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Abstract: Aerostatic bearings have been widely applied to high-rotating speed machines due to
their low friction and high rotational speed advantages. The geometry parameters, supply pressure
and rotational speed play important roles in the static and dynamic performances of the aerostatic
bearings. In this paper, the steady state and dynamic Reynolds equations are solved by the finite
difference method (FDM) and used to study the static and dynamic performances of the aerostatic
bearings. Then, combined with the motion equation of the rigid rotor-aerostatic bearing system, the
linear stability of the aerostatic bearing is also studied. Moreover, based on the theory mentioned
above, the influences of the geometry parameters (such as orifice diameter, radial clearance and
eccentricity), rotational speed and supply pressure are investigated in detail. It was found that
aerostatic bearing geometries, rotational speed and supply pressure had a significant effect on the
steady and dynamic performances. Under the low-speed conditions and high supple pressure, the
static pressure effect plays the main role in the performances of the aerostatic bearings, while on the
contrary, the rotational effect plays the main role. Furthermore, a half-speed whirl may generate
under certain conditions. The results also provide useful design guidelines for aerostatic bearings in
high-speed machines.

Keywords: aerostatic bearing; static performance; dynamic coefficients; stability threshold; FDM

1. Introduction

With the merits of low noise, high precision, low friction, high rotational speed and
long life, gas bearings have been widely applied in the high-precision and high-speed
rotating machines, such as high-speed motors, ultra-precision machining spindles, precision
guide rails and so on. Compared with traditional bearings like oil and ball bearings,
gas bearings work with low heat generation, oil-free pollution and a simple auxiliary
apparatus [1–6]. In order to overcome the poor load capacity of gas bearings due to the low
viscosity, gas bearings with orifice restrictors, known as aerostatic bearings, use external
high-pressure gas to generate extra load capacity. Like traditional oil bearings [7,8], water
bearings [9,10] and squeeze film dampers [11,12], their static and dynamic characteristics
are the key to their design and application, for which there exists numerous papers about the
study of static and dynamic performances on them in the past. Similarly, in the application
of the aerostatic bearings, the static and dynamic performance is also the key characteristic
of the aerostatic bearings. In general, the static and dynamic characteristics contain the
bearing capacity, static stiffness, dynamic stiffness and damping coefficient and linear
stability. The static and dynamic characteristics of aerostatic bearings are affected by the
geometry parameters and supply pressure of the aerostatic bearings and rotational speed,
which leads to abundant literature on the characteristics of aerostatic bearings published in
the past.
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Cheng et al. [13] studied the effect of the number of orifices on the static performance
of the aerostatic bearing and the results showed that the small number of feeding holes
without locating the bearing bottom is suitable for a high-speed condition, while the large
number of feeding holes is suitable for a low-speed condition. Ise et al. [14] researched the
influence of the asymmetry supply pressure distribution of the upper and lower rows of
orifices on the bearing capacity and mass flow of the aerostatic bearing. The results showed
that this will lead to a larger bearing capacity with a decrease in the mass flow. The opening
pressure-equalizing grooves were applied to improve the bearing capacity, while the effects
of the parameters of the pressure-equalizing grooves on the bearing capacity and static
stiffness were also studied [15]. Research showed that the opening pressure-equalizing
grooves along the axis direction is more useful to the bearing capacity than the grooves
along the circumferential direction. Su and Lie [16] investigated the rotational effect of
the aerostatic bearing with orifices and a porous restrictor. The results showed that an
aerostatic bearing with five rows of orifice feedings could match the porous air bearings
in some certain characteristics, while the aerostatic bearings with orifices had less mass
flow consumption. Moreover, the L/D (the ratio of bearing length to diameter) can be
strengthened as the rotational effect. The influence of the orifice number and distribution
on the static and dynamic performance was studied by Yang et al. [17] and the proper
orifice distribution can eliminate the orifice backflow phenomenon. Wang et al. [18] studied
the rotational effect on the static characteristics of a pure dynamic bearing, a pure aerostatic
bearing and a hybrid gas bearing in detail. Moreover, they [19] also studied the effect of
surface waviness along the axis and circumferential direction on the aerostatic bearings
and the results showed that the bearing capacity, static stiffness and mass flow increased
and the friction decreased with the increasing wave’s amplitude.

As mentioned above, the static characteristics of the aerostatic bearings were studied
by solving the steady state Reynolds equation, which ignores the squeezing effect. However,
the gas film of aerostatic bearings is not only used for supporting and reducing friction
and wear, but is also a key point of the bearing rotor system from the viewpoint of bearing
rotordynamics. The performance of the gas film has an important effect on the dynamic
performance of the gas-bearing rotor system. Therefore, the dynamic characteristics of
the aerostatic bearings are also the key characteristic of the aerostatic bearings. Moreover,
due to the compressibility and low viscosity of the gas, the aerostatic bearings tend to
generate whirl instability under high rotational speed. Therefore, the linear stability of the
aerostatic bearings is also an important property for the aerostatic bearings’ application in
high rotational speed machines.

