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Abstract: Oil detection technology improves the reliability of machinery or equipment. The physical
and chemical indicators of the fluid can reflect the cause of the failure in various aspects, which can
prevent major accidents to the greatest extent by setting up a fault tree. Owing to the lack of data,
it is difficult to accurately obtain the basic event probabilities, which makes it difficult to diagnose
faults. The expert evaluation method and aggregated fuzzy numbers are used to exact the failure
probability, where the event probability is evaluated as the subjective will of the expert. To improve
the probabilistic accuracy, weights are improved by the combined assignment method as well as the
reasonableness analysis. A fault tree diagnostic model is constructed for qualitative and quantitative
analysis, taking the ship engine oil viscosity high fault as an example. According to the results, the
model can provide a comprehensive analysis of physical and chemical indicators. Experts’ own
weights have a large impact on the failure probability, with their weight changes leading to a change
in the failure ranking. From the discrimination, following a Bland–Altman analysis of the results,
the selected combined empowerment method improved the discrimination of the results by 4.8%
compared to the traditional method, with 100% data consistency, which proved that the improvement
was reliable and effective. The structure of this fault diagnosis model is clear, which can quickly give
the fault cause and probability reference value.

Keywords: expert’s own weights; oil detection; physical and chemical indicators; fault tree; combination
empowerment

1. Introduction

In the daily management and safe operation of machinery and equipment, oil detection
provides technical support for fault prevention and determination. For enterprises or
individuals who often operate large machinery and equipment, while ensuring safety, they
can avoid huge economic losses. Oil detection and analysis mainly includes spectroscopy,
iron spectrum analysis, as well as conventional physical and chemical items. In the early
days, oil detection focused on basic research, such as oil abrasive particle shape and size [1],
motion trajectory, conventional physical and chemical indicators, etc. The analysis is biased
towards microscopic aspects, such as elemental content and abrasive wear, which are only
monitored from certain unilateral aspects, without a systematic fault analysis structure
that would allow for a full analysis of the mechanical faults presented by the state of the
oil. As technology developed, it began to be applied to fault detection [2] by combining
spectroscopy with iron spectroscopy to determine mechanical faults. In terms of physical
and chemical indicators [3,4], only a brief analysis of failure causes has been performed.
For the systematic fault analysis of physical and chemical indicators in oil fluids and
troubleshooting, there is a gap in the scientific research.

Fault tree analysis [5], as a commonly used fault diagnosis method nowadays, can
systematize its faults by building trees. When building a fault tree in oil detection, it is
difficult to obtain the probability of failure due to little or missing bottom event data. Even
with partial data, most of the obtained failure probabilities are interval values. To adapt to
reality, the precise treatment of event probabilities also becomes an issue.
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The concept of “fuzzy sets”, introduced by Zadeh [6] in 1965, provided a pioneering
idea for its analysis. Wu et al. [7] combined it with the fault tree analysis method, and Li
et al. [8] improved its triangular fuzzy number and obtained good results. The lapse rates
found above are all fuzzy intervals and are not aggregated. With the maturity of fuzzy set
theory, Dong [9] used expert scoring index scores to calculate the experts’ own weights, for
which the fuzzy solution yielded the exact value of the failure probability. The experts’ own
weights are the arithmetic means of the scores of the indicators. AHP [10] was later applied
to determine the experts’ own weights. M. Omidvari [11] improved AHP to analyze the
failure probability in industrial installations. References [12,13] studied different domain
experts to determine the weights, which were applicable to different domains with a large
base of experts. With this development, the Z-number [14] concept was invoked, which can
be used as a method to calculate the weights. The indicator measurement method [15] was
proposed based on the expert elicitation method, which assigns weights to the evaluation
indicators of experts. Among them, the AHP method and Z-number method, which are
subject to individual subjectivity, belong to the subjective empowerment method due to
the lack of an inherent discussion of the known data. There is less literature on experts’
own weights correction, and the indicator measurement method is based on statistical
survey data. From the perspective of the objective correction of subjective combination
empowerment [16], the indicator measurement is used for weight improvement and the
precise treatment of fuzzy probabilities, and the rationality analysis is discussed. In order
to perform fault analysis and prevent physical and chemical oil indicators, a fault tree
analysis model based on the improved expert’s own weight and the aggregated fuzzy
number is established. The model framework contains the qualitative analysis of fault trees,
exact processing of fault probabilities, and quantitative analysis of fault trees under exact
probability values. This model fills the gap in the study of the systematic failure analysis of
physical and chemical indicators of oil fluids. The rational analysis of the weights refines its
traditional steps. It is significant in the failure analysis of physical and chemical indicators
of oil fluids.

