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Abstract: This article focuses on turning superalloy Udimet 720, which is difficult to work with, using
different coolant/lubricant methods. The study includes delivering Graphene and Multi-Walled
Carbon Nanotubes nanopowders homogeneously dispersed in vegetable oil to the cutting area with
the minimum quantity lubrication (MQL) method. Experiments at different cutting speeds and feed
rates were repeated in four different cutting environments. Compared to dry turning, the cutting
zone temperature of the cutting fluid delivered to the cutting zone by MQL methods decreased. In
addition, thanks to the nanopowders, it formed an oil film by better penetrating the cutting tool-chip
interface and reducing the cutting tool’s wear. With the reduced cutting tool wear, the cutting tool
could maintain its form for a longer period of time, so better quality surfaces were obtained on the
workpiece surface. As a result of the study, it was found that cutting zone temperature improved by
30%, tool wear by 51.8% and surface roughness by 43.9%.

Keywords: Ni-base superalloy; nano MQL; graphene; surface topography; cutting zone temperature;
cutting tool wear

1. Introduction

Udimet 720 is a nickel-based superalloy with high frictional strength. It is produced
by the powder metallurgy method. It is designed as the material of turbine discs used
for nuclear gas-cooled reactors and other aerospace parts operating at high temperatures.
Udimet 720, which can maintain its strength up to 1300 ◦C due to its low thermal con-
ductivity, is very difficult to process. It is very difficult to obtain surface quality, which is
important for the aviation and nuclear industry sectors [1,2]. The high temperature gener-
ated during chip removal is one of the most important aids in forming chips. However, due
to their low thermal conductivity, superalloys retain their unique mechanical properties
at high temperatures. This situation makes the machinability of superalloys very difficult.
More force is required to remove chips from superalloys. As a result of this force, high
temperatures occur in the cutting zone. However, this high temperature is absorbed by
the cutting tool due to the low thermal conductivity of the workpiece. As it is known,
these temperatures in the cutting zone accelerate the wear of the cutting tool. The surface
roughness, in other words, the traces left behind by the chips broken off from the workpiece
with which the wearing surfaces come into contact, are also affected by all these negativities.
Therefore, machining superalloys poses a huge problem. For this reason, researchers have
tried many methods to remove chips from materials with difficult machinability. Among
these methods, cryogenic treatment [3,4], cryogenic machining [5–7], and MQL [8–11] are
the ones that have attracted the most attention in the literature recently.

Due to the excessive use of oils for cooling and lubrication in machining, great harm is
caused to the environment. In addition, operator health is adversely affected. For this rea-
son, there has been an increasing awareness of green manufacturing recently. Researchers
offer many new methods for green manufacturing to the use of industry. One of the newly
developed methods, the MQL method, is one of them. In the MQL method, very little oil is
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used in pulverized form, close to dry stock removal. Although the amount of oil used in
the MQL method varies with other parameters, it is between 50–150 mL/h. The cutting oil
film formed at the cutting tool-chip interface in the region where the cutting takes place
causes many positive effects. Thus, better-quality surfaces can be obtained with MQL. In
addition, the life of the cutting tools increases. Studies have reported that when vegetable
oil is used as cutting oil, it has no negative effects on human health [12,13].

Research in the field of machinability has shown that cutting tool wear and surface
roughness; it is affected by the cutting forces on the cutting tool [14], the vibration of the
cutting tool [8], the power fluctuations of the machine [15], and the heat generated on the
cutting tool [16]. The heat generated in the cutting zone can be quite high in superalloys. It
has been reported in many studies that the cutting tool loses its hardness and wears rapidly
at high temperatures. In the MQL method, the pulverized coolant sprayed to the tool-chip
interface under high pressure reduces the cutting zone temperature [17,18]. Thus, cutting
tool wear is reduced, and better surface roughness values are obtained. It also provides a
great advantage in using much less oil than the traditional coolant method. Using vegetable
oils that are completely biodegradable in the MQL method is a great advantage in terms
of sustainability. Researchers have tried many vegetable oils for the MQL method. These
vegetable oils include many oils such as coconut oil [19], jojoba oil [20], palm oil [13],
sunflower oil [21], peanut oil [22], colza oil [23], and jatropha oil [24].

Recently, the unique properties of nanoparticles have been used in many areas. It has
been reported that lower cutting tool wear is obtained by adding it to the cutting fluid in
the MQL method. In these studies, it has been reported that nanoparticles improve the
cutting fluid’s thermal conductivity and penetration ability [25,26]. It has been reported
that the friction force is reduced due to better penetration between the cutting tool and the
workpiece [27]. Thus, lower temperatures occur between the cutting tool and the workpiece
in the cutting zone. Cutting tool wear is reduced due to the lower cutting zone temperature.
Due to reduced wear, the cutting tool maintains its form and can lift more stable workpieces
from the contact surface. Thus, the surface roughness of the workpiece is directly affected,
and the surface roughness values decrease. However, as in every field of machining, every
parameter change has important results in the use of nanoparticles. Especially due to
the chemical composition of the workpieces, the test results show significant differences.
When the literature is examined, it is seen that the results vary according to the type, size,
ratio, and solution preparation method of the nanoparticle used [28]. In these studies, it
was observed that as the number of nanoparticles increased, the thermal conductivity and
viscosity increased, and thus the penetration of the liquid decreased [29]. However, studies
have shown that as the amount of nanoparticles increases, the viscosity increases, so the
penetration of the liquid decreases.