Lund [20] adopted the linear Ph method to study whirl instability by the finite differ-
ence method (FDM), while Wadhwa et al. [21] also used the linear Ph method to investigated
the effect of the rotational speed and geometry parameters on the dynamic stiffness, damp-
ing coefficient and the linear stability containing the critical rotational speed and mass.
Han et al. [22] solved the dynamic Reynolds equation to obtain the dynamic stiffness and
damping coefficients and then combined the rotor motion equation to obtain the orbit
of the shaft center. The orbit of the shaft center obtained by numerical calculation was
compared to the experimental results, which verified the correctness of the numerical
calculation. Based on the research shown in reference [16], the stability of the aerostatic
bearings with five rows of orifices and a porous restrictor was compared [23]. The whirl
ratio was introduced into the study of dynamic stiffness and damping coefficients in ref-
erences [17,24,25]. Chen et al. [24] found that static pressure effect plays the main role in
the stability of the aerostatic bearing under the low rotational speed, while the rotational
effect plays the main role in the stability under high speed. Moreover, the effect of different
type of the orifice (i.e., inherent and simple orifice) on the stability was compared and the
stability of the aerostatic bearing with an inherent orifice was better than the aerostatic
bearing with a simple orifice under the same condition. Based on the gas flow state in the
orifice by description of the Hagen–Poiseuille theory, a new Reynolds equation of aerostatic
bearings was proposed to compute the dynamic coefficients. The stability threshold of the
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aerostatic bearing-rotor system was investigated based on the modified Reynolds equation
mentioned above. In the paper [17,20–26], the approach to obtain the dynamic coefficient is
the same as Lund’s [20] and the squeezing effect is not involved in the Reynolds equation
directly in this study. By solving the transient Reynolds equation and motion equation of
the rigid rotor, the stability of the aerostatic bearing with a single row and two rows of
orifices was studied contrastively [27].The results showed that the stability of the aerostatic
bearing with two rows of orifices is better than the aerostatic bearing with a single row of
orifices. Otsu et al. [28] considered the inertial effect of gas and investigated the stability of
rigid rotor-aerostatic bearings with compound orifices and inherent orifices numerically
and experimentally. The results presented that the compound orifices can improve the
stability of the aerostatic bearing compared with the inherent orifices. Based the transfer
function, Belforte et al. [29] proposed a new method to obtain the dynamic coefficients of
a dynamic gas bearing analytically. Then, the method was used to obtain the dynamic
coefficients of an aerostatic bearing [30]. Based on the study of the effect of surface waviness
on the static performance of the aerostatic [19], Wang et al. [31] investigated the influence
of surface waviness along the axis and circumferential direction on the dynamic coefficients
of aerostatic bearings. In the same way, the effects of the waviness’s amplitude and length
on the dynamic coefficients were also studied. The research presented that the surface
waviness has an obvious effect on the dynamic performance of aerostatic bearings. In
addition, increasing the waviness’s amplitude increases the dynamic coefficients.

To sum up, there exist numerous papers about the study of the static and dynamic
performances of the aerostatic bearings. However, in this paper, the study of the static and
dynamic performances of the aerostatic bearings focuses on some parameters’ effects on the
performances, which means that the study in this paper is detailed and comprehensive. In
this paper, the steady and dynamic Reynolds equations for a linear aerostatic bearing-rotor
system are solved to study the static performance, dynamic coefficients and linear stability.
Moreover, the influences of the comprehensive parameters (such as eccentricity, rotational
speed, gas film thickness, orifice diameter and supply pressure) on the static performance,
dynamic coefficients and linear stability are also investigated in detail.

2. Mathematical Model
2.1. Reynolds Equation

The schematic diagram and coordinate axes of the aerostatic bearings are shown in
Figure 1. There are two rows of inherent orifices, and each row contains eight feeding
orifices distributed uniformly in the circumferential direction. In this paper, the Reynolds
equation is used to calculate the gas pressure (p) distribution of the gas film. the Reynolds
equation is shown in Equation (1) [3] and the gas film h can be calculated by Equation (2).

∂

∂x

(
ph3 ∂p

∂x

)
+

∂

∂z

(
ph3 ∂p

∂z

)
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∂(ph)
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+ 12η

∂(ph)
∂t
− 12δ

.
mp

ρdxdz
(1)

h = c + e cos(ϕ− ϕ0) (2)

where c is clearance; e is eccentricity; ρ is the density of the gas; ϕ0 is the attitude angle at
the mid plane; z− L/2 is the axial distance from the mid plane; Zm is the mid plane; and
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where δ is the Kronecker function; η is the dynamic viscosity of the gas; ρa is the gas density
under atmosphere pressure; u is the circumferential velocity of the journal; w is the axial
velocity of the journal; Cd is a discharge coefficient; κ is the heat capacity ratio; pa is the
atmospheric pressure; ps is the supply pressure; and d0 is the orifice diameter. When
ignoring w, Equation (1) can be changed to Equation (3).

∂

∂x

(
ph3 ∂p

∂x

)
+

∂

∂z

(
ph3 ∂p

∂z

)
= 6ηu

∂(ph)
∂x

+ 12η
∂(ph)

∂t
− 12δ

.
mp

ρdxdz
(3)
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Figure 1. Schematic view of the aerostatic bearing: (a) XYZ plane; (b) YZ plane and XZ plane;
(c) mid plane.

