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Abstract: While the modification of surface contacts offers significant potential for friction reduction,
obtaining an underlying consistent friction behaviour of real-life experiments and virtual simulations
is still an ongoing challenge. In particular, most works in the literature only consider idealised
geometries that can be parametrised with simple analytical functions. In contrast to this approach,
the current work describes the establishment of a digital twin of a pin-on-disk tribometer whose
virtual geometry is completely replicated from real-life post-test topography measurements and fed
into a two-scale mixed lubrication solver. Subsequently, several calibration steps are performed to
identify the sensitivities of the friction behaviour towards certain geometry features and enable the
digital twin to robustly represent the Stribeck curve of the physical experiments. Furthermore, a
derivation of the Hersey number is used to generalise the obtained friction behaviour for different
dynamic viscosities and allow the validation of the presented method.

Keywords: digital twin; pin-on-disk tribometer; mixed lubrication; multi-scale modelling

1. Introduction

The field of tribology offers a vast amount of approaches to reduce friction losses in
many applications by altering surface contacts [1]. Exemplary approaches are the adding
of surface coatings [2], tribofilms [3,4] or surface textures [5]. Due to the high sensitivity
of these approaches, generally applicable design guidelines are difficult to obtain. For
example, in the case of surface textures, the design usually needs to be tailored to the
specific conditions within the tribological contact to exploit their full potential [5,6]. These
conditions can be most clearly defined and controlled in tribometers, where different kinds
of tribometers represent specific tribological contacts that occur in certain applications.
Ball-on-disk tribometers are, for example, used to represent the non-conformal contacts of
ball bearings while pin-on-disk tribometers are used to mimic the conformal contacts of
journal bearings. The similarity of the tribological contact eventually allows to transfer the
fundamental insights obtained in tribometers to applications.

Due to the highly controlled operating conditions and reduction to the tribological
contact, tribometers are easier to simulate with a numerical model than their corresponding
applications. Nonetheless, even under these simplified circumstances, the modelling of
the tribological contact is not straightforward and consistent results from simulations and
experiments are challenging to obtain [7]. Despite these difficulties, the potential of a joint
experimental and numerical research strategy is significant because it allows to obtain
complementary in and ex situ data. Furthermore, the simulations can be used to perform
cheap and quick a priori investigations to identify the relevant parameter ranges for the
experiment. The obtained simulation results can then be confirmed by selectively chosen
experiments [8]. This allows to conduct targeted, efficient investigations and to save costs
due to material consumption and the associated transportation. Moreover, the experiment
results give validation and new impulses for the adjustment of the simulation model and
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parameters. This process can be further improved by employing meta-models to select the
simulation parameters such that the prediction quality of the investigation is maximised.
This in turn allows to reduce the necessary amount of simulations and allows more complex
models to be used [9].

The above described interaction between the experiment and simulation generally
corresponds to the concept of a digital twin [10]. While some works strictly require a digital
twin to have bi-directional real-time communication between the physical and virtual
entity [11], other works already consider a one-directional physical-to-virtual connection
as sufficient to be labelled as a digital twin [12]. The latter case also applies to this work,
in which a digital twin of a pin-on-disk tribometer is established and calibrated in several
steps. Firstly, the physical entity of the pin-on-disk tribometer is described along with the
associated sample preparation, testing procedure and topography measurements. Subse-
quently, the macro- and microscopic reconstruction of the virtual geometry from the real-life
post-test topographies is presented and the employed two-scale mixed lubrication solver is
described. Afterwards, the experimental results are evaluated and virtual calibration steps
are performed to obtain a representative virtual geometry for an arbitrary specimen pairing.
At the same time, the calibration results are used to identify the macro- and microscopic
sensitivities of the digital twin. Moreover, the Hersey number is derived for a pin-on-disk
tribometer to allow for the validation of the digital twin with the Stribeck curves of its
real-life counterpart and the generalisation to operating conditions at different dynamic vis-
cosities. Exemplary codes and geometry files are included in the supplementary material to
enable the public availability of the exact implementation of the digital twin. The purpose
of this work is firstly to demonstrate the achievable agreement of a real-life experiment and
its digital twin and secondly to provide a detailed example as orientation for anyone who
wants to create a digital twin of tribological contacts in mixed lubrication.

2. Methods
2.1. Physical Entity of the Pin-on-Disk Tribometer
2.1.1. Sample Preparation and Tribometer Tests

The experiments were carried out in a pin-on-disk tribometer (Plint TE-92 HS, Phoenix
Tribology, Kingsclere, UK). The pin and disk samples were made from 100Cr6 bearing steel.
Before each measurement, the samples were cleaned for 5 min in an ultra-sonic bath with
isopropanol to remove manufacturing residuals and debris.

The pin diameter was 8 mm and the disk diameter was 80 mm. Pre-test pin and disk
roughness were measured with a contact measurement device (Hommel T8000, Jenoptic,
Jena, Germany) with a 2 µm conical-shaped diamond stylus. Roughness values (Ra) were
acquired by tracking a 7 mm profile across the samples. Three measurements are taken
per sample to ensure the repeatability of the initial sample surface. The averaged sample
roughness before the tests was Ra = 0.2 µm and Ra = 0.07 µm for the pin and disk samples,
respectively. The hardness of the disk was 800 HV and the pin hardness is 713 HV.

As shown in Figure 1a, the pin sample was fixed into the half-sphere holder, thus
protruding out of the pin holder by a pin height of 1 mm for all experiments. The disk
sample was mounted on the tribometer platform, which was connected to the motor. Before
each test, the disk surface waviness was evaluated by contact stylus to avoid mounting
errors and a subsequent potential influence on the acquired friction values. The waviness
of the disk did not exceed 1 µm after being mounting onto the tribometer platform.

