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Abstract: There are many cylinder–plane contacts in microaccelerators, microgyroscopes, and RF
switches. Adhesion is one of the main factors affecting the manufacture and use of these micro–nano
devices, but its research is insufficient. Graphene is expected to be used in these fields due to its
excellent electrical and mechanical properties. Therefore, it is significant to research the adhesion
force of graphene under cylinder–plane. Firstly, the meniscus formation process was introduced using
the variable-water-contact-angle method. Secondly, the adhesion force of the graphene surface was
measured with a cylindrical atomic-force-microscope probe. Finally, the contact area was considered
as a number of nanoscale cylinders in contact with the plane, and the adhesion force of the cylinder–
plane model was obtained. The results showed that there was a maximum adhesion force at a relative
humidity of 65%. The adhesion force was evidently not time-dependent when the relative humidity
was below 45%, because the meniscus cannot be formed on the graphene surface at low relative
humidity. While the graphene contact surface formed a meniscus for higher relative humidity, and
the adhesion force-versus-time curves first increased and then decreased to stability. Moreover, the
relationship between adhesion force and substrate contact angle, roughness, relative humidity, and
dwell time was established, and the number of cylinders was determined. The error between the
modified theoretical model and the experimental values was only 6%.
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1. Introduction

Graphene has a broad application prospect in the fields of microelectronics, nanoelec-
trical systems (NEMS), and sensors because it has high conductivity, mechanical strength,
and stiffness [1,2]. For example, graphene has been used for chip communication due to
its high-frequency bandwidth [3]. Graphene can not only be used as an electrode in the
microthruster of nanosatellites, but also significantly enhances damping and improves
system performance [4]. In addition, graphene was transferred to a SiOx/Si substrate to
fabricate field-effect transistors [5]. It was proposed that adhesion was an important issue
to be considered in the processing and use of these micro–nano devices [6,7]. Therefore, it is
necessary to research the influencing factors of the adhesion force of graphene surface [8,9].

The atomic-force microscope (AFM) can be used to scan the sample surface topogra-
phy and detect adhesion force [10,11]. When the AFM probe is improved into different
geometries, it can detect the adhesion force of the sphere–plane, cone–plane, projectile–
plane, and cylinder–plane [12]. The effect of dwell time and the material properties on the
adhesion force can also be studied by AFM [13]. AFM has become a mature method for the
study of adhesion force [3].

Adhesion force was found to have a strong dependence on relative humidity (RH) for
SiO2 but not on the hydrophobic sample [14]. In general, when there was a meniscus in the
contact area, the capillary force dominated the adhesion force [15]. Lai et al. [16] pointed
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out that when RH was low, meniscus formation was mainly due to capillary condensation,
and when RH was high, liquid flow on the sample surface played the main role in meniscus
formation. Obata et al. [17] proposed a micromanipulation method to change the adhesion
force through adjusting the volume of the liquid bridge, because the smaller volume of
the meniscus liquid led to a larger adhesion force. The dynamic growth of the meniscus
was determined by the condensation of water vapor and the evaporation of water [18].
Weeks et al. [19] directly measured that the meniscus volume increased with the increase
in RH. Therefore, the correlation between RH and adhesion force needs to be studied.

In terms of experimental research, the change in the adhesion force of cylindrical
fiber in oblique contact with different liquids was studied by an AFM experiment, but
the situation in which there is no space between the cylindrical fiber and the plane has
not studied [20]. Yang et al. [21] found that capillary condensation in the nanochamber
increased with the increase in humidity, and it was proved that the modified Kelvin
equation was still practical at the nano scale. The influence factors of adhesion force of
silicon on cylinder–plane contact were studied, it was shown that the actual contact area
was not equal to the apparent contact area [22]. Moreover, Çolak et al. [23] used a cylinder–
plane probe to measure the adhesion force of silicon surfaces with different roughness. It
was found that the adhesion force is strongly dependent on RH, there is a maximum value
at RH = 70%, and the smoother the surface corresponds to less adhesion force. Although
there are a few experimental studies on the adhesion of cylinder–plane contact at present,
the mechanism of change in adhesion needs further study.