With the dimensionless parameters shown as below:

p = paP, h = cH, x = Rϕ, z = LZ, t =
τ

ωs
, λ =

ωs

ω
, Λ =

6ηωR2

pac2

(where ωs is the journal perturbation rotational speed; ω is the rotational speed of the
journal; λ is the whirl ratio; and Λ is the bearing number), Equation (3) can be changed to
Equation (4).

∂

∂ϕ
PH3 ∂P

∂ϕ
+

(
R
L

)2 ∂

∂Z
PH3 ∂P

∂Z
= Λ

∂

∂ϕ
(PH) + 2Λλ

∂

∂τ
(PH) + δQr (4)

where Qr = − 12µR
c3Lpaρa∆ϕ∆Z

.
m = Γs

.
m.

According to paper [14], the perturbed film thickness is

H = H0 + HX∆X + HY∆Y (5)

where HX = sin ϕ and HY = cos ϕ. With the assumption that the X and Y components of
the journal vibration are harmonic, the expression of the perturbed pressure is a complex form:

P = P0 + PX∆X + PY∆Y (6)

where P0 is the non-dimensional steady pressure and PX, PY are the non-dimensional
differential term of film pressure along the X and Y directions. The perturbed Qr is:

Qr = Qr0 + QrY∆Y + QrX∆X (7)
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where QrY and QrX are listed in the Appendix A. Then, with Equations (5)–(7),
Equation (4) can yield the following perturbed Reynolds equations, shown in Equations (8)–(10).

∂
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3 ∂P0
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R
L

)2 ∂
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= Λ

∂
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(9)
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∂P0
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0 PY
∂P0
∂ϕ

)
+(

R
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)2
∂

∂ϕ

(
P0H3

0
∂PY
∂Z + 3P0H2

0 HY
∂P0
∂Z + H3

0 PY
∂P0
∂Z

)
= Λ ∂

∂ϕ (P0HY + PY H0) + 2Λλi(P0HY + PY H0) + δQrY

(10)

By adopting FDM, i.e., the finite difference method, Equations (8)–(10) can be changed
into Equation (11) to Equation (13), and their computational domain is presented in Figure 2.

A0i,jP2
0i+1,j + B0i,jP2

0i−1,j + C0i,jP2
0i,j+1 + D0i,jP2

0i,j−1 − E0i,jP2
0i,j = Λ∆ϕ(P0i+1,j H0i+1,j − P0i+1,j H0i−1,j) + (∆ϕ)2Qr0 (11)

AXijPXi+1,j + BXijPXi−1,j + CXijPXi,j+1 + DXijPXi,j−1 + EXijPXi+1,j = FXij (12)

AYijPYi+1,j + BYijPYi−1,j + CYijPYi,j+1 + DYijPYi,j−1 + EYijPYi+1,j = FYij (13)
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2.2. Static Characteristics

By solving Equation (11), the pressure distribution of the gas film is obtained and then
the load capacity WX , WY along the X and Y directions is acquired by Equation (14), while
the total load capacity is calculated by Equation (15) [32].

WX = −
L∫

0

2πR∫
0
(p0 − pa) sin ϕdxdz

WY = −
L∫

0

2πR∫
0
(p0 − pa) cos ϕdxdz

(14)

W =
√

W2
X + W2

Y (15)
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As the load direction is the Y direction, WX = 0 and we can calculate the correction of
the attitude angle ∆ϕ by Equation (16).

∆ϕ = tan−1
(

WX
WY

)
(16)

In the end, the attitude angle ϕ0 can be calculated through the iterative procedure,
i.e., ϕnew = ϕold − ∆ϕ until ∆ϕ = WX

WY
≤ 10−5, which means the load direction is the Y

direction. After obtaining the bearing capacity, the static stiffness is given as:

Kw =
dW
de
≈ ∆W

∆e
=

∆W
c∆ε

(17)

2.3. Dynamic Coefficients

Based on the solution of the steady-state Reynolds equation, i.e., Equation (11), the
eight dynamic coefficients can be calculated by the solutions of Equations (12) and (13) and
the eight dynamic coefficients can be calculated as follows:

kxx = − paRL
c
∫ 1

0

∫ 2π
0 Re(PX) sin(ϕ)dϕdZ

kyx = − paRL
c
∫ 1

0

∫ 2π
0 Re(PX) cos(ϕ)dϕdZ

kyy = − paRL
c
∫ 1

0

∫ 2π
0 Re(PY) cos(ϕ)dϕdZ

kxy = − paRL
c
∫ 1

0

∫ 2π
0 Re(PY) sin(ϕ)dϕdZ

cxx = − paRL
cω

∫ 1
0

∫ 2π
0 Im(PX) sin(ϕ)dϕdZ

cyx = − paRL
cω

∫ 1
0

∫ 2π
0 Im(PX) cos(ϕ)dϕdZ

cyy = − paRL
cω

∫ 1
0

∫ 2π
0 Im(PY) cos(ϕ)dϕdZ

cxy = − paRL
cω

∫ 1
0

∫ 2π
0 Im(PY) sin(ϕ)dϕdZ

(18)

2.4. Whirl Instability Analysis

The rigid rotor-aerostatic bearings are shown in Figure 3 and the two rotor ends are
supported by aerostatic journal bearings, while the rotor mass is 2mr and contains zero
unbalanced mass. When the journal is disturbed by tiny dynamic excitations with whirl
speed ωs, the gas film force ∆FX, ∆FY can be written as Equation (19) and the motion
equation is shown as Equation (20).{

