubricant film by
compression and by shear, respectively. The velocity of the lubricant in the x-direction u f
can be computed as follows:

u f = up +
ph H2a3

R2ηR

∂P
∂X

 Z∫
0

Z′dZ′
η
−

ηe
η′e

Z∫
0

dZ
η

+ ηe(u2 − u1)

Z∫
0

dZ
η

(12)
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In addition,
.
γzx—which is the x-component of the lubricant shear rate through the

film thickness—used to compute Qshear can be defined as follows:

.
γzx =

∂u f

∂z
=

Haph
ηRηR

∂P
∂X

(
Z− ηe

η′e

)
+

R
Ha2

ηe
η
(u2 − u1) (13)

The boundary conditions applied can be seen in Figure 3. Since the energy equation
is hyperbolic, all the inlets have a temperature of T0 (T = 1). For the lubricant, u f can
be negative in the proposed inlet region due to reverse flows (Poiseuille components).
Accordingly, the ambient temperature boundary condition is only necessary for the in-
let region ( u f ≥ 0

)
. For the solids, on the other hand, the left boundaries are actually

inlet boundaries since both u2 and u1 are assumed to be positive throughout this pa-
per. In addition, an ambient temperature is imposed on the top and bottom boundaries
(Z = −3.5 and Z = 4.5 ∀X). As for the outlet boundaries, a convective heat flux boundary
condition is assumed for both solids and the lubricant film by making the conductive heat
flux nil (kT0/a×∂T/∂X = 0). Lastly, for the two fluid–solid interfaces, a heat flux continuity
is imposed using the following equations:

k1

a
∂T
∂Z

∣∣∣∣
Z=0−

=
kR

Ha2
∂T
∂Z

∣∣∣∣
Z=0+

and
k2

a
∂T
∂Z

∣∣∣∣
Z=1+

=
kR

Ha2
∂T
∂Z

∣∣∣∣
Z=1−

(14)

2.2. Circular Contact

For circular contact, the solid computational domain becomes a cube, which should
have a sufficient dimensionless side length to make the half-space assumption valid. In this
paper, a dimensionless side length of 60 is adopted, with the contact domain Ωc located
over the upper surface of the cube (−4.5 ≤ X ≤ 1.5 and −3 ≤ Y ≤ 3) as proposed by [21].
The symmetry of the problem is taken into consideration to reduce computational efforts,
this is why only half of the computational domain is shown in Figure 4. The solution over
the other half is deduced by symmetry.
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Reynolds equation is applied to the 2D contact domain Ωc and it reads:

− ∂

∂X

(
ε

∂P
∂X

)
− ∂

∂Y

(
ε

∂P
∂Y

)
+

∂(ρ∗H)

∂X
+ ξ P−︸ ︷︷ ︸

Penalty Term

= 0 (15)

It can be seen from Equation (15) that the same penalty method proposed by Wu [23] is
applied. In addition, similarly to the line contact case, a zero-pressure boundary condition
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is to be applied over the boundaries of the contact domain Ωc except for the symmetry
boundary ∂Ωcs = Ωc ∩ ∂Ωs (where ∂Ωs is the symmetry boundary of the solid domain),
where a specific symmetry boundary condition should be imposed (i.e., ∂P/∂Y = 0). The
shear-dependence of viscosity within the Reynolds equation implies the need for the fol-
lowing shear stress equations to determine the shear stress profile across the lubricant film:

1∫
0

Haph
R Z ∂P

∂X +τ0
zx ph

ηRη
Ha2

R dZ = u2 − u1

1∫
0

Haph
R Z ∂P

∂X +τ0
zy ph

ηRη
Ha2

R dZ = 0
(16)

The dimensionless shear stress components
{

τzx, τzy
}

in the x- and y-directions can
be accordingly computed as follows:

τzx = τ0
zx +

Ha
R Z ∂P

∂X
τzy = τ0

zy +
Ha
R Z ∂P

∂Y
(17)

where τ0
zx and τ0

zy are the shear stress x- and y-components over the plane surface. On the
other hand, the film thickness equation becomes:

H(X, Y) = H0 +
X2 + Y2

2
−W(X, Y) (18)

The linear elasticity equations will govern the deformations U, V, and W, which are in
the x-, y-, and z-directions, respectively, as follows:

− ∂2U
∂X2 − ∂

∂Y

[
1
2

(
∂U
∂Y + ∂V

∂X

)]
− ∂

∂Z

[
1
2

(
∂U
∂Z + ∂W

∂X

)]
= 0

− ∂
∂X

[
1
2

(
∂U
∂Y + ∂V

∂X

)]
− ∂2V

∂Y2 − ∂
∂Z

[
1
2

(
∂V
∂Z + ∂W

∂Y

)]
= 0

− ∂
∂X

[
1
2

(
∂U
∂Z + ∂W

∂X

)]
− ∂

∂Y

[
1
2

(
∂V
∂Z + ∂W

∂Y

)]
− ∂2W

∂Z2 = 0

(19)

Boundary conditions should be applied in order to complete Equation (19) as follows:

∂W
∂Z = −2P

π and {σt} = {∅} over Ωc
U = V = W = 0 over ∂Ωb
V = 0 and {σt} = {∅} over ∂Ωs
σn = 0 and {σt} = {∅} elsewhere

(20)

Lastly, the load balance equation for circular contacts can be written as:∫
Ωc

P dXdY =
π

3
(21)

On the other hand, the computational domain of the thermal part is now three rect-
angular cuboids as shown in Figure 5. Similar to the line contact case, a dimensionless
depth of 3.5 is adopted for the solid domains to ensure a zero temperature gradient within
their depth.
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where 𝑢  can be calculated using Equation (12), and 𝑣  can be computed as follows: 

2 3

2 '
0 0

' 'Z Z
h e

f c
R e

p H a P Z dZ dZv v
R Y

η
η η η η

 ∂= + − ∂  
   (23)
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R e
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For point contacts, the energy equations after simplification become:
− ∂

∂X

(
k1
a

∂T
∂X

)
− ∂

∂Y

(
k1
a

∂T
∂Y

)
− ∂

∂Z

(
k1
a

∂T
∂Z

)
+ ρ1c1u1

∂T
∂X = 0

− ∂
∂X

(
k2
a

∂T
∂X

)
− ∂

∂Y

(
k2
a

∂T
∂Y

)
− ∂

∂Z

(
k2
a

∂T
∂Z

)
+ ρ2c2u2

∂T
∂X = 0

− ∂
∂X

(
kH
R

∂T
∂X

)
− ∂

∂Y

(
kH
a

∂T
∂Y

)
− ∂

∂Z

(
kR

Ha2
∂T
∂Z

)
+ ρRρc Ha

R

(
u f

∂T
∂X + v f

∂T
∂Y

)
= Qcomp + Qshear

Where : Qcomp = T
ρ

ph Ha
T0R

∂ρ

∂T

(
u f

∂P
∂X + v f

∂P
∂Y

)
and Qshear =

ηRη
T0

Ha2

R

( .
γ

2
zx +

.
γ

2
zy

) (22)

where u f can be calculated using Equation (12), and v f can be computed as follows:

v f = vc +
ph H2a3

R2ηR

∂P
∂Y

 Z∫
0

Z′dZ′
η
−

ηe
η′e

Z∫
0

dZ
η

 (23)

Moreover,
.
γzx can be calculated using Equation (13), whereas

.
γzy can be calculated as:

.
γzy =

∂v f

∂z
=

Haph
ηRηR

∂P
∂Y

(
Z− ηe

η′e

)
(24)

To complete Equation (22), some boundary conditions should be imposed:

T = 1 over the inlet boundaries of both solid and fluid domains
T = 1 over the depth of the solid domains
∇T·→n = 0 over outlet and symmetry boundaries of solid and fluid domains

(25)

where the depth of solid domains can be represented by Z = −3.5 and Z = 4.5 ∀X and Y,
the outlet boundaries can be represented by X = 1.5 ∀Y and Z in addition to
Y = −3 ∀X and Z, and the symmetry boundaries can be represented as Y = 0 ∀X and Z.
It is also important to note that, similar to the line contact case, for the fluid domain inlet

boundary (i.e., X = −4.5 and 0 ≤ Z ≤ 1 ∀Y),
−
T = 1 should only be imposed on the portion

where u f > 0. In fact, the inlet and outlet of the fluid cannot be determined in advance
due to the reverse flows arising from a strong Poiseuille component. Lastly, the continuity
condition across the two fluid–solid interfaces (Z = 0 and Z = 1) is taken into account
using Equation (14), similar to the line contact case.

3. FEM Full Model

The physical problem described in Section 2 entails a total of five field variables:
P for the pressure distribution over the contact domain,τ0(= τ0

zx for line contacts, or{
τ0

zx, τ0
zy

}
for circular contacts) for the shear stress distribution over the flat plane surface,
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U(= {U, V} for line contacts, or {U, V, W} for circular contacts) for the elastic deformation
over the equivalent solid domain, H0 for the rigid body separation term, and T for the
temperature variation over the solid and fluid domains. These field variables will be solved
for using Equations (5), (6), (8), (10) and (11), respectively, for line contacts and using
Equations (15), (16), (19), (21) and (22) for circular contacts. These equations for both line
and circular contacts can be written in matrix form using subscript e, h, l, t, s accordingly for
the elastic, hydrodynamic, load balance, thermal, and shear stress domains. All equations
are discretized using non-regular non-structured finite elements (i.e., triangular elements
for line contacts and tetrahedral elements for circular contacts), except for the fluid domain
of the thermal part where structured elements are employed (i.e., rectangular elements for
line contacts and prism elements for circular contacts). Second-order Lagrange elements are
used for all field variables (except for H0, which is a scalar). Details of the corresponding
finite element formulations will not be provided here, in the interest of space. Interested
readers are referred to [20]. All equations are solved simultaneously (i.e., as a monolithic
system), and since the resulting system of equations is highly non-linear, it is solved using a
damped-Newton procedure [36], which results in a linearized system of equations at every
Newton iteration k of the form:

Kee Keh ∅ ∅ ∅
Khe Khh Khl Kht Khs
∅ Klh 0 ∅ ∅
Kte Kth Ktl Ktt Kts
Kse Ksh Ksl Kst Kss


k−1

δU
δP

δH0
δT
δτ0



k

= −


∅
Rh
Rl
Rt
Rs



k−1

(26)

The matrix on the left represents the Jacobian matrix of the non-linear TEHD problem,
while the right-hand-side vector is the residual vector. The vector of unknowns consists
of the increments of the field variables δU, δP, δH0, δT, and δτ0. At every iteration k, it is
to be multiplied by a damping factor and then added to the overall solution vector of the
previous iteration k− 1. It is important to note that the Jacobian matrix should be computed
for every iteration k with the exception of Kee, Keh, and Klh, which are only computed once
(at the first iteration) since both linear elasticity and load balance equations are linear. Using
the subscripts mentioned above, the total number of dofs for line and circular contacts can
be defined as ndo f = 2× ne + nh + 1 + nt + ns and ndo f = 3× ne + nh + 1 + nt + 2× ns
respectively, where n refers to the number of nodes in a specific domain. The main drawback
of solving the “full model” described in Equation (26) is that several dofs in the elastic
domain are solved in vain. In fact, only normal elastic deflections over the contact domain
Ωc are needed. The purpose of this paper is to investigate how the proposed reduced
model can help in decreasing the computational overhead by decreasing the number of
elastic dofs calculated by 2× ne − nh for linear contact cases, and 3× ne − nh for circular
contacts (i.e., by reducing the number of elastic dofs to nh in both cases). The description of
the reduction technique is detailed in the following section.

4. Model Order Reduction

The following section describes the model order reduction technique used to decrease
the number of dofs by eliminating unneeded ones from the elastic domain. This is per-
formed using static condensation in addition to a splitting procedure. This section will be
divided into 3 sub-sections where the static condensation, the splitting technique, and their
application to the actual finite element model are detailed.

4.1. Static Condensation

The static condensation technique, also known as the Schur complement method, or
Guyan condensation was long used in finite element structural analysis. This method
became well-known after being introduced by Guyan [29] and Irons [37]. To detail how
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the procedure is carried out, a linear elasticity problem governed by the following overall
matrix system is considered:

[K]{U} = {F} (27)

where [K] is the stiffness matrix of the structure, {U} is the vector of nodal displacements,
and {F} is the vector of external nodal forces. The static condensation technique consists of
separating needed dofs (named masters with subscript m) from unneeded ones (named
slaves with subscript s). Equation (27) becomes the following after re-arrangement:[

Kss Ksm
Kms Kmm

]{
Us
Um

}
=

{
Fs
Fm

}
(28)

Expanding the matrix above to two separate equations and using the upper one to
express {Us} as a function of {Um} will lead to the following:

{Us} = −[Kss]
−1[Ksm]{Um}+ [Kss]

−1{Fs} (29)

Readjusting the lower part of Equation (28) using Equation (29) to express {Us} as a
function of {Um} will help in eliminating the slaves from the overall matrix. The lower
part of Equation (28) becomes: [

K̂
]
{Um} =

{
F̂
}

with :
[
K̂
]
= [Kmm]− [Kms][Kss]

−1[Ksm] and
{

F̂
}
= {Fm} − [Kms][Kss]

−1{Fs}
(30)

As can be seen in Equation (30), which is known as the reduced system, even though
slaves were eliminated, their effect is injected in both stiffness and force matrices keeping
the solution exact. In fact, static condensation mainly differs from other MOR techniques in
that no additional approximations are introduced, beyond discretization ones. In addition,
it can also be seen that this method only requires a basic knowledge of linear algebra, which
makes it easy to implement even for novice users. Lastly, it is important to note that the
main drawback of this method is that the reduced stiffness matrix obtained

[
K̂
]

is a dense
one compared to sparse matrices emerging from standard finite element formulations.
Accordingly, a splitting procedure is required to alleviate this shortcoming, as discussed in
the following section.

4.2. Splitting Procedure

The main purpose of the splitting procedure is to retrieve the standard sparsity of
the overall matrix system after static condensation is applied. In order to do so, the same
matrix system shown in Equation (27) is used for demonstration purposes. The first step
would be to split the matrix [K] into two parts, [Kn] and

[
K f
]
, such that [K] = [Kn] +

[
K f
]
.

The next step would be to set an initial guess {U}0 for the solution at the first iteration
(i = 1) and apply an iterative procedure as follows:

[Kn]{U}i = {F} −
[
K f
]
{U}i−1 (31)

where {U}i is the new solution vector for every iteration i. In addition, the choice of [Kn]
should be made in such a way as to reduce the computational overhead as much as possible
(e.g., diagonal or band matrix). The choice adopted in this paper will be elaborated on
in Section 4.3.