2. Improving the Construction of Expert’s Own Weight–Aggregate Fuzzy Number
Fault Tree Diagnosis Model
2.1. Fault Tree Creation and Qualitative Analysis

Fault tree is a model for the systematic analysis of faults. It consists of top event,
middle event, bottom event, and logic gates; commonly used logic gates are “or gate,”
“with gate”, and so on. Fault trees are built layer by layer, with downward derivation from
the top event for approximate fault classification, also called intermediate events, and then
recursive derivation from the intermediate events to each bottom event. When performing
fault tree building, there should be a clear logic and no logical contradictions, considering
every cause of failure in order to prioritize events regardless of the probability of failure.
Events must be accounted for when conditions require it.

The fault tree constructed in this way has a better fault-sorting vein, which can visually
present the causes and parts of the fault, and also provide a comprehensive and visual
description of the causes of the fault and various logical relationships. After completing
the fault tree, it needs to be analyzed qualitatively, which is the first step of fault diagnosis.
The purpose of the qualitative analysis is to determine the minimum cut [17] set, which
finds the minimum set of events that could cause the top event failure. It is usually derived
by the downstream method [18]. Among the routine physical and chemical items of ship
oil inspection, the high viscosity of the engine oil was selected as the object, and the fault
tree was established by combining information and expert guidance. Table 1 shows the
event table of the fault tree of the high viscosity of ship engine oil, and Figure 1 shows the
fault tree of the high viscosity of ship engine oil.
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Table 1. High-viscosity marine engine oil fault tree event table.

Event
Code Description Event

Code Description Event
Code Description

T High viscosity
of engine oil Q8 Two-stroke

diesel engine X5 Cylinder oil
leakage

Q1 Aging and
deterioration Q9 Gas

downstream X6 High-viscosity
slip oil is used

Q2 Foreign
pollution Q10 Engine Aging X7

Improper
purification of
lubricating oil

Q3 Wrong brand
name Q11 Poor sealing X8 Poor

combustion

Q4 Natural
oxidation X1 Use time over

9000 h X9 Too many
machines

Q5 Unnatural
oxidation X2 Oil quality

(fake oil) X10 High acid
value

Q6 Heavy oil
pollution X3 Fuel system

failure X11

Excessive
cylinder

liner/piston
ring wear

Q7 Water
pollution X4

Severe
emulsification
of lubricating

oil
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Figure 1. Fault tree of the high viscosity of marine engine oil.

The minimum cut set of the high-viscosity marine engine oil fault tree established
from Figure 1 is {X1}, {X2}, {X3}, {X4}, {X5}, {X6}, {X7}, {X8}, {X9}, {X10}, {X11}.

2.2. Experts’ Own Weights

Experts’ own weights have a large impact on the bottom event failure rate, which
needs to be rationalized. There are three types of methods to determine the weights: the
subjective assignment method, objective assignment method, and combined assignment.
The main methods of the former are AHP (hierarchical analysis), Delphi method [19,20],
binomial coefficient method [21], indicator assignment method, etc., which are subjective
cognitive judgments of decision makers without considering the relationship between
data. For the subjective assignment method of establishing weights, experts often play
the role of decision maker to make subjective judgments and to give weights to the data,
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but the experts themselves cannot be accurately assigned when evaluating their weights,
and the indicator assignment method is one of the methods that can assign weights to
them. Objective assignment methods include the entropy value method [22], CRITIC as-
signment method [23,24], and standard deviation method [25]. In contrast to the subjective
assignment method, which focuses more on the intrinsic data linkage between indicators
to determine the weights, the disadvantage is that it cannot be used when there is little or
missing data. Combinatorial assignment uses different mathematical methods to combine
subjective and objective assignments, or to objectively modify the subjective assignments.