∆FX = kxx∆x + kxy∆y + cxx∆
.
x + cxy∆

.
y

∆FY = kyy∆y + kyx∆x + cyy∆
.
y + cyx∆

.
x

(19)

{
mr

..
x + ∆FX = 0

mr
..
y + ∆Fy = 0

(20)
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Substituting Equation (21) 

Figure 3. Rigid rotor and aerostatic journal bearing system.
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Substituting Equation (21) {
∆x = x0eiωst

∆y = y0eiωst (21)

where x0 and y0 are the constant, into Equation (20), Equation (22) can be obtained, where
the keq is inertial force and is equal to mrωs

2.{
∆FX = keqx0eiωst

∆FY = keqy0eiωst (22)

With Equations (19) and (21), Equation (22) can be rewritten as:{
(kxx − keq + icxxωs)x0 + (kxy + icxyωs)y0 = 0

(kyx + icyxωs)x0 + (kyy − keq + icyyωs)y0 = 0
(23)

As x0 6= 0, y0 6= 0, Equation (24) can be obtained as follows and then rewritten as
Equation (25). ∣∣∣∣∣kxx − keq + icxxωs kxy + icxyωs

kyx + icyxωs kyy − keq + icyyωs

∣∣∣∣∣ = 0 (24)

{ (
kxx − keq

)(
kyy − keq

)
− kyxkxy − cxxcyyωs

2 + cyxcxyωs
2 = 0(

kxx − keq
)
cyyωs +

(
kyy − keq

)
cxxωs −

(
kyxcxyωs + kxycyxωs

)
= 0

(25)

By adopting the dimensionless parameters:

Kxx = c
paRL kxx; Kxy = c

paRL kxy; Kyx = c
paRL kyx; Kyy = c

paRL kyy

Cxx = cω
paRL cxx; Cxy = cω

paRL cxy; Cyx = cω
paRL cyx; Cyy = cω

paRL cyy

M = mcω2

paRL ;
(
Keq
)

c =
(

Mλ2)
c

Equation (25) can be rewritten as:{(
Kxx − Keq

)(
Kyy − Keq

)
− KyxKxy −

(
CxxCyy − CyxCxy

)
γ2 = 0(

Kxx − Keq
)
Cyy +

(
Kyy − Keq

)
Cxx −

(
KyxCxy + KxyCyx

)
= 0

(26)

In the end, we can obtain the critical whirl ratio λc and critical non-dimensional inertial
force

(
Keq
)

c by using Equation (27).
λc

2 =
(Kxx−(Keq)c)(Kyy−(Keq)c)−KyxKxy

CxxCyy−CyxCxy(
Keq
)

c =
−KyxCxy−KxyCyx+KxxCyy+KyyCxx

Cxx+Cyy

(27)

2.5. The Flow Chart of the Solution of the Reynolds Equations

As shown in Figure 4, with the calculation parameters (i.e., geometry parameters of bear-
ing, supply pressure and rotation speed), the steady Reynolds equation (i.e., Equation (11)) is
solved until there is convergence of the steady-state pressure and |Wx/Wy| ≤ 10−5. Based
on the solution of Equation (11), the dynamic Reynolds equation (i.e., Equations (12) and (13))
is solved until there is convergence of the perturbed pressure (i.e., PX and PY) with the
initial whirl ratio λ. Then, the dynamic coefficients can by calculated by Equation (18) and
the critical whirl ratio is obtained by Equation (27) with the dynamic coefficients until there
is convergence of λc and λ by the iteration solution of coupled Equations (12), (13) and (27).
When the convergence of λc and λ is verified, the stability thresholds of both the critical
whirl ratio and the critical inertial force are obtained.
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2.6. The Verification of the Solution for the Reynolds Equation

In order to verify the correctness of the numerical method, the results obtained from
the present research were compared with the results from the paper [33]. The comparison
of the calculation parameters are the same to the parameters in the paper [33]. The results
calculated by the present study and published paper [33] are shown in Figure 5. As shown
in the figure, the results from the present study show good agreement with the results
from that of paper [33], which indicates the correctness of the calculation method in this
paper. The load capacities with different mesh numbers of m and n are shown as follows.
In order to select the appropriate number of grids, the load capacities with different mesh
numbers of m and n are shown in Table 1. The aerostatic bearings’ parameters used in
this section can be seen in the Table 2. The results show that when the number of grids
increases to a certain value, the change of the bearing capacity is not obvious. In order to
ensure calculation efficiency, the selected number of grids is m = 64, n = 96.
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Table 1. The calculation results with different numbers of m and n.

The Number of m The Number of n Load Capacity/N

16 32 177.33
32 32 174.80
32 64 173.23
48 80 171.67
64 96 171.15
64 128 170.83

Table 2. The calculation parameters used in this section.