Additionally, to avoid mounting errors of the pin, the self-alignment mechanism of
the pin was used to level the pin. The schematics of the pin levelling process are given in
Figure 1a. Firstly, the samples in the tribometer were pre-loaded under an initial imposed
normal load of FN,imp = 50 N, then 5 mL of oil were injected beneath the pin holder. The
force generated under the pin holder pushed the pin towards the disk surface and the pin
aligned itself against the disk. Once the pressurised oil flow underneath the pin stopped,
the pin holder settled again in its base, thus fixing the obtained alignment for the remainder
of the experiment.
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Figure 1. Schematic depiction of (a) pin levelling process and (b) Stribeck curve acquisition in the
pin-on-disk tribometer.

The friction behaviour was evaluated by acquiring the Stribeck curve as depicted in
Figure 1b at an imposed normal load of FN,imp = 150 N. The tribometer tests started at
2 m/s and the sliding speed gradually decreased to 0.04 m/s. The selected sliding speed
range enables the analysis of the lubrication regime shift from hydrodynamic to mixed
lubrication. Each sliding speed step is held for 5 min to record the friction data. The speed
ramps are repeated five times for each experiment. To determine the final Stribeck curve of
the whole test, only the last three ramps were averaged to avoid running-in effects at the
beginning of the experiment.

An additive-free mineral base oil was chosen to investigate the hydrodynamic/mixed
lubrication transition. The detailed testing matrix is given in Table 1 and the oil properties
are presented in Table 2. The dynamic viscosity is measured with a Discovery Hybrid
Rheometer (DHR series, TA instruments, New Castle, USA) at temperatures between 24
and 50 ◦C and at a shearing rate of 500 s−1. The final dynamic viscosity value at each
temperature was the average of 50 measurements.

The experiments were conducted at lubricant temperatures of 24 and 50 ◦C to investi-
gate the viscosity effect. In combination with the imposed normal load, these operating
conditions only led to mild wear effects that did not exceed the simple running in of the pin
and disc. Higher loads and temperatures, on the other hand, would cause significant wear
scars, which in turn largely alter the contact geometry and would thus not deliver compa-
rable data. The oil flow in the system was kept constant at 5 mL/min for all experiments.
To ensure the repeatability of the friction behaviour, each experiment was repeated 3 times
with new samples and fresh oil in the system. Thus, two experiment sets with three tests
each were conducted. The design of experiments is given in Table 3 with the corresponding
dynamic viscosities.

Table 1. Tribometer testing parameters.

Constant Parameters
Normal Load (N) Sliding Radius (mm) Oil Flow Rate (mL/min)

150 30 5

Changing Parameters
Speed (m/s) Oil Temperature (°C)

2 . . . 0.04 24, 50
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Table 2. Properties of the oil.

Properties Value

Kinematic viscosity (mm2/s) at 40 ◦C 1 29

Kinematic viscosity (mm2/s) at 50 ◦C 1 20

Dynamic viscosity (Pas) at 24 ◦C 2 0.066

Dynamic viscosity (Pas) at 50 ◦C 2 0.024

Viscosity index (ISO 2909) 1 101

Density (g/ml) at 15 ◦C 1 0.87
1—measurements provided by lubricant manufacturer. 2—measurements conducted at Karlsruhe Institute of
Technology (Karlsruhe, Germany).

Table 3. Design of experiments.

Set Test Temperature (◦C) Dynamic Viscosity (Pas)

1.1
1 1.2 24 0.066

1.3

2.1
2 2.2 50 0.024

2.3

2.1.2. Post-Analysis of the Surfaces

After the tribometer tests, the samples were cleaned again for 5 min in an ultra-sonic
bath with isopropanol. Subsequently, the macroscopic sample topographies of the pin
and disk were measured with the confocal microscope FRT (Fries Research & Technology
GmbH, Bergisch Gladbach, Germany). The surface topography measurement size was
8 mm × 8 mm with a 500 × 500 pixel resolution per single measurement. The selected
measurement area allowed the acquisition of the whole surface of the tested pin and
the corresponding contact area on the worn disk. Furthermore, microscopic roughness
topography patches of pin and disc were obtained with the white light interferometry
profiler Sensofar (Sensofar Metrology, Barcelona, Spain). The measurement resolutions for
the pin and disk samples were 768 × 576 pixel for an analysis area of 84.9 µm × 63.7 µm.

2.2. Digital Twin of the Pin-on-Disk Tribometer

The establishment of the digital twin of the pin-on-disk tribometer consisted of two
parts which are elaborated upon in the following subsections. The first part describes how
the virtual geometry was reconstructed in the macroscopic and microscopic roughness scales
from the post-test topographies of the real-life pin and disk. The second part highlights the
fundamentals of the solver that was used to simulate the Stribeck curve acquisition.

2.2.1. Virtual Geometry Reconstruction

The macro- and microscopic post-test topographies were first processed with the
software Gwyddion© to correct the measurement defects through interpolation with the
Laplace equation, rotate the topography towards its mean plane as an initial levelling
guess, set the zero-height mark to the mean plane and limit the height range to 20 µm.
In case of the macroscopic pin topography, the points belonging to the area surrounding
the pin were excluded in the computation of the mean plane. Furthermore, a Gaussian
filter was applied to both the macroscopic pin and disk topographies to remove roughness
information and measurement noise by smoothing the profiles. The size of the Gaussian
filter was parametrised by its full width at half maximum of the Gaussian distribution.
The microscopic roughness topographies, on the other hand, did not require any filtering



Lubricants 2023, 11, 75 5 of 23

since their measured profiles were sufficiently smooth due to the higher resolution. The
remaining processing was performed with MATLAB©. On both the macro- and microscopic
scale, the disk topography was flipped above the pin and the topographies were aligned
such that the x1 axis pointed in the same direction as the velocity of the disk U. In the
case of the macroscopic topographies, the origin of the coordinate system was also aligned
with the centre of the pin. For the macroscopic pin, the pin height of 1 mm was set relative
to its zero-height mark. Since any profile variations in the disc and the pin holder were
assumed to be negligible in comparison to the overall pin height, the profiles of the disc
and the pin holder around the pin were set to be perfectly smooth. Lastly, the resolution of
the macroscopic profiles was adjusted by interpolation. For the roughness topographies,
a subdomain of 256 × 256 pixel was extracted without interpolation from the original
topography. The effect of the filtering on the resulting macroscopic virtual geometry of
test 2.1 is depicted in Figure 2 for an exemplary rigid body displacement of 10 µm and
resolutions of 500 × 500 pixel, where unfiltered topographies are used in (a) and a 9 pixel
Gaussian filter is used in (b).