The indicator measurement method is a weighted judgment that sets measurement
indicators, which is divided into two layers: the indicator layer and the judgment layer. The
indicator layer is established for the weighting of the set indicators using a questionnaire
scoring survey. The judgment layer uses the known information to formulate the scoring
criteria and methods of indicators, and finally uses the comprehensive information to
determine the weight. The index measurement method is used to set expert-level indexes
for experts’ academic attainments, titles and professional ethics, and to rate a number of
experts. These indicators were chosen because of the openness and scientific nature of
the indicators. The experts’ personal academic information is freely available, and the
professional ethics evaluation is also published annually via the school’s official website and
other channels. The academic attainments are mainly experts’ research results and awards,
and the titles include school titles and their own qualifications. Secondly, the professional
ethics can be seen from perspective of the degree of importance that experts attach to them,
which directly affects their judgment of the subsequent bottom event failure rate, Because
the importance of indicators is not affected by time and space, there is a certain difference,
so the total score of the three indicators is set to 10 for scoring questionnaires; the set score
range is usually [0, 100]. The ratio of the survey score to the total score is the weight of the
expert-level indicator, and the sum of the weights of all indicators is 1. The criteria and
grades are set for the indicators. Table 2 shows the weight ratio of expert-level indicators
calculated by the questionnaire, and Table 3 shows the expert indicator judging criteria.

According to Table 3, each expert situation is first scored and combined with the
expert-level index weights to obtain the comprehensive level score.

F =
3

∑
s=1

Es f (1)

where F is the comprehensive level score, f is the evaluation score corresponding to the
expert-level index, and Es is the weight value of the s-th expert-level index.

The expression for the calculation of the expert’s own weight is:

Zj = F/
m

∑
j=1

F (2)

where Zj is the index measurement method of the expert’s own weight and m is the number
of experts.

In Equations (1) and (2), it can be seen that the comprehensive expert-level scores are
obtained by linear weighting, the expert-level index weights and evaluation scores directly
affect the experts’ own weights, and the reasonableness of the data needs to be improved.

Table 2. Weighting ratio of expert-level indicators.

Evaluation Indicators Academic Attainment Professional Ethics Job Title

Weights Es E1 E2 E3
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Table 3. Expert indicator judging criteria.

Academic Attainment Professional Ethics Job Title

Level Judging Criteria Score Judging Criteria Score Judging Criteria Score

I

Authority in the
field of research,

numerous
national awards,

outstanding
achievements

10

Fully perform the
duties of the

position, complete
the work of high

quality, with
significant

achievements

10 Professor, PhD
director 10

II

Have certain
research results,
won provincial
and ministerial

awards

8

Ability to perform
the duties of the
position and to

complete the work
in a

comprehensive
manner

7

Associate
professor level,
bachelor’s or

master’s degree or
above

8

III
Some research

results and
awards

7
Basic performance

of duties, poor
work

6
Lecturer level,

master’s degree or
above

7

IV
Research in the
field but not in

depth
6

Inability to
perform duties,

poor work
completion and

significant losses

5 Lecturer level,
bachelor’s degree 6

2.3. Improving and Justifying the Combination Assignment to the Experts’ Own Weights

The evaluation of experts has a large impact on the probability results of bottom
events, and the assignment of traditional experts’ own weights only considers subjectivity
but ignores objectivity, so the best assignment scheme should be a combination of sub-
jective and objective weighting in order to obtain results that are in line with the actual
situation. Using the indicator level questionnaire data and the subjective data of expert
ratings in the judgment level of the indicator assessment method as the basis, the CRITIC
assignment method is used to correct the experts’ own weights. The CRITIC assignment
method assigns weights from two aspects: one is the standardized difference comparison
between evaluation objects under the same evaluation index, and the other is the conflict-
ing comparison between evaluation indexes. It is important to note that the evaluation
indicators and evaluation objects selected in the indicator layer differ from those in the
judgment layer. The indicator layer takes the expert-level indicators as the evaluation
indicators and each questionnaire item as the evaluation object, while the judgment layer
takes the experts themselves as the evaluation indicators, and the evaluation objects are
the evaluation scores of the expert-level indicators, with the weights obtained being the
evaluation indicator weights.