4.3. Overall Numerical Procedure

This section describes how the static condensation and the splitting procedure in-
troduced earlier are applied to the full model described in Equation (26). First of all, the
master dofs are chosen to be the W deformations across the contact domain Ωc with a
number of nm = nh. Accordingly, for line contacts, the nodal dofs that are not needed
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from the elastic field are the U component belonging to the contact domain, and both U
and V components for the nodes of Ω−Ωc, and their total number is ns = 2× ne − nh.
On the other hand, this number is larger for circular contacts since both U and V com-
ponents are not needed over Ωc whereas U, V, and W components are not needed over
Ω−Ωc, meaning that ns = 3× ne − nh. Using static condensation defined in Section 4.1,
Equation (26) is modified as follows:

K̂ee K̂eh ∅ ∅ ∅
K̂he Khh Khl Kht Khs
∅ Klh 0 ∅ ∅
K̂te Kth Ktl Ktt Kts
K̂se Ksh Ksl Kst Kss


k−1

δŴ
δP

δH0
δT
δτ0



k

= −


∅
Rh
Rl
Rt
Rs



k−1

(32)

where δŴ corresponds to the elastic deformation increment in the z-direction over the
contact domain Ωc. It can be also referred to as the “Reduced elastic domain”. It is also
important to note that there are no forces that are applied to the slaves since the force
is only applied to the contact nodes chosen as masters. Accordingly, {Fs} = {∅} and{

F̂
}
= {Fm} using Equation (30), meaning that

[
K̂eh
]

is nothing but [Keh] with the zero
lines removed. Similarly,

[
K̂he
]

is nothing but [Khe] with the zero columns removed since
the hydrodynamic problem is only connected to the elastic domain through the master dofs
(in a finite element sense). For the same reason,

[
K̂te
]

and
[
K̂se
]

are nothing but [Kte] and
[Kse], respectively, with the zero columns removed. Lastly, using Equation (30),

[
K̂ee
]

can
be defined as: [

K̂ee
]
= [Kmm]− [Kms][Kss]

−1[Ksm] (33)

To optimize the computational overhead, the matrix [Kss] is not inverted. Instead,[
K̃
]
= [Kss]

−1[Ksm] is evaluated by solving the following system of equations for
[
K̃
]
:

[Kss]
[
K̃
]
= [Ksm] (34)

The direct solver UMFPACK [38] is used to generate the LU decomposition of [Kss].
It is important to note that even though this decomposition is time-consuming, it is per-
formed only once, whereas the computationally cheap operations of backward and forward
substitutions are repeated for every column of [Ksm] to obtain its corresponding column
within

[
K̃
]
. The next step would be to compute

[
K̂ee
]

using Equation (33). From here on,

the evaluation of
[
K̂ee
]

will be referred to as the offline phase of the MOR technique. One
of the main advantages of this method is that the offline phase can only be performed once
for a given mesh, and then stored for later use. In fact, [Kee] is independent of operating
conditions, and through the adopted choice of equivalent material properties, it was also
made independent of the latter (see Equations (8) and (19)). However, even though

[
K̂ee
]

is much smaller in size than [Kee], it may contain more non-zeros, since it is dense [28].
Accordingly, the splitting technique is used where

[
K̂ee
]

is divided into “near” and “far”

contributions named
[
K̂n

ee
]

and
[
K̂ f

ee

]
, respectively, with

[
K̂ee
]
=
[
K̂n

ee
]
+
[
K̂ f

ee

]
. The choice

of near and far contributions was made similarly to previous works on numerical EHL such
as [39,40]. In fact, for a given node, the near contributions were considered to come from
the nodes within the same element(s) (including the node itself), whereas the rest are con-
sidered as far. Therefore, for every row of

[
K̂ee
]
, the contributions from nodes in the same
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element are shifted towards
[
K̂n

ee
]

and the rest are shifted towards
[
K̂ f

ee

]
. Consequently,

Equation (32) becomes:


K̂n

ee K̂eh ∅ ∅ ∅
K̂he Khh Khl Kht Khs
∅ Klh 0 ∅ ∅
K̂te Kth Ktl Ktt Kts
K̂se Ksh Ksl Kst Kss


k−1

δŴi

δPi

δHi
0

δTi

δτ0 i



k

= −


K̂ f

eeδŴi−1

Rh
Rl
Rt
Rs



k−1

(35)

where i is the iteration number for the splitting procedure (internal loop within every
damped-Newton iteration k). To start with, a specific initial guess is defined where the
Hertzian contact pressure is used for P, its corresponding reduced elastic deformation field
for Ŵ, a carefully chosen value for H0, a dimensionless value of unity was chosen for tem-
perature, and the shear stress initial guess is chosen to be nil. Note that the matrix system in
Equation (35) is repeatedly solved for every iteration k where the overall increment vector{

δŴ, δP, δH0, δT, δτ0
}

is multiplied by a damping factor, and then added to the solution
obtained at the previous Newton iteration. These iterations—using a damped Newton
procedure—will be stopped according to the convergence criteria defined in [36]. It is also
important to note that the splitting procedure also requires some iterations (denoted by
the iteration index i), as an internal loop that is carried out within every damped-Newton
iteration k. For every splitting iteration i, the far contribution of the elastic residual vector
is evaluated on the right-hand side using the reduced elastic deformation vector computed
at the previous splitting iteration i− 1. Within the splitting procedure, the overall system
of equations is repeatedly solved until the L2-norm (normalized with respect to the total
number of unknowns) of the absolute difference between two consecutive iterations i− 1
and i of the increment vector of the overall solution

{
δŴ, δP, δH0, δT, δτ0

}
falls below 10−5.