Theoretically, the capillarity force of two planes was also obtained based on the
volume-change law of the liquid bridge [24]. The change rule of adhesion force under
different geometric contacts was calculated according to the different meniscus radius of
the liquid bridge, and it was found that when the liquid-bridge volume increased, the
adhesion force of the plane–plane contact increased faster than other contact models [25].
De Souza et al. [26] showed that the greater the difference between the two contact angles
of the top and bottom surfaces, the lower the adhesion force. In addition, subdividing
the liquid bridge between two planes into countless smaller liquid bridges increased the
total adhesion force, and the capillary force of the hydrophobic surface could even change
from repulsion to attraction [27]. The above studies refer to the adhesion force of the
plane–plane model, which is different from the cylinder–plane contact, because the liquid
bridge may exist around the cylinder, not just below the upper plane. Butt et al. [28]
combines cone–plane contact with cylinder–plane contact, and uses cylinder–plane contact
to calculate the value and change in adhesion under high humidity (RH ≥ 86%). However,
these calculation results have not been verified by experiments. Depending on the type of
contact, for the cone, the adhesion increases with RH; for the cylinder, it decreases; and for
the sphere, it is relatively constant [29].

In comb microaccelerators and micromachined gyroscopes, one of the main factors
leading to the failure of MEMS devices is the lateral adhesion between the combs, and the
adhesion between the comb and substrate; evidently, the cylinder–plane contact is more
common [30,31]. RF MEMS switches are a new type of MEMS device, and the adhesion
force of the contact points is also an important indicator of design and use [32]. These
kinds of adhesion sensors can reduce the adhesion force by heating, but the adhesion
mechanism in the atmosphere is insufficiently studied at present [33]. It can be seen that
in the manufacture and use of micro–nano devices, cylinder–plane contact has a wide
range of application scenarios. Graphene was expected to be used in these fields due to
its excellent electrical and mechanical properties [34,35]. Compared with other contact
types, its adhesion mechanism and theoretical model are usually ignored. Therefore,
the relationship between the time dependence and RH of cylinder–plane contact in the
atmospheric environment is urgent and critical.

The dwell time was an important factor affecting adhesion. It was reported that the
adhesion-force-versus-time curve had a maximum value and then reached equilibrium
in a certain range of RH [36]. At 10–80% of RH, the contact-time-dependence of the
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adhesion force was logarithmic, but did not depend on the RH of 90% [37]. Lai et al. [38]
pointed out that silica/graphene adhesion force had no time dependence in the atmospheric
environment. Sirghi [39] demonstrated that the meniscus force increased with the contact
time, and the characteristic time for the meniscus to reach thermodynamic equilibrium was
10 ms. However, the above relationship between dwell time and adhesion fore sometimes
is inconsistent, and there are few studies on the effect of dwell time on cylinder–plane
adhesion force at present.

In this paper, based on the cylinder–plane contact model, the surface-adhesion force
of graphene was measured using a cylindrical AFM probe. First, the formation process
of the meniscus in the contact area of the cylindrical AFM probe was introduced with the
variable-water-contact-angle (VWCA) method, and the adhesion force as a function of
dwell time and the RH under cylinder–plane contact were studied. Finally, the theoretical
calculation model was modified in combination with the roughness calculation model of
the van der Waals (vdW) force with the modified Rumpf model.

2. Materials and Methods
2.1. Preparation of Experiment

As shown in Figure 1, an experimental setup with a cylindrical AFM probe for measur-
ing adhesion force was used. It mainly included the atomic-force microscope (CSPM-4000
AFM), high-resolution industrial microscope, glove box, and humidifier/dehumidifier. In
this paper, monolayer graphene samples on silica were prepared by the mechanical method
and then placed into the glove box. The RH was adjusted by humidification, dehumidifica-
tion, or drying nitrogen. In the experiment, the adhesion force with continuously increasing
dwell times were measured under five RH conditions, namely RH 45%, 55%, 65%, 75%,
and 85%. The experimental temperature was set as 26 ± 2 ◦C. Figure 1b showed the AFM
scanning probe, and Figure 1c was the adhesion-force measurement area, which could be
observed by microscope.