Calculation Parameters Value

Bearing diameter (D) 25 mm
Bearing length (L) 50 mm

Gas density (ρ) 1.204 kg/m3

Gas viscosity (η) 1.82·10−5 Ns/m2

Ration of specific heat of gas (κ) 1.4
Atmospheric pressure (atm) (pa) 101,325 Pa

Rows of the orifice 2
The orifice number of each row orifice 8

3. Results and Discussion

In this section, the influences of the different parameters (such as rotational speed,
eccentricity, gas film thickness, orifice diameter and supply pressure) on the static perfor-
mances are studied by solving the steady state Reynolds equation first. Then, the effects
of the different parameters on the dynamic coefficients and stability are investigated by
solving the dynamic Reynolds equation and rigid rotor motion equations in detail.

3.1. Static Performances

In this section, according to the Section 2 theory and method, the influences of different
parameters on the static performances (such as bearing capacity, static stiffness, attitude
angle and so on) are studied as follows. The aerostatic bearings’ parameters used in this
section can be seen in Table 2.
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3.1.1. The Influences of Rotational Speed and Eccentricity

In this section, the reference parameters are d0 = 0.2 mm, ps = 7 atm, c = 15 µm
and the variable parameters are eccentricity and rotational speed. Figures 6–8 describe
the effects of the eccentricity and rotational speed on the bearing capacity, static stiffness
and attitude angle. As shown in Figure 6, under a certain rotational speed, the bearing
capacity increases with increasing eccentricity. The reason is as follows: with zero speed,
the aerostatic bearing is under the pure static state and the gas film thickness of the upper
half increases with an increase in the eccentricity, which leads to a decrease in the pressure
of the orifice. On the contrary, the gas film thickness of the lower half decreases with
the increasing eccentricity and the pressure of the orifice increases. The decreasing of the
upper half and the increasing of the lower half results in the growth of the bearing capacity.
When the rotational speed is not zero, the aerostatic bearing is under the hybrid state. With
increasing eccentricity, on one hand, the gap of the pressure of the orifices at the upper and
lower halves becomes larger; on the other hand, the rotational effect will be strengthened.
This will increase the bearing capacity when the eccentricity increases. Moreover, under
a certain the eccentricity, the bearing capacity increases with the increase of the speed, as
the rotational effect is strengthened. When the eccentricity is larger, the rotational speed
effect is more obvious.
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Figure 6. The effects of the eccentricity ratio and rotational speed on the load capacity (reference
parameters: d0 = 0.2 mm, ps = 7 atm, c = 15 µm).

As shown in Figure 7, the static stiffness decreases with the increasing eccentricity
under the lower rotational speed (such as zero or 5000 rpm). According to Equation (17),
the stiffness is the first derivative of the load capacity to eccentricity. As shown in Figure 6,
under lower speed conditions, the slope of the load capacity decreases with an increase
of ε for a certain speed. Therefore, as shown in Figure 7, under a lower speed condition,
the stiffness decreases with an increase of ε for a certain speed. However, as shown in
Figure 6, under hybrid conditions, the slope of the load capacity increases with an increase
of ε for a certain speed. Therefore, under hybrid conditions, the stiffness increases with
an increase of ε for a certain speed. Moreover, the static stiffness increases with the
increasing rotational speed, which is caused by the strengthening rotational effect.
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Figure 8. The effects of the eccentricity ratio and rotational speed on the attitude angle (reference
parameters: d0 = 0.2 mm, ps = 7 atm, c = 15 µm).

As shown in Figure 8, for a certain speed, the attitude angle decreases slightly and
then increases with the increase of eccentricity. On the whole, the attitude angle does not
change significantly with the eccentricity. Moreover, the attitude angle is almost zero under
a pure-static condition, which meets the theory and verifies the correctness of the method
in the paper. For certain eccentricity, the attitude angle increases with the increasing speed
and the slope of the attitude angle decreases with the increasing speed.
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3.1.2. The Influences of Gas Film Radial Clearance

In this section, the reference parameters are d0 = 0.2 mm, ps = 7 atm, ε = 0.4
and the variable parameters are the radial clearance and rotational speed. Figures 9–11
describe the effects of the radial clearance on the bearing capacity, static stiffness and
attitude angle. As shown in Figures 9 and 10, under the pure-static condition, the bearing
capacity and stiffness increase and then decrease with the increase of the radial clearance,
while the bearing capacity and stiffness decrease with the increase of the radial clearance
under the higher speed. Under the pure-static condition, for a certain eccentricity, the
pressure differential of the upper and lower halves of the aerostatic bearings increases with
an increase of the radial clearance at the small radial clearance, which results in the increase
of the bearing capacity. However, at the bigger radial clearance, the pressure differential
of the upper and lower halves of the aerostatic bearings decreases with increase of the
radial clearance, which results in the decrease of the bearing capacity. When the rotational
speed is high, the aerostatic bearing is under the hybrid state and the bearing capacity is
obviously affected by the rotational effect. Therefore, the rotational effect weakens with
an increase of the radial clearance, which results in the decrease of the bearing capacity.
Similarly, under the pure-static condition, the slope of the pressure differential of the upper
and lower halves of the aerostatic bearings increases with an increase of the radial clearance
at the small radial clearance, which results in the increase of the stiffness. However, at
the bigger radial clearance, the slope of the pressure differential of the upper and lower
halves of the aerostatic bearings decreases with an increase of the radial clearance, which
results in the decrease of the stiffness. When the rotational speed is high, the rotational
effect weakens with the increase of the radial clearance, which results in the decrease of
the stiffness.
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Figure 9. The effects of radial clearance and rotational speed on the load capacity (reference parame-
ters: d0 = 0.2 mm, ps = 7 atm, ε = 0.4).