Finally, it is important to note that the static condensation with splitting reduces the size of
the problem from ndo f = 2× ne + nh + 1 + nt + ns to n̂do f = 2× nh + 1 + nt + ns for line
contacts and from ndo f = 3× ne + nh + 1 + nt + 2× ns to n̂do f = 2× nh + 1 + nt + 2× ns
for circular contacts. Even though the reduction is large, especially given that the elastic
domain is one of the largest in the problem, it is not as significant as for other MOR tech-
niques that are based on mode superposition principles [24–27,41]. On the other hand,
the significance of this technique is that it is fast and efficient since the Jacobian matrix
evaluation and its LU decomposition are not repeated at every splitting iteration i. The
same applies to the hydrodynamic, load balance, thermal, and shear stress components of
the right-hand-side residual vector, which are not re-evaluated at every splitting iteration.
Therefore, only the evaluation of the elastic component of the residual vector and the
forward and backward substitutions are carried out for every splitting iteration i, which
are light in terms of computational overhead. In addition, the main significance of this
method is its simplicity since, as already explained, the method only needs some basic
knowledge in linear algebra in contrast to other MOR techniques, where a reduced so-
lution space requiring a high level of expertise should be defined. Moreover, the MOR
technique introduced is special in terms of its independence of both material properties
and operating conditions. In fact, the reduced matrix is only computed once for a given
mesh. However, this is not the case for other techniques where the reduced solution space
should be re-defined every time the solid material properties are changed or a new feature
is incorporated into the problem (e.g., surface roughness). Lastly, this technique reduces the
actual EHL parts from 2D-1D and 3D-2D coupled problems to 1D-1D and 2D-2D for line
and circular contacts, respectively. This will lead to significant savings in central processing
unit (cpu) times, as will be discussed next.
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5. Results and Discussion

In this section, the performance of the proposed MOR technique is studied, compared
to the full model. A single Intel Core i7 2.7 GHz processor was used for all simulations.
To complete the employed numerical model, lubricant viscosity dependence relations on
temperature, pressure, and shear stress are required. First, the double-Newtonian modi-
fied Carreau model [42] is used to represent the shear-dependence of the dimensionless

generalized Newtonian viscosity
−
η as follows:

η
(

P, T, τ
)
= µ2

(
P, T

)
+

µ1
(

P, T
)
− µ2

(
P, T

)
[
1 +

(
τ τ0
Gc

)ac] 1
nc −1

ac

(36)

where the choice of τ0 = ph is adopted. Further, ac, nc, and Gc are constants. In addition,
the Newtonian viscosities µ1 and µ2 in Equation (36) are dependent on both temperature
and pressure. This correlation is described by the Roelands [43] equation for simplicity
as follows:

µi
(

P, T
)
=

µi,R
µ1,R

exp
{
(ln(µ1,R) + 9.67)

[
−1 +

(
1 + 5.1× 10−9P ph

)Z0
(

T TR−138
TR−138

)−S0
]}

With : i = 1 or 2, Z0 = α
[5.1×10−9(ln(µ1,R)+9.67)] and S0 = β(TR−138)

ln(µ1,R)+9.67

(37)

where µ1,R and µ2,R are the first and second Newtonian viscosity limits at the reference
state under zero and infinite shear rates, respectively; α is the lubricant pressure–viscosity
coefficient and β is the lubricant temperature–viscosity coefficient. Note that the reference

state corresponds to TR = T0 = 300K(
−
TR = 1), where T0 is the ambient temperature, pR = 0

Pa, and τR = 0 Pa. Moreover, the lubricant density dependence on both temperature and
pressure is needed. For this, the Dowson and Higginson [44] relation is used for simplicity
as follows:

ρ
(

P, T
)
=

0.59× 109 + 1.34P ph
0.59× 109 + P ph

− γTR
(
T − 1

)
(38)

where γ is the lubricant temperature-density coefficient. Note that both the Roelands
relation and the Dowson and Higginson equation of state do not accurately represent
the pressure-temperature dependence of the viscosity and density of common lubricants.
Nonetheless, given that the current work is purely numerical, with the objective of develop-
ing a fast and reliable numerical approach for the analysis of TEHL contacts, such relations
are preferred for their simplicity. Moreover, they are well-known and commonly used in
the TEHL literature. However, the reader is reminded that, when a real performance predic-
tion of TEHL contacts is sought, more realistic—but also more sophisticated—rheological
models are required, whether for the prediction of film thickness [45] or friction [46].