In this article, nickel base super alloy nanoparticles, which are difficult to machine,
were turned using the MQL method. The effects of nanoparticles on cutting zone tempera-
ture, cutting tool wear, and surface roughness were investigated.

2. Materials and Methods

The study used nickel-based super alloy Udimet 720 with Ø 152.6 × 15.55 mm di-
mensions as the workpiece material. The chemical composition of the turned workpiece is
given in Table 1.

Table 1. Chemical components of Udimet 720 Nickel Base Alloy.

Element Cr Co Ti Al Mo W B C Ni

% 16.38 14.84 5.74 2.7 2.55 1.27 0.02 0.02 Bal.

Experiments were carried out on the Accuway brand CNC lathe (Accuway Machin-
ery, CO., Ltd., Taichung, Taiwan). TiAlN-TiN coated tungsten carbide cutting tools with
the PVD method in the form of CNMG 120404 TT 5080 were used in the experiments.
The experiments were carried out at three different feed rates (0.04, 0.06, 0.08 mm/rev),
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three different cutting speeds (40, 60, 80 m/min), and a constant cutting depth (0.6 mm).
All experiments were carried out at a constant chip volume of 2000 mm3. Details of the
experimental conditions are given in Table 2.

Table 2. Experimental conditions.

Parameters Level 1 Level 2 Level 3 Level 4

Feed rate (mm/rev) 0.04 0.06 0.08 -

Cutting speed (m/min) 40 60 80 -

Cutting conditions Dry Pure MQL NanoMQL *
(MWCNTs)

NanoMQL *
(GNPs)

* Multi-walled carbon nanotubes (MWCNTs); * Graphene Nano Platelets (GNPs).

The B1-210 model produced by Bielomatik (Cluj-Napoca, Romania) was used as the
MQL system. Vegetable-based SAMNOS ZM-22W oil is used for sustainability as MQL
oil. The oil used dissolves in nature at a rate of 100%, leaving no waste behind. The non-
flammable MQL oil has a density of 1 g/cm3 at 20 ◦C. With a flow rate of 150 (mL/h), the
oil was delivered to the cutting area with 6 bar pressure from the nozzle of 1 mm diameter.
Two different commercially available nanopowders and nanoparticle-added MQL cutting
fluid were prepared for the experiments. Multi-walled carbon nanotubes and graphite
nanoplatelets were used in MQL cutting fluids. The properties of the nanopowders used
are given in Table 3.

Table 3. Multi-walled Carbon Nanotubes Doped with 12 wt% Graphene Nanopowder/Nanopar-
ticles properties.

MWCNT
(Multi-Walled Carbon Nanotubes)

GNP
12 wt% Graphene Nanopowder

Purity >97% Purity 99%

Avg. Inside Diameter (nm) 5 Thickness (nm) 5

Avg. Outside Diameter (nm) >50 Diameter (µm) 1–12

Specific Surface Area (m2/g) >65 Specific Surface Area (m2/g) 500–1200

Conductivity (s/m) 1100–1600 Conductivity (s/m) 1000–1500

Colour black Colour grey

The powders were added to the vegetable-based MQL oil at a rate of 0.5% by volume.
Viscosities of prepared fresh MQL cutting fluids were measured with Fungilab, and pH
values were measured with Orion Star A215 (Thermo Fisher Scientific Inc., Waltham, MA,
USA). The obtained values are given in Table 4. Viscosity directly affects the thickness of
the oil film that will form at the cutting tool-chip interface.

Table 4. MQL cutting fluids viscosity and pH values.

Pure MQL nMQL
GNP

nMQL
MWCNT

pH 7.75 7.89 8.02

Viscosity (mPa.s) 5 6.3 6.5

MQL cutting fluid was used fresh after three different mixing processes. MQL cutting
fluid was mixed in HeidolpH–Hei-Torque Precision 200 mechanical stirrer (Heidolph In-
struments, Schwabach, Germany), Bandelin Sonopuls–UW 3200 ultrasonic stirrer (Bandelin,
Mecklenburg-Vorpommern, Germany), and finally, Thermal–N11150M magnetic stirrer
(THERMAL, Minden, NV, USA) for 60 min, respectively. All cutting parameters were tested
in four different cutting conditions. Vegetable-based Nano MQL cutting fluid production
process is given in Figure 1.
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Figure 1. Vegetable-based Nano MQL cutting fluid production process.