As shown in Figure 11, the attitude angle decreases with the increase of the radial
clearance. When the radial clearance is small, the slope of the attitude angle is big with
the change of the radial clearance. Conversely, the slope of attitude angle is small with the
change of the radial clearance.
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Figure 10. The effects of radial clearance and rotational speed on the steady stiffness (reference
parameters: d0 = 0.2 mm, ps = 7 atm, ε = 0.4).
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3.1.3. The Influences of Orifice Diameter

In this section, the reference parameters are c = 15 µm, ps = 7 atm, ε = 0.4 and the
variable parameters are the orifice diameter and rotational speed. Figures 12–14 give the
effects of the orifice diameter on the bearing capacity, static stiffness and attitude angle.
As shown in Figures 12 and 13, whether the aerostatic bearing is under the pure-static or
hybrid state, the bearing capacity and stiffness increase first and then decrease with the
increase of the orifice diameter. This is combined with the effect of the radial clearance
on the static performance in the last section. In the design of the aerostatic bearing, there
exists an optimal value for the radial clearance and orifice diameter, which makes its static
characteristics reach an optimal result. Moreover, as shown in Figure 14, under a high speed,
the attitude angle increases with the increase of the orifice diameter, while the attitude
angle decreases with the increase of the orifice diameter under low speed conditions.
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3.1.4. The Influences of Supply Pressure

In this section, the reference parameters are c = 15 µm, d0 = 0.2 mm, ε = 0.4 and the
variable parameters are the supply pressure and rotational speed. Figures 15–17 give the
effects of the supply pressure on the bearing capacity, static stiffness and attitude angle.
As shown in Figure 15, the bearing capacity and stiffness increase with the increase of the
supply pressure. This is because the increase of the external air supply pressure strengthens
the static pressure effect of the aerostatic bearing, which increases the bearing capacity
and stiffness. Therefore, in order to improve the bearing capacity and static stiffness of
the aerostatic gas bearing, the supply pressure can be appropriately increased. However,
as the excessive air supply pressure may lead to instability of the air hammer, the supply
pressure cannot be too high [34]. As shown in Figure 17, under the hybrid state, the attitude
angle decreases with the increase of the supply pressure. Under the pure-static state, the
attitude angle is zero. Therefore, the enhanced the supply pressure can strengthen the static
pressure effect, which results in the decrease of the attitude angle under the hybrid state.
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Figure 17. The effects of supply pressure on the attitude angle (reference parameters: c = 15 µm,
d0 = 0.2 mm, ε = 0.4).

3.2. Dynamic Performances

In this section, according to the Section 2 theory and method, the influences of different
parameters on the dynamic performances (such as dynamic stiffness, dynamic coefficients,
linear stability and so on) are studied as follows. The aerostatic bearings parameters used
in this section can be seen in Table 3.

Table 3. The calculation parameters used in this section.

Calculation Parameters Value

Bearing diameter (D) 50 mm
Bearing length (L) 50 mm

Gas density (ρ) 1.204 kg/m3

Gas viscosity (η) 1.82·10−5 Ns/m2

Ration of specific heats of gas (κ) 1.4
Atmospheric pressure (atm) (pa) 101,325 Pa

Rows of the orifice 2
The orifice number of each row orifice 8

3.2.1. Dynamic Coefficients

As shown in Figures 18 and 19, the effect of the rotational speed on the dynamic
stiffness and damping coefficients is studied and the reference parameters are ε = 0.4,
d0 = 0.2 mm, λ = 1, c = 15 µm, ps = 7 atm. The bearing principal stiffness coefficients
increase with the increase of the rotational speed and the principal stiffness KYY is bigger
than the KXX, as shown in Figure 18. The reason is that the rotational effect strengthens
with the increase of the speed and leads to the increase of the bearing principal stiffness.
Moreover, as the direction of the bearing capacity is vertical, the principal stiffness along
the vertical direction KYY is bigger than the principal stiffness along the horizontal direction
KXX . Furthermore, the absolute value of the cross-couple stiffness KXY and KYX decreases
first and then increases with the increase of the speed. However, the slope of the cross-
couple stiffness is smaller than that of the principal stiffness. As shown in Figure 19, the
principal damping and cross-couple damping change in the same way with rotational
speed, i.e., they decrease first and then increase with an increase of the speed, while the
principal damping along the vertical direction CYY is bigger than along the horizontal
direction CXX . The reason for this is the same as the bearing principal stiffness.
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Figure 18. The effect of rotational speed on the dynamic stiffness coefficients (reference parameters:
ε = 0.4, d0 = 0.2 mm, λ = 1, c = 15 µm, ps = 7 atm).
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Figure 19. The effect of rotational speed on the damping coefficients (reference parameters: ε = 0.4,
d0 = 0.2 mm, λ = 1, c = 15 µm, ps = 7 atm).