It is important to note that the performance of the proposed MOR technique will
be studied for moderate and heavy loads. The solution of the latter is known to be
numerically challenging, requiring the use of special stabilized FEM formulations [22] to
remove inherent numerical instabilities/oscillations. Thus, the limiting shear stress (LSS)
behavior is considered since it will be reached especially under high loads. This concept
proposes the existence of an asymptotic shear stress value that is independent of the shear
rate (i.e., any increase in shear rate does not lead to an increase in shear stress). This effect
is incorporated as proposed by [47], i.e., the LSS τL is related to pressure as follows:

τL = Λ p (39)

where Λ is a constant deduced from EHL experimental friction curves. This will only
change the value of the shear stress when it exceeds the LSS by making it equal to τL. Lastly,
the considered material properties and operating conditions are summarized in Table 1.
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Table 1. Lubricant properties, solid properties, and operating conditions.

Material Properties Operating Conditions

Lubricant TR = T0 = 300 K
µ1,R = 0.1 Pa·s c = 1500 J/kg·K R = 15 mm
µ2,R/µ1,R = 0.5 k = 0.1 W/m·K SRR = 0.0–0.5
α = 20 GPa−1 Gc = 0.01 MPa Line Contacts
β = 0.05 K−1 ac = 2.2 Moderate Load Heavy Load

γ = 0.00075 K−1 nc = 0.8 um = 0.1 m/s um = 0.5 m/s
ρR = 750 kg/m3 Λ = 0.075 F = 0.2 MN/m

(ph = 0.7 GPa)
F = 2 MN/m
(ph = 2.2 GPa)Solids

ρ1 = ρ2 = 7850 kg/m3 Point Contacts
E1 = E2 = 210 GPa Moderate Load Heavy Load

υ1 = υ2 = 0.3 um = 0.1 kg/m3 um = 0.5 m/s
k1 = k2 = 21 W/m·K F = 25 N

(ph = 0.66 GPa)
F = 1000 N

(ph = 2.25 GPa)c1 = c2 = 470 J/kg·K

5.1. Line Contacts

The results were computed using the “Normal” mesh defined in [20], which was
shown to provide grid-independent solutions. The mesh corresponds to 2450 triangular
elements used to discretize the 2D domain Ω. The projection of these elements on the
contact region was used in discretizing the 1D contact domain (to avoid mapping), resulting
in a total of 249 line elements for Ωc. On the other hand, 2116 triangular elements were
used to discretize the plane domain Ω1. The same number was used for the cylinder
domain Ω2, of which mesh is nothing but a mirror image of that of the plane, with respect
to the mid-layer of the lubricant film (Z = 0.5). Lastly, rectangular elements were used to
discretize the fluid domain Ω f of the thermal part, for which projection over the contact
domain Ωc is nothing but its corresponding 1D mesh. For the “Normal” mesh case, the
total number of elements across the film thickness is 4. Accordingly, the mesh used has a
total of 499 nodes/degrees of freedom (dofs) for the hydrodynamic and shear stress parts,
5195 nodes (10,390 dofs) for the elastic part, and 12,491 nodes/dofs for the thermal part,
adding up to a total of ndof = 23, 880. Accordingly, the reduced number of degrees of
freedom after static condensation is n̂dof = 13, 989. Figure 6 shows the dimensionless
pressure and film thickness distributions over the contact domain (top), temperature
rise within the mid-layer of the lubricant film (middle), and dimensionless shear stress
variations over the plane surface (Z = 0), for both considered loading conditions (moderate
and high) with SRR = 0.5, obtained using both the full and reduced models. It can be
seen in Figure 6 that the full and reduced model solutions are in perfect agreement. This
is expected since the applied MOR method is exact, which means it does not include any
approximations. Note that compared to the isothermal Newtonian case (not shown here),
the film thicknesses reported in Figure 6 under thermal non-Newtonian considerations
are lower due to the combined effects of inlet shear-thinning, as well as compressive and
shear heating. These also reduce the lubricant shear stress across the film, compared to the
isothermal Newtonian case. The effect on pressure would be minimal though, except in
the vicinity of the pressure spike, which is usually thinner and higher in the isothermal
Newtonian case.

The proposed methodology was also used to generate friction curves (i.e., friction
coefficient f vs. slide-to-roll ratio SRR), where:

f =

∫
Ωc

τzx|z=h/2dΩ

F
and SRR =

u2 − u1

um
(40)
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The friction curves for both the moderate and high load cases, obtained using both
the full and reduced models, can be seen in Figure 7. Note, again, the perfect agreement
between the friction curves obtained using both models. The main difference is in the
cpu time required for each. For example, for the friction curves of Figure 7, each of which
contains 32 data points, the required cpu time differences are reported in Table 2.
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Table 2. Computational overhead comparison between full and reduced models for generating the
line contact friction curves of Figure 7 (32 data points each).

Load
Full Model SCS Model

# Newt. Iter. cpu Time (s) # Newt. Iter. cpu Time (s)

Moderate 90 126.6 119 118.4

High 421 487.3 436 398.8

It is clear that, despite an increase in the overall number of Newton iterations, cpu
times for the reduced model are reduced by 10–20%, compared to the full model.