The CRITIC assignment method is used to calculate the weights, and the data are
first dimensionless, with u evaluation indicators and v evaluation objects; Lij is the initial
value of the i-th evaluation object in the j-th evaluation index, and the data are subjected to
positive indexing.

L∗ij =
Lij −Mmin

Mmax −Mmin
(3)

where Mmax is the maximum value of Lij, Mmin is the minimum value of Lij, and L∗ij is the
value after dimensionless processing.

Afterwards, the expression for the amount of information is obtained.

Cj = ∂j

u

∑
k=1

(
1− rkj

)
(4)
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where Cj is the amount of information, ∂j is the standardized difference of the evaluation
index, and rkj is the correlation coefficient between the k-th and j-th evaluation indexes.

Finally, the expression of indicator weight Hj of the CRITIC empowerment method
is derived.

Hj = Cj/
u

∑
j=1

Cj (5)

The selection of combination assignment should satisfy three principles: first, it has
subjective and objective merits; second, the merits are explanatory (its own weights should
be biased towards subjective weights, and the data sought should be biased towards
objective weights); finally, it should not be blindly overcomposed. Based on these three
principles, two methods of the objective correction of the subjective combination of the as-
signment method to seek the expert’s own weight, in order to carry out the data comparison
method, are as follows:

(1) Combined assignment method I: Firstly, the evaluation index questionnaire data is
used to derive the expert-level index weight by the CRITIC assignment method. This
weight is used to weight the expert rating data, and then the final weight is obtained
by the CRITIC assignment method. Because there are two layers of data, the subjective
data is objectively corrected twice, and the overall approach is close to the objective
assignment method.

(2) Combined assignment method II: Combinatorial weighting method II: Combinatorial
weighting method I and the expert-level indicator weights of the index measurement
method are combined and weighted using the principle of minimum discriminative
information [26] to obtain their weights, and then the weights are used to weight
the expert rating data. The experts’ own weights are calculated using the CRITIC
weighting method, and finally the weights are combined and weighted again with
the experts’ own weights of the index measurement method. The weights obtained
by this method were also corrected for two levels of data.

Let Z
′
j and H

′
j be the subjective and objective weights of different methods, Wj is

the combined weights, and the formula of the combined weighting method based on the
principle of minimum discriminative information is:

Wj =
√

Z′j H
′
j/

u

∑
j=1

√
Z′j H

′
j (6)

The rationality of the combined weights is studied by defining the weight deviation ε,
the maximum value of the weight deviation λ, and the weight distortion rate η. ε is the
difference between subjective weights and other weights. Because the subjective weights
represent the public’s opinion, it would be set as the benchmark; the ratio of the sum of the
weights to the number of evaluation indicators u is the maximum value of the deviation
of the weights, as well as the average value of the evaluation indicator weights, where
the sum of the weights is usually set to 1. When using other assignment methods and
subjective assignment methods to obtain the same evaluation indicator weights, if ε > λ,
then there may be a situation where the evaluation indicator weights are equal to 0, which
is contrary to reality; this is the basis for the setting of λ. Using the weight distortion rate η
for the reasonableness analysis of the combination weights, the smaller the combination
weights, the higher the credibility.

η =
usz

u
(7)

where usz is the number of distortions of evaluation index weights.
The experts in this research field are fewer, and five are selected as experts in the same

field with serial numbers A1, A2, A3, A4 and A5. The data survey is processed through
Tables 2 and 3, and Tables 4 and 5 are different assignment methods to calculate the weight
of five expert-level indexes and the experts’ own weights of the three methods, respectively.
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Table 4. Expert-level indicator weights for the three methods.