Lubricants 2023, 11, x FOR PEER REVIEW 3 of 14 
 

 

relationship between the time dependence and RH of cylinder–plane contact in the atmos-
pheric environment is urgent and critical. 

The dwell time was an important factor affecting adhesion. It was reported that the 
adhesion-force-versus-time curve had a maximum value and then reached equilibrium in 
a certain range of RH [36]. At 10–80% of RH, the contact-time-dependence of the adhesion 
force was logarithmic, but did not depend on the RH of 90% [37]. Lai et al. [38] pointed 
out that silica/graphene adhesion force had no time dependence in the atmospheric envi-
ronment. Sirghi [39] demonstrated that the meniscus force increased with the contact time, 
and the characteristic time for the meniscus to reach thermodynamic equilibrium was 10 
ms. However, the above relationship between dwell time and adhesion fore sometimes is 
inconsistent, and there are few studies on the effect of dwell time on cylinder–plane ad-
hesion force at present. 

In this paper, based on the cylinder–plane contact model, the surface-adhesion force 
of graphene was measured using a cylindrical AFM probe. First, the formation process of 
the meniscus in the contact area of the cylindrical AFM probe was introduced with the 
variable-water-contact-angle (VWCA) method, and the adhesion force as a function of 
dwell time and the RH under cylinder–plane contact were studied. Finally, the theoretical 
calculation model was modified in combination with the roughness calculation model of 
the van der Waals (vdW) force with the modified Rumpf model. 

2. Materials and Methods 
2.1. Preparation of Experiment 

As shown in Figure 1, an experimental setup with a cylindrical AFM probe for meas-
uring adhesion force was used. It mainly included the atomic-force microscope (CSPM-
4000 AFM), high-resolution industrial microscope, glove box, and humidifier/dehumidi-
fier. In this paper, monolayer graphene samples on silica were prepared by the mechanical 
method and then placed into the glove box. The RH was adjusted by humidification, de-
humidification, or drying nitrogen. In the experiment, the adhesion force with continu-
ously increasing dwell times were measured under five RH conditions, namely RH 45%, 
55%, 65%, 75%, and 85%. The experimental temperature was set as 26 ± 2 °C. Figure 1b 
showed the AFM scanning probe, and Figure 1c was the adhesion-force measurement 
area, which could be observed by microscope. 

In this paper, the single-point-force-curve collection method is used to avoid friction 
and position changes on the sample surface during scanning. After adjusting the RH in 
the glove box to a set value, the sample and the AFM probe were kept at this RH for 1 h. 
Moreover, the maximum Z-direction voltage was set to −110 V, the set dwell time started 
from 0 s, the interval of each force curve was set to 100 ms, and force curves at the same 
humidity were measured 100 times. 

 
Figure 1. Experimental equipment. (a) Three-dimensional view of the experimental equipment. (b) 
AFM scanning probe. (c) Adhesion-force measurement area. 
Figure 1. Experimental equipment. (a) Three-dimensional view of the experimental equipment.
(b) AFM scanning probe. (c) Adhesion-force measurement area.

In this paper, the single-point-force-curve collection method is used to avoid friction
and position changes on the sample surface during scanning. After adjusting the RH in
the glove box to a set value, the sample and the AFM probe were kept at this RH for 1 h.
Moreover, the maximum Z-direction voltage was set to −110 V, the set dwell time started
from 0 s, the interval of each force curve was set to 100 ms, and force curves at the same
humidity were measured 100 times.

Figure 2 shows the cylindrical AFM tip SEM. The probe type is SD-PL2-CONTR, and
the materials of tip and cantilever are silicon. The laser-reflection surface of the probe
cantilever was coated with a 30 nm aluminum layer, which could completely reflect the
laser into the laser receiver. From the enlarged view in Figure 2b, it can be seen that the
diameter of the cylindrical tip is 2 µm.
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Figure 2. The cylindrical AFM tip SEM. (a) The cylindrical AFM tip. (b) Enlarged view of cylindrical
AFM tip.