5.2. Point Contacts

The results were computed using the “Normal” mesh defined in [20]. This mesh
corresponds to 18,020 tetrahedral elements used to discretize the 3D domain Ω. The
projection of these elements on the contact region was used in discretizing the 2D contact
domain (to avoid mapping), resulting in a total of 5390 triangular elements for Ωc. On
the other hand, 16,462 tetrahedral elements were used to discretize the plane domain Ω1.
The same number was used for the ball domain Ω2, of which the mesh is nothing else
but a mirror image of that of the plane with respect to the mid-layer of the lubricant film
(Z = 0.5). Lastly, prism elements were used to discretize the fluid domain Ω f of the thermal
part, for which projection over the contact domain Ωc is nothing but its corresponding 2D
triangular mesh. For the normal mesh case used here, the total number of elements across
the film thickness is 4. Accordingly, the mesh used contains a total of 10,909 nodes for the
hydrodynamic and shear stress parts (10,909 and 21,818 dofs, respectively), 30,533 nodes
(91,599 dofs) for the elastic part, and 132,693 nodes/dofs for the thermal part, adding up
to a total of ndof = 257, 020. Accordingly, the reduced number of degrees of freedom after
static condensation is n̂dof = 176, 330. Figure 8 shows along the central line of the contact in
the x-direction, the dimensionless pressure and film thickness distributions over the contact
domain (top), the temperature rise within the mid-layer of the lubricant film (middle), and
variations of the x-component of the dimensionless shear stress over the plane surface
(Z = 0), for both considered loading conditions (moderate and high) with SRR = 0.5,
obtained using both the full and reduced models. Clearly, perfect agreement is obtained
between the results of the two models. Note that, similar to line contacts, compared to
the isothermal Newtonian case (not shown here), the film thicknesses reported in Figure 8
under thermal non-Newtonian considerations are lower due to the combined effects of inlet
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shear-thinning, as well as compressive and shear heating. These also reduce the lubricant
shear stress across the film, compared to the isothermal Newtonian case. The effect on
pressure would be minimal though, except in the vicinity of the pressure spike, which is
usually thinner and higher in the isothermal Newtonian case.
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The friction curves obtained using the full and reduced model for the moderate and
high load cases are also reported in Figure 9, where for circular contacts, the friction
coefficient is defined as:

f =

2×
∫

Ωc

τzx|z=h/2dΩ

F
(41)
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The exactness of the method can be observed again through the friction curves of
Figure 9. On the other hand, the main difference is in the cpu time required by each model.
For the friction curves of Figure 9 (containing 32 data points each), the reduction in cpu
times can be observed in Table 3.

Table 3. Computational overhead comparison between full and reduced models for generating the
circular contact friction curves of Figure 9 (32 data points each).

Load
Full Model SCS Model

# Newt. Iter. cpu Time (s) # Newt. Iter. cpu Time (s)

Moderate 85 107,356 102 49,937

High 451 572,022 459 257,302

It is clear that, despite an increase in the overall number of Newton iterations, cpu
times for the reduced model are reduced by more than 50%, compared to the full model.

6. Conclusions

The derivation of fast, reliable, and accurate modeling procedures for the solution
of thermal elastohydrodynamic lubrication problems is a topic of significant interest to
the Tribology community. This paper presents a novel model order reduction technique
for the finite element modeling of thermal elastohydrodynamically lubricated contacts.
The method consists of a static condensation procedure, followed by a splitting algorithm.
Static condensation is first used to reduce the size of the linear elasticity part within
the overall matrix system by limiting the linear elasticity dofs to the required ones (i.e.,
normal deformations within the contact domain). However, the ensuing matrix system
is semi-dense, requiring a large computational overhead to be inverted. Accordingly,
a splitting algorithm is used to retrieve a standard finite-element-like sparsity pattern,
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making this method significantly faster than the full model. Even though the reduction in
computational times is not as attractive as for traditional MOR techniques, the proposed
methodology offers several advantages. Firstly, the offline phase of this method is quite
simple since it only requires basic knowledge of linear algebra. In addition, the method is
exact since it does not require any approximations or mode superposition as in traditional
MOR techniques. As such, this method is versatile, allowing the incorporation of new
features (just as thermal and non-Newtonian effects were introduced in this work), without
the need to redefine the reduced solution space. In addition, it can be applied to any
TEHL model where the solid deformation part is based on the classical linear elasticity
equations (e.g., the current approach, or ones that are CFD-based, with a Fluid–Structure
Interaction approach [19]). Application of the simple linear algebra operations described
here allows for restricting the linear elasticity part to the solid surface. Sub-surface degrees
of freedom would be removed, and their effect would be injected into the surface ones,
allowing significant reductions in memory usage and computational times. Compared to
traditional TEHL modeling techniques, the current approach offers the advantage of fast
convergence rates, requiring a few iterations only for a given test case, due to full coupling
(i.e., the simultaneous resolution of all TEHL governing equations). In addition, the applied
MOR technique means that the size of the arising linear matrix system at every iteration
is reduced, requiring a lower computational overhead for its inversion, as well as lower
memory requirements. Lastly, the proposed methodology is independent of the material
properties of the solids and the operating conditions, which means that the reduction needs
to be performed only once for a given mesh case, and the result may be stored for later use.