Figure 2. Exemplary virtual macroscopic geometry of test 2.1, where the disk is represented by the top
surface and the pin by the bottom surface. Note the different scale of the vertical and the horizontal
axes. Below the shown x3 range, the pin holder profile is modelled as a flat surface at x3 = −1 mm:
(a) without filtering; and (b) after applying a 9 pixel Gaussian filter.

In order to simulate the alignment of the pin against the disk at an imposed normal
load of FN,imp = 50 N as shown in Figure 1a, a dry contact solver for non-periodic problems
was coupled with the torque balance equation. The dry contact solver is based on the
conjugate gradient-fast Fourier transform (CG-FFT) algorithm described by Polonsky and
Keer [13] and Sainsot and Lubrecht [14]. During inner iterations, the code computes the
equilibrium of elastic deformation and dry contact pressure for an imposed normal load
while using linear convolutions with the kernel function derived from the elastic half-
space theory when constant pressure over rectangular discretisation cells is assumed [15]
(Ch. 3.3), [16]. Young’s modulus E and the Poisson ratio ν of the upper and lower surfaces
are considered in the kernel function. Within the contact region, the dry contact pressure
can take values between zero as a lower limit and the hardness H of the material as a
maximum limit [17]. Outside of the contact zone, the pressure is set to zero. Once the dry
contact solver delivers a converged dry contact pressure field pcon,dry(x1, x2), this field is
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used in outer iterations to evaluate the resulting torques Tx1 and Tx2 around the x1 and x2
axes by summing up over all of the Nx1 Nx2 grid points of size ∆x1∆x2:

Tx1 = ∑
Nx1

∑
Nx2

−x2 pcon,dry∆x1∆x2, (1)

Tx2 = ∑
Nx1

∑
Nx2

x1 pcon,dry∆x1∆x2. (2)

The dimensionless residuals of the torque balances are computed at each outer iteration
n as:

rn
x1

=
Tn

x1

∑
Nx1

∑
Nx2

abs
(
(−x2)pn

con,dry∆x1∆x2

) , (3)

rn
x2

=
Tn

x2

∑
Nx1

∑
Nx2

abs
(

x1 pn
con,dry∆x1∆x2

) . (4)

As long as these residuals are larger than a prescribed tolerance of 10−6, angles αx1 and αx2

are adjusted by a PID controller with its coefficients KP, KI and KD :

αx1 =

(
KPrn

x1
+ KI

n

∑
i

ri
x1
+ KD

(
rn

x1
− rn−1

x1

))
· 360◦, (5)

αx2 =

(
KPrn

x2
+ KI

n

∑
i

ri
x2
+ KD

(
rn

x2
− rn−1

x2

))
· 360◦. (6)

Afterwards, the new pin profile x3,low is computed by altering the unlevelled pin profile
x3,low,0 and the loop is repeated:

x3,low = x3,low,0 + x2tan(αx1)− x1tan(αx2). (7)

Note, however, that x3,low = −1 mm is enforced for the area around the pin because there,
the levelling is assumed to be negligible in comparison to the pin height. The described
levelling process is performed for each of the virtual macroscopic gap geometries. The
employed values of the solver parameters are summarised in Table 4.

Table 4. Employed parameter values of the pin levelling solver.

Parameter Value

FN,imp 50 N
νup 0.3
νlow 0.3
Eup 210 · 109 Pa
Elow 210 · 109 Pa

H 6.99 · 109 Pa
KP 3 · 10−6

KI 6 · 10−6

KD 3.75 · 10−7

Before the profiles are averaged, the mean plane of each levelled pin profile within a
radius of 3 mm from its centre is used to define its new zero-height mark. This is important
to reduce the effect of the pin rim on the mean plane which could otherwise distort the
following averaging by over-weighting certain pin topographies. For the disks, the zero-
height mark remains unchanged. Once this is done for all of the tests within a set, the
geometries are interpolated on a new grid on which the set average is determined for pin
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and disk. Below a truncation height of −20 µm, the pin height of −1 mm is enforced again.
Finally, the obtained averaged geometry is levelled again. The centre lines of the resulting
virtual macroscopic pin topographies of set 2 in the exemplary case of perfectly smooth
macroscopic disk topographies as counter bodies are displayed in Figure 3.

Figure 3. Center line plot of the virtual macroscopic pin topographies of tests 2.1, 2.2, 2.3 and the
average of set 2. Note the different scale of the vertical axis. The topographies are previously filtered
with a 9 pixel Gaussian filter and the resolution is adjusted to 256 × 256. The levelling is performed
for perfectly smooth macroscopic disk counter bodies.

Similarly to some concepts in the literature [18–21], the microscopic geometries are
used to compute the mean contact pressures, mean gap heights and homogenisation factors
for 100 distinct rigid body displacements on the roughness scale h0 in an exponentially
spaced range between h0,r,min = 0.1 µm and h0,r,max = 1 µm. The averaging is performed
over the periodic roughness domain lengths Lr,1 and Lr,2 and the periodic roughness time
length Tr. For each rigid body displacement, Nt = 32 discrete time steps are used to period-
ically move the roughness profile of the disk in the x1 direction once over the roughness
profile of the pin. At each time t, the asperity contact pressure pasp and deformed gap height
distributions h are computed at each spatial position (x1,x2) with a dry contact solver for
periodic problems. It is of CG-FFT type and its algorithm is mainly based on the description
by Akchurin et al. [22]. The code computes the equilibrium of elastic deformation and
asperity contact pressure for the imposed h0 while using cyclic convolutions with the kernel
function derived from the elastic half-space theory when constant pressure over rectangular
discretisation cells is assumed [15] (Ch. 3.3), [16]. The Young’s modulus E and Poisson
ratio ν of the upper and lower surfaces are considered in the kernel function. Within the
contact region, the asperity contact pressure can take values between zero as a lower limit
and the hardness H of the material as a maximum limit [17]. Outside of the contact zone,
the pressure is set to zero. The employed values of Young’s modulus, Poisson ratio and
hardness are the same as those used for the levelling solver in Table 4.
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The obtained gap height distribution h is truncated below 1 nm and used to compute
solutions χ1, χ2 and χ3 of the unsteady local problems:

∇ ·
(

h3∇χ1

)
=

∂h
∂x1

+
1

um

∂h
∂t

, (8)

∇ ·
(

h3∇χ2

)
= − ∂h3

∂x1
, (9)

∇ ·
(

h3∇χ3

)
= − ∂h3

∂x2
. (10)

For the first time step, the steady problem is solved by neglecting the unsteady term.
The local problems are discretised with the finite volume method (FVM). Second-order
central schemes are used for the spatial derivatives, while the first-order Euler implicit
scheme is used for the temporal derivative. Periodic boundary conditions are employed.
One point of the domain is used for the Dirichlet condition χ1 = χ2 = χ3 = 0. The
value of the Dirichlet condition can be chosen arbitrarily and does not influence the final
homogenisation factors since they are only a function of the gradients of χ1, χ2 and χ3.
Furthermore, the discretised form of Equation (8) becomes independent of um by setting
the time step size to Lr,1/(Ntum), thus cancelling out um in the final expression. Once all
time steps are solved for, their average is computed to obtain the mean contact pressure
pcon, mean gap height hm and the homogenisation factors A,~b, C and ~d:

pcon(h0) =
1

Lr,1Lr,2Tr

∫
Lr,1

∫
Lr,2

∫
Tr

pasp dt dx2 dx1 (11)

hm(h0) =
1

Lr,1Lr,2Tr

∫
Lr,1

∫
Lr,2

∫
Tr

h dt dx2 dx1 (12)

A(h0) =
1

Lr,1Lr,2Tr

∫
Lr,1

∫
Lr,2

∫
Tr

h3

h3
m

(
1 + ∂χ2

∂x1

∂χ3
∂x1

∂χ2
∂x2

1 + ∂χ3
∂x2

)
dt dx2 dx1 (13)

~b(h0) =
1

Lr,1Lr,2Tr

∫
Lr,1

∫
Lr,2

∫
Tr

h
hm

(
1− h2 ∂χ1

∂x1

−h2
∂χ1
∂x2

)
dt dx2 dx1 (14)

C(h0) =
1

Lr,1Lr,2Tr

∫
Lr,1

∫
Lr,2

∫
Tr

h
hm

(
1 + ∂χ2

∂x1

∂χ3
∂x1

∂χ2
∂x2

1 + ∂χ3
∂x2

)
dt dx2 dx1 (15)

~d(h0) =
1

Lr,1Lr,2Tr

∫
Lr,1

∫
Lr,2

∫
Tr

hhm

(
∂χ1
∂x1
∂χ1
∂x2

)
dt dx2 dx1 (16)

Once these factors are computed for several different roughness patches of a single post-test
pin and disk specimen combination, the test average is computed. The results of six different
pin and disk patches of test 2.1 and their average are displayed for the mean gap height hm
in Figure 4a, the mean contact pressure pcon in Figure 4b and the homogenisation factor A11

in Figure 5a. The averages of the homogenisation factors A and~b over the six patches are
depicted in Figure 5b. The root-mean-square values of the roughness topography of each
patch are provided in Table 5. The reconstructed microscopic virtual geometry of patch 4 of
test 2.1 is exemplarily shown in Figure 6 for a rigid body displacement of 1 µm.
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Figure 4. (a) Mean gap height hm and (b) mean contact pressure pcon as a function of rigid body
displacement h0 for different roughness patches and their average.

Figure 5. (a) Homogenisation factor A11 as a function of rigid body displacement h0 for different
roughness patches of test 2.1 and their average. (b) Averages of the homogenisation factors A and~b
over test 2.1 as a function of rigid body displacement h0.
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Table 5. Root-mean-square values Sq of the roughness patches of test 2.1, where the zero-height mark
of each surface is at its respective mean plane.

Patch Sq,up Sq,low
Sq =√

S2
q,up + S2

q,low

1 84.5 nm 41.5 nm 94.1 nm
2 84.6 nm 116.5 nm 144.0 nm
3 118.3 nm 132.3 nm 177.5 nm
4 119.9 nm 101.4 nm 157.0 nm
5 96.3 nm 96.7 nm 136.4 nm
6 100.1 nm 131.2 nm 165.0 nm

Figure 6. Exemplary virtual microscopic geometry of patch 4 of test 2.1, where the disk is represented
by the top surface and the pin by the bottom surface. Note the different scale of the vertical and the
horizontal axes.

2.2.2. Simulation of the Stribeck Curve Acquisition

In order to simulate the conditions within the macroscopic scale of the lubrication
flow during the Stribeck curve acquisition depicted in Figure 1b, a homogenised mixed
elasto-hydrodynamic lubrication Fischer–Burmeister–Newton–Schur (HMEHL-FBNS) solver
implementation in MATLAB© was employed. It is an extension of the EHL-FBNS solver
presented in an earlier work [23]. The homogenised Reynolds equation is discretised with the
finite volume method (FVM), where the Poiseuille terms are discretised with a second-order
central scheme and the Couette term with a first-order upwind scheme. The fundamental
equations incorporated in the extended solver are summarised in the following.