2.2. Characterization Methods

In this paper, silica-based monolayer graphene was prepared by the mechanical
method [36]. The image of the tested sample under a polarizing microscope is shown in
Figure 3a. The monolayer graphene in the picture is light blue, and the darker color is few-
layer graphene. It shows that the area of graphene is more than 6000 square microns, which
makes it easier to measure adhesion force. The laser confocal micro-Raman spectrometer
(HJY LabRAM Aramis, Horiba Jobin Yvon, Paris, France) was used to measure the Raman
measuring point in Figure 3a. The measured Raman laser wavelength was 532 nm, and
the Raman spectrum is shown in Figure 3b. It can be seen that the G peak of the Raman
measurement point is 1588.69 and the 2D peak is 2684.62, and the intensity ratio of both is
less than 0.7. Therefore, it can be judged that the Raman measurement point is a monolayer
graphene [40,41].
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Figure 3. Optical schematic diagram of graphene under polarizing microscope and Raman spectrum
diagram of monolayer graphene. (a) Schematic optical diagram of graphene sample under polarizing
microscope. (b) Raman spectra of monolayer graphene.

2.3. Measurement Method

The adhesion force can be calculated by the force curve (see Figure 4a), and the force–
time curve can know the running process of the AFM measurement (see Figure 4b). The
force curve was measured by detecting the laser displacement, and the displacement of
the probe cantilever and the adhesion force were obtained. The black lines in Figure 4a,b
represent the sample approach process of the AFM probe. The sample moves upwards to
cause the AFM probe cantilever to bend upwards, and the maximum Z-direction voltage
was maintained until the set dwell time was reached (see Figure 4c). The red lines in
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Figure 4a,b represent the separation of the scanner and the probe. The sample moved
downwards and the probe began to separate from the sample. During the separation
process, the adhesion force made the AFM probe cantilever bend downward, and the force
curve appeared as a large negative value (see Figure 4d). Contact time includes: approach
running time, dwell time, and separation running time. It should be noted that during
the approach running time, the cylindrical probe was in contact with the sample surface,
the condensation of water was initiated, and the AFM would not collect data within the
dwell time.
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3. Theoretical Model
3.1. Change Process of the Meniscus

Weeks et al. [19] used a silicon nitride AFM tip with a static contact angle of 61◦ to
directly measure the image of meniscus equilibrium at RH = 60% and RH = 90%. It was
shown that the tip-contact angle was close to zero, and the two contact angles were not
consistent. This suggests that the contact angle can be gradually reduced to allow the
surface energy to reach equilibrium. Shi et al. [36] pointed out that the growth process of
the meniscus was a dynamic change process of the material-contact angle, and the adhesion
force-versus-time curves had a maximum value under the cone–plane contact.

Figure 5 shows the change in meniscus and variable-water-contact-angle (VWCA)
between the AFM cylindrical probe and the sample. θ1 is the VWCA of the cylindrical probe,
and θ2 is the VWCA of the sample surface. Figure 5a shows that θ2 and the Kelvin radius r
remained unchanged, and the meniscus was formed by condensation at the periphery of
the cylindrical. The initial angle of θ1 was 90◦ and it gradually decreased with the increase
in the meniscus. An increased meniscus results from water condensation [42]. As shown
in Figure 5b, the center of the Kelvin circle moved horizontally outward until the Kelvin
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circle was tangent to the cylinder (see Figure 5c). After forming a complete meniscus, as the
dwell time increased, the sample surface continued to condense to form a water film [43],
leading to θ2 increase (see Figure 5d). In general, the thickness of the water film depends
on the RH and hydrophilicity of the substrate [44,45].
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Figure 5. The change in meniscus and VWCA between AFM cylindrical probe and sample, where θ1 is
the VWCA of the cylindrical probe and θ2 is the VWCA of the sample surface. θe2 is the static contact
angle of the sample. (a) 45◦ ≤ θ1 ≤ 90◦, θ2 = θe2. (b) 0 ≤ θ1 ≤ 45◦, θ2 = θe2. (c) θ1 = 0◦, θ2 = θe2.
(d) θ1 = 0◦, θ2 > θe2.