The performance of the static condensation with the splitting method was tested in
this work for both moderate and high load configurations. The obtained results proved
the robustness of the method, showing its ability to attain solutions for relatively high
loads (known to be numerically challenging). The results also revealed the exactness of
the method, which does not introduce any additional model-reduction approximations
to the overall solution, since the reduced model results exactly matched those of the full
model. The latter has been validated on numerous occasions against experiments (see
references [48–51], for example), which validates the current reduced model. On the other
hand, the reduction in computational times with respect to the full model was shown to
be significant. It is in the order of 10–20% for line contacts, while it is in excess of 50% for
circular contacts.
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Nomenclature

α Lubricant viscosity-pressure coefficient (Pa−1)
β Lubricant viscosity-temperature coefficient (K−1)
η Lubricant generalized-Newtonian viscosity (Pa·s)
η Lubricant dimensionless generalized-Newtonian viscosity
ηe Dimensionless first-order cross-film lubricant viscosity integral
η′e Dimensionless second-order cross-film lubricant viscosity integral
ηR Lubricant viscosity at reference state (Pa·s)
γ Dowson and Higginson EoS density-temperature coefficient (K−1)
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.
γij Lubricant shear rate in the j-direction within a plane having i as normal (s−1)
µR Lubricant low-shear/Newtonian viscosity at reference state (Pa·s)
µ1, µ2 Dimensionless lubricant first and second Newtonian viscosities
µ1,R, µ2,R Lubricant first and second Newtonian viscosities at reference state (Pa·s)
υ Equivalent solid Poisson coefficient
υ1, υ2 Poisson coefficient of solids 1 and 2
Ω Equivalent solid computational domain
Ωc Contact computational domain
Ω f Lubricant film computational domain within thermal part
Ω1, Ω2 Computational domain of solids 1 and 2 within thermal part
∂Ωcs Symmetry boundary of Ωc
∂Ωb Fixed boundary of Ω
∂Ωs Symmetry boundary of Ω
Λ Lubricant limiting shear stress-pressure coefficient
ρ Lubricant density (kg/m3)
ρ1, ρ2 Density of solids 1 and 2 (kg/m3)
ρ Lubricant dimensionless density
ρe Dimensionless first-order cross-film lubricant density integral
ρ′e Dimensionless first-order cross-film density-to-viscosity double-integral
ρ′′ e Dimensionless second-order cross-film density-to-viscosity double-integral
ρR Lubricant density at reference state (kg/m3)
σn Normal component of 2D or 3D stress tensor (Pa)
σt Tangential component of 2D stress tensor (Pa)
{σt} Vector of tangential components of 3D stress tensor (Pa)
τ Lubricant resultant shear stress (Pa)
τ0 Lubricant dimensionless resultant shear stress over plane surface
τL Lubricant limiting shear stress (Pa)
τR Reference shear stress (Pa)
τij Shear stress in the j-direction within a plane having i as normal (Pa)
τij Dimensionless shear stress in the j-direction within a plane having i as normal
τ0

ij Dimensionless lubricant shear stress τij over plane surface
θ Heaviside function
ξ Penalty term parameter
a Hertzian contact half-width (line contact) or radius (circular contact) (m)
ac, nc Double-Newtonian modified Carreau model parameters
c1, c2 Specific heat of solids 1 and 2 (J/kg·K)
E Equivalent solid Young’s modulus of elasticity (Pa)
E1, E2 Young’s moduli of elasticity of solids 1 and 2 (Pa)
f Friction coefficient
F Contact external applied load (N/m: line contacts or N: point contacts)
Gc Lubricant critical shear stress (Pa)
h Lubricant film thickness (m)
H0 Dimensionless rigid-body separation
H Dimensionless lubricant film thickness
k Lubricant thermal conductivity (W/m·K)
k1, k2 Thermal conductivities of solids 1 and 2 (W/m·K)
ndo f Total number of degrees of freedom of FEM model
n̂do f Total number of degrees of freedom of reduced FEM model
nm, ns Numbers of master and slave dofs in reduced FEM model
p Pressure (Pa)
ph Hertzian contact pressure (Pa)
pR Reference pressure (Pa)
P Dimensionless pressure
Qcomp Compressive heat generation per unit volume (W/m3)
Qshear Shear heat generation per unit volume (W/m3)
R Equivalent roller radius (m)
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SRR Slide-to-roll ratio
T Temperature (K)
T Dimensionless temperature
TR Reference temperature (K)
T0 Ambient temperature (K)
u1, u2 Surface x-velocity components of solids 1 and 2 (m/s)
u f , v f Lubricant velocity field components in the x, y-directions (m/s)
u, v, w Equivalent solid deformation components in the x, y, z-directions (m)
um Contact mean entrainment speed in the x-direction (m/s)
U, V, W Equivalent solid dimensionless deformation components in x, y, z-directions
U Equivalent solid dimensionless deformation vector
x, y,z Space coordinates (m)
X, Y, Z Dimensionless space coordinates
Subscripts
1 Flat plane
2 Cylinder (line contacts)/ball (point contacts)
f Fluid domain
e Elastic domain
h Hydrodynamic domain
l Load balance domain
m Master dofs
s Shear stress domain/Slave dofs
t Thermal domain
Superscripts
0 Plane surface
f Far dofs
n Near dofs
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