The difference between the hydrodynamic pressure phd and cavitation pressure pcav is
called relative pressure p = phd − pcav. The cavity fraction θ is defined as θ = 1− ρ

ρl
, where

ρ is the mixture density of the flow and ρl is the density of the liquid phase. p and θ are
determined at each position (x1, x2) on the macroscopic scale with the steady homogenised
Reynolds equation and the complementary cavitation constraint:

0 = ∇ ·
(

ρlh3
m

12µl
A∇p− ρlhmum~b (1− θ)

)
, (17)

pθ = 0, p ≥ 0, θ ≥ 0, (18)
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where the dynamic viscosity of the liquid phase µl , mean velocity um, mean gap height
hm and homogenisation factors A and~b are incorporated. For the pin-on-disk tribometer,
the mean velocity is um = U/2, where U is the velocity of the disk above the tribological
contact. hm and the homogenisation factors A and ~b are functions of the rigid body
displacement on the roughness scale h0. Their values and the mean contact pressure pcon(h0)
can be interpolated at each position (x1, x2) on the macroscopic scale by realising that the
macroscopic gap height is the same as the rigid body displacement on the roughness scale
h0. If h0 is larger than the h0,r,max during the interpolation process described in Section 2.2.1,
then hm is set equal to h0, the mean contact pressure is set to 0 and the homogenisation
factors are set to their value at h0,r,max, thus being close to either 0 or 1 depending on the
factor. On the macroscopic scale, h0 can be determined as:

h0(x1, x2) = hd + hg(x1, x2) + hel(x1, x2), (19)

where hd denotes the rigid body displacement between the upper and lower macrogeome-
tries, hg is the gap height variation due to the rigid macrogeometries and hel describes
the combined elastic deformation of the macrogeometries. Using the elastic-half space
assumption, hel is found to be:

hel(x1, x2) =
2

πE′

∫
L1

∫
L2

ptot
(
x′1, x′2

)√(
x1 − x′1

)2
+
(
x2 − x′2

)2
dx′2dx′1, (20)

where the total pressure
ptot = phd + pcon (21)

is a superposition of the hydrodynamic pressure phd and the mean contact pressure pcon
within the domain of size L1L2. Using Young’s modulus E and Poisson ratio ν of the upper
and lower surfaces as described by the subscripts up and low, respectively, the reduced
elastic modulus is expressed as:

E′ =
2

1−ν2
low

Elow
+

1−ν2
up

Eup

. (22)

Considering the validity of the half-space assumption, Zhang et al. [24] investigated
whether the free ends of the geometry should be considered or can be neglected in the
modelling of the elastic deformation. They found that, for heavily loaded roller bearings
under EHL conditions, neglecting the free ends delivers noticeable errors in the resulting
deformation and pressure fields. However, these operating conditions differ fundamentally
from those of the only lightly loaded conformal contact in the pin-on-disk tribometer. Even
though there are free ends at rim of the pin, another work [7] indicated that they introduce
only small deviations in the Stribeck curve for simulations with an imposed normal load
and neglecting their effect on the elastic deformation is therefore legit.

Piezoviscosity of the liquid phase is incorporated with the Roelands equation:

µl = µ0 exp
(
(ln(µ0) + 9.67) ·

(
−1 +

(
1 +

(phd − pcav)

p0,R

)zR
))

, (23)

where zR =
αR p0,R

ln(µ0+9.67) describes the pressure viscosity index, αR is the pressure viscosity
coefficient, p0,R denotes a constant in the Roelands equation and µ0 is the dynamic vis-
cosity of the liquid phase at ambient pressure. The compressibility of the liquid phase is
considered with the Dowson–Higginson model:

ρl = ρ0
C1 + C2(phd − pcav)

C1 + (phd − pcav)
, (24)
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where ρ0 is the density of the liquid phase at ambient pressure and C1 and C2 are con-
stants. In summary, the consequences of the employed models for the dynamic viscosity
and density are as follows: while each simulation for itself is isothermal, the lubricant’s
dependence upon temperature is still considered by the corresponding value of µ0 at
24 and 50 ◦C. The density is treated analogously. However, unlike µ0, the value of ρ0
can actually be eliminated from the Reynolds Equation (17), because it appears in each
single term. Consequently, the temperature dependence of ρ0 does not need any special
consideration in the employed model. Lastly, one estimate of the magnitude of ρ0 is
still necessary for the underlying EHL-FBNS solver described in [23] to create the non-
dimensional equation system. Nonetheless, piezoviscous and compressible effects are
considered by Equations (23) and (24). They allow for the dynamic viscosity and density to
change throughout the simulation domain according to the hydrodynamic pressure field.

Then, how the mean contact pressure is added to the already published EHL-FBNS
algorithm is described [23]. At each iteration n, the update of the mean contact pressure is
computed as:

δn
pcon = pcon(h0)− pn−1

con , (25)

where pcon(h0) is the expected mean contact pressure according to h0(x1, x2) and pn−1
con

describes the mean contact pressure of the previous iteration. For stability reasons, this
update is applied with an underrelaxation coefficient αpcon to obtain the mean contact
pressure at iteration n:

pn
con = pn−1

con + αpcon δn
pcon (26)

At the end of each iteration, pn
con is used to compute ptot according to Equation (21).

Furthermore, the residual of pcon is computed as:

rmax,δp∗con = max

(
abs

(
δn

pcon

pre f

))
. (27)

This residual is added to [23] (Equation (28)) when the convergence of the whole algorithm
is checked against a tolerance. Moreover, the load balance equation taking the ambient
pressure pamb into account reads:

FN,imp
!
= FN =

∫
L1

∫
L2

ptot − pamb dx2 dx1. (28)

In the solver, the rigid body displacement between the upper and lower macroscopic
geometries hd is adjusted through an incremental PID controller with its coefficients KP, KI
and KD:

hn+1
d = ∆hn

d + hn
d =

(
KP

(
rn

FN
− rn−1

FN

)
+ KIrn

FN
+ KD

(
rn

FN
− 2rn−1

FN
+ rn−2

FN

))
· 10−6 m + hn

d . (29)

This was performed at each iteration until a prescribed tolerance was met by the residual
between the resulting normal load FN and the imposed normal load FN,imp = 150 N:

rn
FN

=
Fn

N − FN,imp

FN,imp
. (30)

Lastly, the hydrodynamic shear stresses on the pin surface are computed with the
homogenised shear stress equation:

~τhd,3 =

(
τhd,31
τhd,32

)
= −hm

2
C∇p+

µl
hm

(
−6um~d + ur

(
1
0

))
(1− θ), (31)
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where C and ~d are homogenisation factors and ur is the relative velocity between the upper
and lower surfaces. For the pin-on-disk tribometer, ur = U holds. The mean contact shear
stress is determined as:

τcon = C f ,b pcon, (32)

where C f ,b is an estimate for the boundary friction coefficient. It is set to C f ,b = 1/(3
√

3),
which is a value theoretically derived by Bowden and Tabor [25], Ch. V for the dry friction
of metals under pure shearing, which serves as an unambiguous and uniquely defined
upper limit for the boundary friction coefficient [7]. The total shear stress τtot = τhd,31 + τcon
is computed by superposition and used to determine the resulting friction force FT :

FT =
∫
L1

∫
L2

τtot dx2 dx1. (33)

Eventually the friction coefficient is evaluated as:

C f =
FT
FN

. (34)

The parameter values used in the simulations are summarised in Table 6. The dynamic
viscosity of the liquid phase µ0 at ambient pressure was set according to Table 3. The Dirich-
let boundary conditions of ambient pressure pamb were employed for the hydrodynamic
pressure phd at the domain boundaries. Furthermore, the Dirichlet boundary condition
of θ = 0 was used at the domain inlet, whereas Neumann conditions were used for the
cavity fraction at the remaining boundaries. A tolerance of 10−6 was used as a threshold
for the residuals.

Table 6. Employed parameter values of the homogenised MEHL-FBNS solver. The parameters with
indices re f are used to transform the steady homogenised Reynolds Equation (17) into a dimensionless
form analogously to the procedure described in [23].

Parameter Value

FN,imp 150 N
U 0.01. . . 2 m/s

pamb 105 Pa
pcav 8 · 104 Pa
ρ0 850 kg/m3

C1 5.9 · 108 Pa
C2 1.34
αR 22 · 10−9 /Pa

p0,R 1.96 · 108 Pa
νup 0.3
νlow 0.3
Eup 210 · 109 Pa
Elow 210 · 109 Pa
αpcon 0.05
KP 1.2 · 10−2

KI 2.4 · 10−2

KD 1.5 · 10−3

C f ,b 1/(3
√

3)
x1,re f 8 · 10−3 m
x2,re f 8 · 10−3 m
hre f 10−6 m
µre f µ0
ρre f ρ0
pre f 100 · 106 Pa
ure f um
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3. Results and Discussion

The general research strategy of this work was not to replicate each single experiment
with a simulation, but instead to create a single virtual reference geometry which is able
to replicate the friction behaviour of numerous experiments, thus being a representative
digital twin of an arbitrary pin-on-disk specimen combination in the tribometer. The
definition process of this representative geometry is referred to as calibration. In this
section, the experiment test results are firstly used to define the set averages along with
their deviations as an estimate of the scatter. Then, the calibration of the digital twin is
performed and deviations of the Stribeck curve due to geometry variations are quantified
to identify sensitivities. Subsequently, the Hersey number is derived for the considered
pin-on-disk tribometer to allow a meaningful comparison of the experiment and simulation
for the validation of the presented digital twin.

3.1. Experiment Results

In order to quantify the deviation of the Stribeck curves from a reference Stribeck
curve C f ,re f in relation to the overall magnitude of the boundary friction coefficient C f ,b,
the deviation of the friction coefficient is defined as:

C f ,dev =
C f − C f ,re f

C f ,b
. (35)

The Stribeck curves of the three tests in set 1 at 24 ◦C along with their set average are de-
picted in Figure 7a. The area enclosed by the maximum and minimum friction coefficients
at each relative velocity is shaded in grey to visualise the set scatter. The corresponding
deviation of the friction coefficient is shown in Figure 7b, where the averaged Stribeck
curve of the set is used as reference C f ,re f . The analogous results of set 2 at 50 ◦C are
represented in Figure 8a,b and demonstrate that the largest deviation in the friction co-
efficient in the experiments is approximately C f ,dev,exp ≈ ±10% and occurs in the mixed
lubrication regime.

Figure 7. Experimental results of the tests in set 1 and their set average. (a) Friction coefficient C f as a
function of relative velocity ur. (b) Deviation of the friction coefficient C f ,dev as a function of relative
velocity ur.
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Cf,dev,exp

Figure 8. Experimental results of the tests in set 2 and their set average. (a) Friction coefficient C f as a
function of relative velocity ur. (b) Deviation of the friction coefficient C f ,dev as a function of relative
velocity ur.

3.2. Calibration

Firstly, the size of the Gaussian filter for the smoothing of the macroscopic topogra-
phies is evaluated. The filter size should be large enough to smooth out all roughness
effects but small enough to prevent the filtering of macroscopic geometry features. The
size of the Gaussian filter is parametrised by its full width at half maximum of the Gaus-
sian distribution. The used macroscopic pin and disk topographies have a resolution of
500 × 500 points. The roughness properties of patch 4 of test 2.1 are used in this case. The
simulated Stribeck curves for the unfiltered profile and filter sizes of 3, 5, 7, 9 and 11 pixel
are displayed in Figure 9a. This demonstrates that the smoothing of the geometry on the
macroscopic scale causes the Stribeck curve to be shifted to lower relative velocities ur.

In order to quantify the resulting deviations in the Stribeck curve, the 11-pixel filter size
simulation is chosen as the reference C f ,re f . The results of C f ,dev are displayed in Figure 9b.
The deviations are the largest in the mixed lubrication regime. It is shown that the unfiltered
profile can cause a deviation in the Stribeck curve of 45%. This is because the unfiltered
macroscopic profile still contains roughness information which is already considered by the
microscopic roughness scale. This wrongly creates a double implementation of roughness
and causes a large shift in the Stribeck curve to higher relative velocities ur. With increasing
filter sizes, the Stribeck curves converge towards the reference solution. For a filter size
of 9 pixels, the deviation becomes less than 0.5% which is chosen as the filter size for the
following simulations.