As shown in Figures 20 and 21, the effect of the eccentricity on the dynamic stiffness
and damping coefficients is studied and the reference parameters are ω = 25, 000 rpm,
d0 = 0.2 mm, λ = 1, c = 15 µm, ps = 7 atm. As shown in Figure 20, the bearing principal
stiffness and slope of the principal stiffness increase with the increase of the eccentricity
and the principal stiffness KYY and the slope of it is bigger than that of KXX. The reason
is that the rotational effect strengthens with the increase of the eccentricity and leads to
the increase of the bearing principal stiffness. Moreover, the rotational effect obviously
strengthens at the high eccentricity. Furthermore, the absolute value of the cross-couple
stiffness KXY and KYX increases slowly with the increase of the eccentricity. However, the
sensitivity of the cross-couple stiffness is weaker than the principal stiffness. As shown in
Figure 21, the principal damping and cross-couple damping change in the same way with
eccentricity, i.e., they increase with an increase of the eccentricity.
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Figure 21. The effect of the eccentricity ratio on the damping coefficients (reference parameters:
ω = 25, 000 rpm, d0 = 0.2 mm, λ = 1, c = 15 µm, ps = 7 atm).

As shown in Figures 22 and 23, the effect of the orifice diameter on the dynamic stiff-
ness and damping coefficients is studied and the reference parameters are ω = 25, 000 rpm,
ε = 0.4, λ = 1, c = 15 µm, ps = 7 atm. The principal stiffness increases and then decreases
with the increase of the orifice diameter, while the principal stiffness is not too sensitive to
the orifice diameter. The effect of the orifice diameter on the cross-couple stiffness KXY and
KYX is opposite, in which the former decreases and the latter increases with the increase of
the diameter. As shown in Figure 23, the principal and cross-couple damping enhance with
the increase of the orifice diameter.
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As shown in Figures 24 and 25, the effect of the radial clearance on the dynamic stiff-
ness and damping coefficients is studied and the reference parameters are ω = 25, 000 rpm,
d0 = 0.2 mm, λ = 1, ε = 0.4, ps = 7 atm. As shown in the two figures, the principal
and cross-couple stiffness and damping coefficients decrease with increase of the radial
clearance. As the rotational speed is 25,000 rpm, the aerostatic bearing is under a hybrid
state, in which the rotational effect plays the main role in the performances of the aerostatic
bearings. The rotational effect will be weakened by increasing the radial clearance, which
results in the decrease of the dynamics’ coefficients.
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are not sensitive to the supply pressure. 

Figure 24. The effect of radial clearance on the dynamic stiffness coefficients (reference parameters:
ω = 25, 000 rpm, d0 = 0.2 mm, λ = 1, ε = 0.4, ps = 7 atm).

As shown in Figures 26 and 27, the effect of the supply pressure on the dynamic stiff-
ness and damping coefficients is investigated and the reference parameters are
ω = 25, 000 rpm, d0 = 0.2 mm, λ = 1, ε = 0.4, c = 15 µm. The static pressure ef-
fect is enhanced by increasing the supply pressure and leads to the increase of the principal
dynamic coefficients, as shown in Figures 26 and 27. Moreover, the cross-couple dynamic
coefficients are not sensitive to the supply pressure.
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As shown in Figures 28 and 29, the effect of the whirl ratio on the dynamic stiffness
and damping coefficients is investigated and the reference parameters are ω = 25, 000 rpm,
d0 = 0.2 mm, c = 15 µm, ε = 0.4, ps = 7 atm. As shown in these figures, the dynamic
stiffness and damping are sensitivity to the whirl ration. With the increase of the whirl
ratio, the principal stiffness increases continuously and finally tends to a constant value.
Within the whirl ratio of 0.5~2, the slope of the principal stiffness is obviously higher than
that of the other whirl ratio. The principal damping increases and then decreases with the
increase of the whirl ratio. In addition, the cross-couple stiffness and damping tend to zero
with an increase of the whirl ratio.
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“half-speed whirl” instability phenomenon. The cλ  decreases with the increase of the ec-
centricity and the reduction is more obvious under the high eccentricity condition. Fur-
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d0 = 0.2 mm, c = 15 µm, ε = 0.4, ps = 7 atm).

3.2.2. Linear Stability of the Gas–Rotor System

As mentioned above, the bearing dynamic stiffness and damping are sensitive to the
geometry parameters and supply pressure. According to Equation (27), these parameters
affect the linear stability of the aerostatic bearings. In this section, the critical whirl ratio
and critical inertial force are used to represent the linear stability of the aerostatic bearing-
rotor system.

Based on the study of Section 3.1.1, combined with the motion of the rigid rotor system,
the linear stability will be studied by solving Equation (27) in the following. The main
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content contains the influence of the eccentricity, rotational speed, supply pressure and
radial clearance on the critical whirl ratio and critical inertial force.