Academic Attainment Professional Ethics Job Title

Indicator measurement method 0.390 0.280 0.330
Combined assignment method I 0.440 0.248 0.312
Combined assignment method II 0.415 0.264 0.321

Table 5. Experts’ own weights for the three methods.

A1 A2 A3 A4 A5

Indicator measurement method 0.248 0.223 0.163 0.185 0.181
Combined assignment method I 0.095 0.348 0.364 0.068 0.125
Combined assignment method II 0.165 0.298 0.269 0.102 0.166

In Table 4, for the three methods of expert-level indicator weights, in the same order,
academic attainment > job title > professional ethics; λ is 1/3, ε is in range, and there is
no distortion. In Table 5, λ = 0.2; for the combined assignment method I and the indicator
measurement method obtained by the experts themselves, the weight comparisons ε are
0.153, 0.125, 0.201, 0.117, 0.056, indicating the weight distortion of expert A3, and η is 20%.
There is no distortion in the expert’s own weight obtained by the combined assignment
method II, and it is more reasonable than the combined assignment method I. Despite the
data analysis of the combined assignment method relative to the subjective assignment
method, it cannot be determined from this point that the combined assignment method is
superior to the subjective assignment method, and a final judgment of the derived data
under the weights of the different method experts themselves is needed, such as a better
differentiation of the bottom event failure rate.

2.4. Improving Quantitative Analysis of Expert’s Own Weight–Aggregate Fuzzy Number
Fault Trees

In order to perform an accurate processing and quantitative analysis of fault tree event
probabilities, the following steps are listed:

Step 1: Confirm whether the experts’ own weight settings are reasonable and if they
can satisfy the three principles.

Step 2: Fuzzification of expert natural language, where the bottom event failure rate
is evaluated by a fuzzy representation of the expert’s natural language judgment of the
event, by establishing seven judgment intervals for natural language event probabilities:
very small (VS), small (S), small (NS), medium (M), large (FL), large (L), and very large
(VL). For the selection of fuzzy numbers [27], a combination of triangular fuzzy numbers
and trapezoidal fuzzy numbers is used. The fuzzy number is expressed by the affiliation
function. In this case, the triangular fuzzy number is a special case of trapezoidal fuzzy
number, and the combination can be used for better fault description. The fuzzy interval
setting is subject to subjective influence, making it difficult and meaningless to be precise.

Step 3: Aggregation of fuzzy numbers. Weighted aggregation of mostly natural
language by experts for a given bottom event failure rate. Obtain the average number of
blurs for a given bottom event.

Step 4: Solve the fuzzy bottoming event failure rate. Chen [28] proposed a fuzzy
left–right ranking method that could make the fuzzy numbers exact.

Step 5: Calculate the top event [29] failure rate.
Step 6: Compute the critical importance [30] of the bottom event. Derived from the

bottom event and top event failure rates, it is decisive for fault determination and sequencing.
Overall, this is a process of transformation from fuzzy to non-fuzzy. However, the

definition of vagueness is again influenced by human subjectivity, indicating the importance
of the confirmation of the experts’ own weights.

Through the above steps, the flow chart of the quantitative fault tree analysis of the
model can be drawn, as shown in Figure 2.
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Once our model is built, the failure analysis can be performed. The linguistic descrip-
tions of the experts for each bottom event are collected and, following the model steps,
Table 6 is obtained, including the quantitative analysis data for the three methods.

Table 6. Quantitative fault tree analysis data for three methods.