The calibration of the macroscopic resolution is performed next by interpolating new
geometries with the resolutions 128 × 128, 256 × 256, 999 × 999 and 1997 × 1997 from
the one with a resolution of 500 × 500. The higher resolutions of 999 × 999 and 1997 ×
1997 are chosen such that they exhibit all of the original 500 × 500 points with additional
points in between. In order to save computational resources, the simulations for those
resolutions were only conducted for relative velocities of 0.02, 0.04, 0.06, 0.08 and 0.1 m/s.
The resulting Stribeck curves are shown in Figure 10a while the deviations of the friction
coefficient C f ,dev are depicted in Figure 10b. The Stribeck curve with the original resolution
of 500 × 500 is chosen as C f ,re f . For the highest resolution, the maximum deviation is at
1.2%, while for a resolution of 256 × 256, its maximum absolute value is less than 1.8%.
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Comparing the resolution of 256× 256 to 1997× 1997 thus yields an estimate of a deviation
of less than 3%, which is considerably less than the ±10% of the experiments. Therefore, a
resolution of 256 × 256 is considered sufficient and is used for the following simulations.

Figure 9. Simulation results for different filter sizes: (a) Friction coefficient C f as a function of relative
velocity ur; and (b) Deviation of the friction coefficient C f ,dev as a function of relative velocity ur.

3%

Figure 10. Simulation results for different resolutions. (a) Friction coefficient C f as a function of
relative velocity ur. (b) Deviation of the friction coefficient C f ,dev as a function of relative velocity ur.

Moreover, it is evaluated whether the macroscopic wear track on the disc influences
the friction behaviour. Figure 11a shows the simulation results obtained when both the
macroscopic pin and disk topographies are used to reconstruct the virtual geometry against
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the idealised case where the disk is assumed to be perfectly flat on the macroscopic scale.
Figure 11b shows that this only causes a maximum absolute deviation in the friction
coefficient of less than 4%, where the case with non-flat disk is chosen as C f ,re f . Assuming
that the disk is flat is therefore legit in comparison to the deviation in the experiments
and performed for the following simulations. Furthermore, being able to neglect the
macroscopic disc topography bears the significant advantage of a generally much simpler
virtual geometry reconstruction workflow.

Figure 11. Simulation results with idealised and measured macroscopic disk topography. (a) Friction
coefficient C f as a function of relative velocity ur. (b) Deviation of the friction coefficient C f ,dev as a
function of relative velocity ur.

The last step of calibrating the macroscopic geometry consists of averaging the macro-
scopic pin geometries of set 2, as shown previously in Figure 3. The Stribeck curves for
the different topographies of tests 2.1, 2.2 and 2.3 and the average pin geometry of set 2
are depicted in Figure 12a. When the average pin geometry of set 2 is used as C f ,re f , the
absolute deviations in the friction coefficient shown in Figure 12b are less than 4%. This low
value firstly allows the very important deduction that the digital twin is robust with respect
to the macroscopic measurement of the pin and that the macroscopic geometry obtained
by averaging over the pins of set 2 is suitable for the following simulations. Secondly, the
comparison to the deviations of±10% in the experiments suggests that the deviations in the
real-life measurements are unlikely to be caused by variations in the macroscopic geometry.

Finally, the microscopic calibration of the digital twin is performed. The Stribeck
curves are simulated for the six different roughness patches obtained from test 2.1 and
for the average of their roughness factors. The used roughness factors were shown earlier
in Figures 4 and 5. The results are shown in Figure 13a. The deviations in the Stribeck
curves are shown in Figure 13b, where the Stribeck curve based on the averaged roughness
factors is used as C f ,re f . It becomes obvious that the digital twin is highly sensitive to the
chosen roughness patch. While some patches deliver results closely the reference, other
patches show deviations of up to 52%. In the mixed lubrication regime, the deviation of
most roughness patches is of similar magnitude as the deviations within the experiment
tests. This in turn suggests that the deviations in the experiments might be caused by
differences in the roughnesses between the tests. At the same time, the variations in the
roughnesses within test 2.1 also indicate that an actual tracing of exactly which roughness
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patch at which position on the pin surface dominates the behaviour of the Stribeck curve
is extremely difficult and beyond the scope of this work. Instead, in the following, this
work aims to investigate how suitable the average of the roughness factors of test 2.1 is for
representing the microscopic geometry of the digital twin.

Cf,dev,exp

Figure 12. Simulation results for different measured macroscopic pin topographies and their set
average. (a) Friction coefficient C f as a function of relative velocity ur. (b) Deviation of the friction
coefficient C f ,dev as a function of relative velocity ur.

Cf,dev,exp

Figure 13. Simulation results for different measured microscopic patches and their average. (a) Fric-
tion coefficient C f as a function of relative velocity ur. (b) Deviation of the friction coefficient C f ,dev
as a function of relative velocity ur.

3.3. Validation

As a useful tool for the validation of the calibrated virtual geometry, the Hersey
number [26] (Ch. 1.3.6), [27] for the considered pin-on-disk tribometer is derived to allow
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a certain degree of generalisation of the obtained results. Starting point is the steady
two-dimensional Reynolds equation, for simplicity without homogenisation factors:

∇ ·
(

ρlh3

12µl
∇p
)
− ∂

∂x1
(ρlhum(1− θ))) = 0. (36)

An order of magnitude analysis can be performed when each dimensional variable
and parameter is decomposed into its dimensionless value denoted by ∗ and its reference
value denoted by re f :

h = h∗hre f ; p = p∗pre f ; ρl = ρ∗ρre f ; µl = µ∗µre f ; x1 = x∗1 x1,re f ; x2 = x∗2 x2,re f ; um = u∗mum,re f . (37)

where the magnitudes of the dimensional values are roughly estimated as follows:

pre f = FN,imp/D2; ρre f = ρ0; µre f = µ0;

x1,re f = D; x2,re f = D; um,re f = U/2,
(38)

where D is the diameter of the pin. Since h is adjusted by hd in order to fulfil the load balance
equation, its magnitude hre f is unknown and cannot be directly estimated. To rectify this,
the Reynolds equation is put into non-dimensional form using both the estimated and the
unknown magnitudes:

∇∗ ·
(

ρ∗h∗3

µ∗
∇p∗

)
− 6S ∂

∂x∗1
(ρ∗h∗u∗m(1− θ)) = 0, (39)

which firstly allows to define the Sommerfeld number [26] (Ch. 11.2) [28] of the pin-on-disk
tribometer:

S =
µ0UD3

h2
re f FN,imp

. (40)

The idea of the non-dimensionalisation is that all dimensionless variables and parame-
ters are approximately of magnitude 1 if the magnitudes of their dimensional counterparts
are properly estimated. This, in turn, allows to approximately deduce the magnitude of the
gap height h from the dimensionless Reynolds Equation (39) as:

hre f ≈
√

µ0UD3

FN,imp
. (41)

Next, the steady hydrodynamic shear stress equation is considered:

τhd,31 = −h
2

∂p
∂x1

+
µlur

h
(1− θ). (42)

Using ur = u∗r ur,re f with ur,re f = U and reformulating the right side of the above equa-
tion yields:

τhd,31 =

√
µ0UFN,imp

D3

(
−h∗

2
∂p∗

∂x∗1
+

µ∗u∗r
h∗

(1− θ)

)
, (43)

which allows one to deduce the magnitude of the hydrodynamic shear stress as:

τhd,31,re f =

√
µ0UFN,imp

D3 . (44)

Lastly, the scaling behaviour of the hydrodynamic friction coefficient can be found by
estimating its magnitude using FT,hd,re f = τhd,31,re f D2:
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C f ,hd,re f =
FT,hd,re f

FN,imp
=
√
H, (45)

where
H =

µ0UD
FN,imp

, (46)

is the Hersey number [26] (Ch. 1.3.6) of the pin-on-disk tribometer. An equivalent expres-
sion ofH for the horizontal journal bearings under steady and fully lubricated conditions
was first derived by Hersey [27] in 1914 using the Buckingham Π theorem. The derived
Hersey number in Equation (46) provides a basis for a very particular theoretical under-
standing of the hydrodynamics of the lubricant flow: the imposed normal load and thus
the hydrodynamic load carrying capacity are directly proportional to the dynamic viscosity
of the lubricant.

For validation, the defined reference geometry obtained with a nine-pixel filter,
256 × 256 resolution, smooth macroscopic disk, macroscopic pin average of set 2 and
roughness factor average over patches 1–6 of test 2.1 was employed for simulations with
the oil’s respective dynamic viscosities at 24 and 50 ◦C. The simulation results are plotted
in comparison to the experiment Stribeck curves of sets 1 and 2 in Figure 14a as a function
of the relative velocity ur and in Figure 14b as a function of the Hersey numberH. When
the Hersey number is used, all results collapse on one curve, which firstly shows that the
dynamic viscosity proportionality is applicable to both the simulation and the experiment.
Secondly, this demonstrates that the model is capable of predicting the transition from
the hydrodynamic to the mixed lubrication regime. While the curve collapsing of the
simulation results is a consequence of the underlying equations and thus only a verification
of a correct implementation, the agreement of the collapsed simulation with the experiment
Stribeck curves validates the digital twin as a tool to predict the friction behaviour of a
pin-on-disk tribometer in the mixed lubrication regime.

Furthermore, the following line of argumentation can be drawn for the mixed lubri-
cation regime. According to the employed model, the friction coefficient in the mixed
lubrication regime is dominantly determined by the surface contact pressure, which in turn
is determined by the load carrying capacity of the lubricant. The reason for this is that the
lubricant pressure build up separates the surfaces as much as it is can while the remaining
load is carried by the contact pressure which then causes the large contact shear stress.

In essence, this means that the friction coefficient in the mixed lubrication regime is
strongly influenced by the load carrying capacity of the lubricant flow. Keeping in mind
that the mixed lubrication regime can consistently be represented by a collapsed curve for
the experiments and the simulations, this leads to the confirmation that the hydrodynamic
load carrying capacity is indeed proportional to the dynamic viscosity of the lubricant, as
predicted earlier by Equation (46). Finally, this allows us to conclude that the presented
digital twin can properly predict the load carrying capacity of the real-life lubricant flow
and is a valid tool to gain valuable insights into tribological systems.
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Figure 14. Stribeck curves for different temperatures. Full lines: simulation results. Dashed lines:
experiment results of set averages. (a) Friction coefficient C f as a function of relative velocity ur.
(b) Friction coefficient C f as a function of Hersey numberH.

4. Conclusions

In this investigation, a procedure for the establishment and subsequent calibration
of a digital twin of a pin-on-disk tribometer was presented. Particularly noteworthy is
the fact that its virtual geometry is not approximated by parametrised shapes, but instead,
it is completely deduced from real-life topography measurements. The advantage of
this approach was that the described procedure can be applied to any geometry, even
one that is too complex to be parametrised, as long as its topographies can be measured.
The presented work includes a description of the real-life experimental procedure, the
topography measurements of the specimen, the reconstruction of the virtual geometry
and the employed multi-scale mixed lubrication solver along with exemplary data and
code in the supplements. Furthermore, the Hersey number was derived to generalise
findings about the hydrodynamic load carrying capacity and friction behaviour of the
pin-on-disk tribometer and to allow the verification and validation of the digital twin
with the experimental results. During the conducted evaluation of the experiment and
simulation of the Stribeck curves, the following key statements were drawn:

• Filtering of the macroscopic topographies is an essential step for multi-scale solvers to
prevent a double consideration of roughness. After filtering, the digital twin is very
robust with regard to variations in the macroscopic geometry of different specimens.
The macroscopic geometry of the disc is even negligible.

• The digital twin is highly sensitive to the employed roughness patch. Averaging
over the computed influence factors of several roughness patches was shown to
deliver good agreement with the experiment results. The deviations of simulations
for different roughness patches are of similar magnitude as the deviations of the
experiments within one set, thus suggesting that the deviations in the experiment are
caused by variations in the roughness.

• The hydrodynamic load carrying capacity scales proportionally with the dynamic vis-
cosity of the lubricant. This leads to a collapse of Stribeck curves in the mixed lubrica-
tion regime when the friction coefficient is plotted as a function of the Hersey number.

Supplementary Materials: The following supporting information can be downloaded at: https:
//doi.org/10.5281/zenodo.7540491.
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