3.2. Van der Waals Force under Cylinder–Plane Contact

When two solids contact under normal load, the adhesion force attracts the two
surfaces together. The sources of adhesion force may include vdW force generated on the
contact surface, capillary force generated by meniscus pressure, electrostatic force generated
by electric charge, and double-electric-layer force possibly generated in the liquid between
the contact surfaces, etc. The total energy of adhesion is the work required to separate the
two surfaces from equilibrium to an infinite distance [28,44]. In this paper, the experiment
was carried out in an atmospheric environment with high RH. Generally, electrostatic force
and double-electric-layer force were small and could be ignored, so the adhesion force only
needed to consider vdW force and capillary force.

Fad = Fvdw + Fc (1)

In the cylinder–plane contact mode, the calculation equation for the vdW force is
expressed as follows [29]:

Fvdw =
r2

c AH

6D03 (2)

where AH is the Hamaker constant, D0 is the typical interatomic spacing (D0 = 0.165 nm) [12],
and rc is the cylinder radius.

3.3. Theoretical Capillary Force under Cylinder–Plane Contact

Generally, if there is a meniscus on the surface of two contact samples, the main sources
of capillary force Fc include capillary pressure Fp caused by pressure in the meniscus, and
liquid-surface-tension Fs. For rotationally symmetric geometry, the equation for calculating
capillary force is

Fc = Fp + Fs (3)
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As shown in Figure 6, under cylinder–plane contact, Fp is affected by Laplace pressure
∆P between two phases. The Young-Laplace equation relates ∆P to the azimuthal radius rc
and Kelvin radius r of the meniscus. The Young–Laplace equation is given by [29]:

∆P = γL(1/rc − 1/r) (4)

where γL is the surface tension of liquid and r can be calculated using the Kelvin equation [28].
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For cylinder–plane contact (see Figure 6), the pressure surface of the cylindrical probe
is circular. Therefore, the capillary pressure FP is

Fp = πrc
2γL(1/r − 1/rc) (5)

In addition, FS is the surface tension, and the action direction of the adhesion force is
vertical, so it is necessary to decompose the surface tension on the meniscus in the vertical
direction; therefore, the FS calculation equation is [29]:

Fs = 2πrcγLcosθ1 (6)

Therefore, the relationship between the capillary force Fc and VWCA θ1 can be derived
from Equations (3)–(5):

Fc = 2πrcγLcosθ1 + πrc
2γL(1/r − 1/rc) (7)

4. Experimental and Theoretical Results
4.1. The Variation Rule of Graphene Adhesion Force with the Dwell Time under Cylinder–Plane Contact

Figure 7 shows the variation rule of graphene adhesion force with the dwell time at
different RH under cylinder–plane contact. It was shown that when RH was 45% and
55% (see Figure 7a,b), the adhesion force value was small (40–50 nN), which tended to be
stable. When RH was 65%, the adhesion curve showed a significant increase in dwell time,
and had a maximum value and stabilized (see Figure 7c). The maximum adhesion force
was 80.58 nN, which increased by 29.78% when RH was 55%. When RH was 75–85% (see
Figure 7d,e), the adhesion force curve slowly decreased and finally stabilized.

It can be seen that the graphene adhesion force did not change significantly with the
dwell time under cylinder–plane contact at RH ≤ 45%. Graphene adhesion force became
time-dependent after RH was above 45%. The effect of dwell time on adhesion force at
different humidities was not entirely consistent. When RH was 55% and 65%, the adhesion
force-versus-time curve had a maximum value and tended to be stable. When RH was 75%
and 85%, the adhesion force-versus-time curve decreased with dwell time and tended to be
stable. It can be concluded that the higher the RH, the faster the meniscus was formed on
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the graphene surface. The increase in adhesion force with dwell time was not observed
at high RH, possibly because the meniscus formation time was shorter than the approach
running time. As the dwell time increased, the adhesion force gradually became stable.
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4.2. Variation Rule of Graphene Adhesion Force with the Relative Humidity under Cylinder–
Plane Contact