The influence of the eccentricity on the critical whirl ratio and critical inertial force
under different supply pressure is shown in Figures 30 and 31. As shown in Figure 30,
under the lower eccentricity, the critical whirl ratio λc is almost equal to 0.5, which is
the “half-speed whirl” instability phenomenon. The λc decreases with the increase of
the eccentricity and the reduction is more obvious under the high eccentricity condition.
Furthermore, the λc decreases as the supply pressure increases and the decrease of the
λc with the supply pressure is more obvious under the high eccentricity. As shown in
Figure 31, the critical inertial force

(
Mλ2)

c increases with the increase of the eccentricity
and the slope of the increase is bigger under the high eccentricity condition. Moreover, for
a certain eccentricity,

(
Mλ2)

c increases with the increase of the supply pressure and the
slope of the increase is more obvious under the low eccentricity.
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As shown in Figures 32 and 33, the influence of the rotational speed on the critical
whirl ratio and critical inertial force under different supply pressure is investigated. As
shown in Figure 32, the λc increases rapidly with the increase of the rotational speed under
the low-speed condition and then tends to be a constant value (slightly less than 0.5) under
high speed. As shown in Figure 33, the

(
Mλ2)

c also increases with the increase of the speed.
Furthermore, the λc will be reduced by an increase in the supply pressure and

(
Mλ2)

c will
be improved by increased the supply pressure under different rotational speed conditions.
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As shown in Figures 34 and 35, the influence of the radial clearance on the critical
whirl ratio and critical inertial force under different supply pressure is investigated. As
shown in Figure 34, the λc decreases rapidly with the increase of the radial clearance under
the low radial clearance condition and the λc is not sensitive to the radial clearance under
high radial clearance conditions. As shown in Figure 35, the reduces with the increase of
the radial clearance. Moreover, the supply pressure can improve the

(
Mλ2)

c and reduce
the λc under different radial clearance.
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4. Conclusions

In this paper, the steady state and dynamic Reynolds equation were solved by FDM
and the motion equation of a rigid rotor-bearing system was solved to study the linear
stability of aerostatic bearings combined with the dynamic coefficients. Based on the
theory, the effects of the different parameters on the static and dynamic performances of
the aerostatic bearings were studied in detail. The main conclusions shown are as follows:

(1) In the case of the rotational speed effect, when the speed is low (in this paper, the
speed is under 10,000 rpm), the static pressure effect plays the main role on the steady
performances (such as load capacity and static stiffness), while the rotational effect plays
an important role on the steady performances under high speed (in this paper, the speed is
over 10,000 rpm).

(2) The whirl ratio plays an important role in the dynamic coefficients. The principal
stiffness increases with the increase of the whirl ratio and the cross-couple stiffness tends
to be zero with the whirl ratio. Moreover, the principal damping increases first and then
decreases with the increase of the whirl ratio. The cross-couple damping also tends to be
zero with the increase of the whirl ratio.

(3) As the supply pressure and eccentricity increase, the critical whirl ratio decreases
and the critical inertial force increases. The critical whirl ratio and critical inertial force
increase with the increase of the rotational speed and the critical whirl ratio tends to 0.5. In
addition, the critical whirl ratio increases first and then decreases to a constant with the
increase of the radial clearance, while the critical inertial force decreases.
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Nomenclature

c radial clearance pa, Pa ambient pressure
Cd discharge coefficient ps, Ps supply gauge pressure
d0 diameter of orifices R radius of journal bearing
D diameter of journal bearing t, τ time, dimensionless time
e eccentricity u circumferential velocity
A0, B0, C0, D0, E0 coefficient matrices in

w axial velocity
AX , BX , CX , DX , EX solution of Reynolds equation
kxx, kxy, kyx, kyy
cxx, cxy, cyx, cyy

dynamic coefficients W load capacity

Kxx, Kxy, Kyx, Kyy
Cxx, Cxy, Cyx, Cyy

dimensionless dynamic coefficients x, X circumferential coordinate

Kw static stiffness y, Y radial coordinate
keq inertial force z, Z axial coordinate
Keq dimensionless inertial force ε eccentricity ratio, ε = e/c

h, H film thickness, H = h/c ρ, ρa
gas density and gas density under
atmosphere pressure

L length of the bearing ω rotational speed of journal
HX , HY differential term of film thickness ωs journal perturbation rotational speed
mr rigid rotor mass λ whirl ratio
M dimensionless rotor mass Λ bearing number
Qr dimensionless mass flow rate at rth orifice ϕ0 attitude angle

QrX , QrY
differential term of dimensionless mass

κ ratio of specific heats of gas
mass flow rate at rth orifice

p gas pressure δ Kronecker function

P0 the dimensionless steady pressure
i, i− 1, i + 1, the subscript along circumference and axial direction,
j, j− 1, j + 1 which indicates the position of the pressure

PX , PY differential term of film pressure subscript c the critical parameters
.
x,

..
x,

.
y,

..
y velocity and acceleration along X and Y direction

Appendix A

QrX =



Γs psCd

√
2ρa
pa

πd0c
( 2
κ+1

) κ
κ−1 HXi,j ; i f

p0ri,j
ps
≤
( 2
κ+1

) κ
κ−1

Γs psCd

√
2ρa
pa

πd0c
√

κ
κ−1

HX

√( P0ri,j
Ps

) 2
κ −

( P0i,j
Ps

) κ+1
κ

+

H0

 2
κ

(
P0ri,j

Ps

) 2
κ−1 1

Ps −
κ+1

κ

(
P0ri,j

Ps

) 1
κ 1

Ps


2

√√√√( P0ri,j
Ps

) 2
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−
(

P0ri,j
Ps

) κ+1
κ
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i f
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>
( 2
κ+1

) κ
κ−1

QrY =
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