Indicator Measurement Method Combined Assignment Method I Combined Assignment Method II

Events Event Failure
Rate

Critical
Importance

Event Failure
Rate

Critical
Importance

Event Failure
Rate

Critical
Importance

X1 9.13 × 10−7 0.0022 7.27 × 10−6 0.0168 8.77 × 10−6 0.0202
X2 4.26 × 10−6 0.0101 4.88 × 10−6 0.0113 4.67 × 10−6 0.0107
X3 1.22 × 10−6 0.0029 1.65 × 10−6 0.0038 1.47 × 10−6 0.0037
X4 1.57 × 10−8 0.000037 1.03 × 10−8 0.000024 1.46 × 10−8 0.000036
X5 6.19 × 10−7 0.0015 1.46 × 10−6 0.0034 1.06 × 10−6 0.0024
X6 1.37 × 10−6 0.0032 3.45 × 10−7 0.0080 6.59 × 10−7 0.0015
X7 5.00 × 10−6 0.0118 4.60 × 10−6 0.0106 6.49 × 10−6 0.0149
X8 9.22 × 10−5 0.2176 8.71 × 10−5 0.2012 9.07 × 10−5 0.2088
X9 1.36 × 10−4 0.3216 1.41 × 10−4 0.3262 1.38 × 10−4 0.3166
X10 2.75 × 10−5 0.0649 1.83 × 10−5 0.0423 2.22 × 10−5 0.0510
X11 1.54 × 10−4 0.3641 1.66 × 10−4 0.3835 1.61 × 10−4 0.3702

T 4.23 × 10−4 / 4.32 × 10−4 / 4.34 × 10−4 /

Table 6 lists three techniques for obtaining data for high-viscosity ship oil testing
fault analysis. Failure analysis should be given top priority for the failures X11 (excessive
cylinder liner/piston ring wear), X9 (too many machines), and X8 (poor combustion),
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which have higher failure rates and importance. The most significant bottom event is the
cylinder liner/piston ring wear being too large, which is caused by a constant reciprocating
friction state as well as working conditions, temperature, and a variety of other factors.
The lubricant and its direct contact influence the removal of the wear particles; prolonged
use will cause a rise in viscosity; the outcomes are accurate. X3 (fuel system failure), X4
(severe emulsification of lubricating oil), X5 (cylinder Oil Leakage), X6 (high-viscosity slip
oil is used) and other failure rates are lower and less than 1% importance. X4 is the least
important (0.000024) because the engine is the core component, the water will lead to
serious accidents, and the possibility of serious emulsification of the slip oil is the lowest,
being almost negligible. Combined with the fault tree, for intermediate events, the highest
importance is assigned to the aging, deterioration, or unnatural oxidation, since engine oil
viscosity should be the first analysis.

In particular, for the same bottom event, the bottom event probability varies more
with the experts’ own weights using different methods. For bottom events with small
probability, such as X4 and X6, the bottom event failure rate fluctuates more than 50 percent,
indicating a large impact. In practical fault determination, we often use importance to rank.
The improved approach raises the importance of certain major fault events, which allows
for more rapid fault determination.

3. Analysis and Discussion
3.1. Consistency Analysis

Since the data were obtained by improving the traditional subjective weights, in order
to verify their validity, the requested experts’ own weights and bottom event failure rates
were analyzed by the Bland–Altman consistency evaluation measurement in MedCalc soft-
ware for the combined weighting method and the traditional indicator evaluation method.

The Bland–Altman plot can most intuitively reflect the consistency of different methods
for the results. The horizontal and vertical axes are the mean and the difference between
the two groups of data, 95% of the difference is set as the consistency interval, and the
range is 1.96 times the standard deviation of the difference; if the point falls within its range,
then there is consistency. Method A, Method B, and Method C were set to correspond to
the indicator measurement method, the combined assignment method I and the combined
assignment method II, and Figure 3 shows the consistency analysis of the combined
assignment method relative to the subjective assignment method.

In the consistency analysis, 85% is usually used as the threshold, above which indicates
better consistency of the data. In Figure 3a, although there are distortions in the individual
experts’ own weights in the combined assignment method I, the overall consistency is
good, and the consistency of the data is Figure 3b is 100%. In Figure 3c, for the consistency
analysis of the bottom event failure rate of the combined assignment method I and the
traditional indicator assessment method, (10/11) points fall within the 95% confidence
interval, and the consistency of the bottom event failure rate data is 90.9%. All the points
of the indicator assessment method and the combined assignment method II in Figure 3d
are within the interval, and the data consistency is 100%. Using the arithmetic average
method to combine the experts’ own weights with the lapse rate consistency data, the
combined assignment method I and the combined assignment method II were 95.45% and
100%, respectively, indicating that the experts’ own weights of the combined assignment
method II combined the advantages of subjective and objective weights, respectively, the
consistency of the weights and lapse rate data was higher, and the data were valid.
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3.2. Differentiation Analysis