Figure 8 shows the variation rule of graphene adhesion force with the relative hu-
midity under cylinder–plane contact. The data in the figure were obtained by solving the
mean and variance of adhesion forces for each RH in Figure 7. It was shown that when
RH ≤ 55%, the graphene adhesion force and RH curves was stable, and its variance was
less than 10 nN. This may be because a meniscus did not form, and the adhesion force
was dominated by other forces, such as the vdW force, which was independent of RH [29].
When 55% ≤ RH ≤ 75%, the graphene adhesion force increased rapidly with increasing RH,
reaching a peak at 76.34 ± 3.37 nN, when the RH was 65%. The rapid increase in adhesion
force was related to the formation of a meniscus. The size of the meniscus increased with
the increase in RH, so the graphene adhesion force increased rapidly. When RH ≥ 75%, the
graphene adhesion force decreased with increased RH because a water film formed on the
surface of the graphene.

The water film was composed of a hydration layer, a water bridge, and nucleation [46].
At a low RH, there was only a hydration layer or a small water-bridge layer, so the size of
the meniscus was not affected by the thickness of the water film. As the thickness of the
water film increased at a high RH, the water bridge layer flowed towards the meniscus,
resulting in the surface of the sample in the contact area being filled with water and the
adhesion force being reduced.
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4.3. Theoretical Results

It can be seen from Figure 2 that the radius of the cylindrical probe was 1 µm, but
when using the above theory to calculate, the influence of the surface roughness of the
cylindrical probe and graphene must be considered, and the actual contact area should
be much less than 2 µm. In this paper, the surface roughness r2 ≈ 2 nm of graphene was
measured by AFM, and the contact area was considered to be a number of nanoscale
cylinders in contact with the plane. The number of cylinders was kc and the radius was
rc. In this paper, the radius rc was given as 10 nm. Meanwhile, the Hamaker constant
Aair

H = 5.9 × 10−20, Awater
H = 0.77 × 10−20, D0 = 0.165 nm [47]. According to Equation (2),

it was found that Fair
vdw = 218.9 nN and Fwater

vdw = 28.57 nN. Due to the adhesion in the
atmospheric environment, Fwater

vdw was used as the reference value.
Therefore, Equations (1) and (6) can be changed to:

Fad = Fwater
vdW + kc(2πrcγLcosθ1 + πrc

2γL(1/r − 1/rc)) (8)

According to Equation (6), the magnitude of the adhesion force does not include
the parameters θ2. It means that the adhesion force is independent of the contact angle
of the substrate. However, it was reported that the more hydrophilic the substrate, the
greater the adhesion force [48,49]. Therefore, it is necessary to add θ2 into the parameter
kc. In addition, the higher RH, the larger the number of meniscus, so kc is proportional to
RH [44]. Ultimately, we combined the roughness calculation model of the vdW force with
the modified Rumpf model [50], and based on experimental data, the number of cylinders
kc was determined:

kc = (
r2rc

r2 + rc
+ 2
√

rc

r2
)(

P
P0

)
1.2e sin( θ2

2 )

(9)

where P/P0 is the current RH value and θ2 is the VWCA of the substrate sample surface.
Figure 9 shows the variation rule of the theoretical graphene adhesion force with

VWCA. The function with the adhesion force and VWCA θ1 was obtained from
Equations (8) and (9). θe2 = 80◦ is the graphene static contact angle, and water-surface
tension is γL = 71.99 mN/m [21]. In the initial stage, θ2 remained unchanged, and VWCA
θ1 decreased from 90◦ to 0◦ with the increase in the meniscus (see Figure 5a–c). When RH
remained unchanged, the graphene adhesion force increased with the decreasing VWCA
θ1, but the rate of increase decreased gradually (see Figure 9a).
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With the increase in RH or dwell time, a water film appeared on the surface of the
graphene, a water film condensed on the graphene surface, and the water film could change
from an ice-like state to a liquid state [9]. The more hydrophilic the sample, the easier it
was to form a water film on the surface. The rise in the water film caused the VWCA θ2 on
the graphene surface to increase from 80◦ to 180◦, resulting in a decrease in adhesion force,
and the adhesion force eventually became stable (see Figure 9b).

Figure 10 shows the variation rule of the theoretical graphene adhesion force with
a static contact angle θe2 and RH. The average adhesion force Favg in the figure refers to
the average of all adhesion forces when θ1 decreased from 90◦ to 0◦ under a certain RH.
the adhesion force of graphene increased with the RH and had a maximum value. The
adhesion force of the small static contact angle θe2 was higher than the corresponding value
of the large static contact angle θe2, because the smaller the static contact angle θe2, the
more hydrophilic it was. Moreover, the peak adhesion force for the smaller static contact
angle θe2 appeared at lower a RH, which was consistent with the actual measurement in
some of the relevant literature [12,49]. It should be noted that chemical reaction or group
adsorption on the contact surface was not considered.
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4.4. Comparison of Experimental and Theoretical Results

Figure 11 is a comparison of experimental and theoretical adhesion forces under
cylinder–plane contact. In this work, the adhesion force of graphene was compared when
the RH was 65%. The experimental value was fitted by the quadratic fitting method, and
the equation is:

Fad = −0.23t2 + 3.19t + 68 (10)
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(RH = 65%, rc = 10 nm, θe2 = 80◦, h = 0, kc = 3.36).

According to the fitting equation, its symmetry axis is t0 = 6.93 s. At the same time,
the relationship between VWCA θ1, VWCA θ2, and dwell time t was established according
to the change in adhesion force:{

θ1 = k1t + b1 (0 ≤ t ≤ t0)
θ2 = k2t + b2 (t ≥ t0)

(11)

Its initial conditions were: t = 0, θ1 = 90◦; t = 6.93, θ1 = 0◦, θ2 = 80◦; t = 10, and
θ2 = 90◦. It was calculated that k1 = −0.23, b1 = 1.57, k2 = 0.057, and b2 = 1. The relationship
between dwell time and adhesion force can be obtained from Equations (8), (9) and (11)
(see Figure 11). As seen in the figure, when the dwell time was in the range of 0–6.93 s,
the meniscus was in the growth stage, θ1 decreased from 90◦ to 0◦, and the adhesion force
increased until it peaked at the dwell time of 6.93 s. When the dwell time was in the range
of 6.93–10 s, a water film could be generated on the graphene surface, which increased θ2
from 80◦ to 90◦, and the adhesion decreased. The fitting degree of the fitted curve was 82%,
and the maximum error between the theoretical curve and the experimental curve was
only about 6%.

5. Conclusions

When two surfaces are pressed under high pressure or the cylinder contacts a plane at
a micro and nano scale, the adhesion force of the cylinder–plane contact needs to be studied.
Moreover, the effect of dwell time on adhesion force under cylinder–plane contact is also
unclear. Therefore, based on the variable-water-contact-angle (VWCA) and the roughness
theory related to the vdW force, the effect of dwell time and RH on the graphene adhesion
force under cylinder–plane contact was studied. The main conclusions are:

1. At a low relative humidity (RH < 45%) under cylinder–plane contact, dwell time had
little effect on graphene adhesion force. When RH was 55% and 65%, the adhesion
force-versus-time curve had a maximum value and eventually tended to be stable.
When RH was 75% and 85%, the adhesion force-versus-time curve decreased and
tended to be stable.
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2. Meniscus cannot be formed at low RH. At RH > 55%, the meniscus condensed in
the cylinder’s contact area. First, the VWCA of graphene was 80◦ and remained
constant. The VWCA of the cylindrical probe decreased when the Kelvin circle moved
horizontally outward until it was tangent to the cylinder. Finally, when the RH was
high, a water film formed on the surface of the graphene, causing the VWCA of
graphene to increase, resulting in a decrease in adhesion force.

3. Theoretically, it is necessary to consider the influence of the roughness of the cylin-
drical probe and the graphene surface. Therefore, the contact area was considered
to be a number of nanoscale cylinders in contact with the plane. Finally, combining
the roughness calculation model of the vdW force with the modified Rumpf model,
the adhesion force model of the cylinder–plane contact was obtained in terms of
dwell time and VWCA. The maximum error between the theoretical curve and the
experimental curve was only about 6%.
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