When the data are large and heterogeneous, the differentiation analysis is a reliable and
comprehensive way to evaluate and compare the results obtained by the improved method,
and the greater the differentiation, the better. Due to the uncertainty of the experts’ own
weights, the differentiation analysis is meaningless, and the derived data under different
method assignments can be used to indirectly compare the advantages and disadvantages
between methods. The adjacent logarithmic deviation method [31] is used to calculate the
differentiation D for the results of the three methods, and the failure rate of each bottom
event is first ranked from smallest to largest before calculation.

D =
ln[1 + (gN − g1)] + ∑N−1

i=1 ln[1 + (gi+1 − gi)]

N
(8)

where gN and g1 are the maximum and minimum failure rates.
Table 7 shows the differentiation of the bottom event failure rate obtained by the

three methods.

Table 7. Three methods of bottom event failure rate differentiation.

Indicator Measurement
Method

Combined Assignment
Method I

Combined Assignment
Method II

D 2.80 × 10−5 3.01 × 10−5 2.92 × 10−5
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From the perspective of differentiation, the highest differentiation is found in the
combined assignment method I, which tends to be objective and better than the indicator
measurement method in terms of data processing, followed by the combined assignment
method II, whose differentiation is 7.5% and 4.8% higher than that of the indicator mea-
surement method, but there is a certain degree of distortion in the weights of the combined
assignment method I. The difference in the weights of experts in the same field is too large,
and the comprehensive consistency analysis data is lower than that of the combined assign-
ment method II. The combined assignment method II is the best method, and the requested
distortion rate is reliable and valid. Through example analysis, this fault diagnosis and
analysis model is suitable for systems with more complex, dispersed and less regular causes
of faults, and has good results.

The improvement of the experts’ own weights enables the better differentiation of
faults to be judged, and the results prove that the establishment of the experts’ own weights
is quite important in this fault diagnosis system, which is often overlooked, but can have
a great effect on fault determination and analysis, with great research significance. Since
there is less research on experts’ own weights, their methods can still be studied in depth,
and the establishment of weights, which is more extensive, is not possible in all aspects. In
this paper, only the most important factors are mentioned, and there are some potential
factors affecting the accuracy of this analytical model that have not yet been discovered,
after which certain factors and steps can be further explored, such as weighted aggregation
and combined weighting.

4. Conclusions

(1) By establishing a fault tree model for oil detection with improved experts’ own
weight–aggregate fuzzy number, the causes of high oil viscosity in marine engines are
systematically described. The top event failure rate is 4.34× 10−4 and the main reason
is excessive cylinder liner/piston ring wear. Using the expert’s own weight as the key
entry point, we explore its influence between the fault probability accuracy and the
fault ranking. When an expert’s own weight changes, the failure rate and importance
ranking of its faults change accordingly. Improving the expert’s own weight not only
enables one to make fast fault identification judgments, but also makes it easier to
distinguish faults. In order to increase the accuracy of fault probability judgment, not
only are the weights assigned by subjective–objective combination, but also the weight
reasonableness analysis is invoked to set the weight reasonableness interval. This
systematic study of the physical and chemical indicators of oil fluids fills its research
gap, as well as the assignment of subjective and objective combinations, which are
also defined and explained.

(2) It is easy to see from the similar literature that the values obtained in most of the
methods to find the experts’ own weights appear to be arbitrary and not rigorous. In
some articles, a rigorous and detailed discussion is not carried out, leading to a loss of
credibility in the subsequently sought failure probabilities. A simplified fault tree is
used in this model, which allows future additions to be made to the cause of failure
without affecting the system.

(3) In the fault diagnosis analysis, the model method is less computationally intensive,
highly practical and has a wide range of applications, providing part of the reference
data for future online fluid fault detection.
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