During all experiments, the temperature in the cutting area determined at the cutting
tool tip was measured with the Optris PI 450 thermal camera (Optris, Berlin, Germany).
The wear images of the cutting tools were taken at the macro-scale with DINO LITE 2.0
microscope (DINO LITE, Torrance, CA, USA) and at the micro-scale with FEI Quanta
FEG 250 (FEI, Hillsboro, OR, USA) scanning electron microscope (SEM). The surface
quality formed after chip removal was measured with a Mahr PS10 profilometer (Mahr,
Providence, RI, USA). Both Ra and Rz measurements of the surface were performed. Phase
View optical profilometer was used to examine the topography of the processed surface.
The experimental setup is given in Figure 2.
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3. Results and Discussion
3.1. Cutting Temperature

High temperature occurs when two metals with high strength are rubbed. The high
temperature formed in the cutting zone changes the tribological properties of the cutting
tool [30]. For this reason, the hardness of the cutting tool decreases and causes faster
wear [8]. The rapidly wearing cutting tool also completes its life in a shorter time. In
addition, the surface quality of the workpiece deteriorates at a similar rate. Superalloys
maintain their yield strength at high temperatures and are difficult to process. Therefore,
the cutting zone temperature of superalloys is also high. The thermal conductivity of the
Ni-based superalloy Udimet 720 is about 20 W/mK, while the thermal conductivity of
normal steel is approximately 50 W/mK. [31]. This difference in thermal conductivity
shows that the temperature formed in the cutting zone is less away with the workpiece
or chip. In normal steel materials, most of the temperature formed in the cutting zone is
removed from the area by the workpiece and chip. However, in superalloys, the cutting
tool absorbs the temperature that the workpiece or chip cannot remove. The cutting tool,
which has more thermal load, is also expected to wear faster. In addition, due to the worn
cutting tool, the workpiece’s dimensional accuracy and the workpiece’s surface quality
deteriorate. In order to measure the actual temperature in the cutting zone, the area where
the temperature data is taken was determined as 5 mm2.

Figure 3 shows the cutting zone temperatures taken from the thermal camera at
the highest feed and cutting speed. Significant effects of MQL liquid and nanoparticles
delivered to the cutting zone on the cutting temperature were determined.
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(d) nMQL MWCNT.

It is seen in Figure 4 that the cutting zone temperature increases with the increase of
cutting speed and feed rate in all cutting conditions. When the cutting zone temperature
is examined according to the cutting parameters, the cutting zone temperature decreases
by 19.53%, decreasing the cutting speed from 80 m/min to 40 m/min in dry turning. The
cutting zone temperature decreased by approximately 10.39% as the feed rate decreased
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from 0.08 mm/rev to 0.04 mm/rev. The fact that the cutting speed affects almost twice
as proportionally to the feed rate proves how important friction is in superalloys. With
the increase in feed rate, the power consumed for chip removal turns into heat energy,
while the friction increases with the increase in cutting speed. In this case, it can be said
that the energy released from friction is more. However, the actual temperature difference
was observed in the cutting conditions changes. When the cutting zone temperature
was evaluated according to the cutting conditions, Pure MQL reduced the cutting zone
temperature by 21.7% compared to dry turning. This rate increased to approximately
27.6% when nMQL GNP was used. The cutting condition with the lowest cutting zone
temperature was nMQL MWCNT, which showed a 30% decrease compared to dry turning.
When MQL coolant reaches the high-temperature cutting zone at room temperature, the
cutting zone temperature is expected to decrease. Thus, less heat is generated in the
cutting zone. Nanoparticles added to the MQL fluid increase the thermal conductivity
of the cutting fluid. Therefore, it causes the heat collected at the cutting tool tip to move
away from this region faster. In addition, it is thought that nanoparticles increase the
lubricating properties of the cutting fluid, reducing friction. The SEM images obtained as a
result of the experiments also prove that nanoparticles reduce the formation of BUE. BUE
formation in machining has many known disadvantages. The most important of these is
the deterioration of the cutting tool form and the increase in the cutting zone temperature.
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3.2. Flank Wear

The high thermal conductivity of nanofluids maximizes penetration in the cutting
zone, thus reducing friction, cutting zone temperature, and cutting tool wear [32]. In
Figure 5, at a constant chip volume of 2000 mm3, the maximum flank wear in dry turning
was 0.185 mm at the highest cutting parameters. The lowest flank wear was measured as
0.052 mm, decreasing by 71.89% when using the lowest cutting parameters with nMQL
MWCNT. In dry turning, cutting tool wear increased with an increase in cutting speed
at a feed rate of 0.4 mm/rev. By increasing the cutting speed by 100%, the wear of the
cutting tool increased by 36.84%. While the feed rate was 0.6 mm/rev, the wear of the
cutting tool increased by 32.22% with the increase in cutting speed. When the feed rate
was 0.8 mm/rev, the wear of the cutting tool increased by 27.56% with the increase in the
cutting speed. With the feed rate change, the cutting zone temperature increased by 10.39%
at most. When the effects of different cutting media on wear were examined, significant
differences were observed at the highest cutting speed and feed rates. When using the
Pure MQL method compared to dry turning, the wear of the cutting tool decreased by
9.19%. This rate was 14.05% when nMQL GNP was used, while nMQL MWCNT improved
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by 15.67%. The differences in the cutting environment are quite remarkable in the lowest
cutting parameters that can be selected in cases where tool wear is important. The cutting
tool wear, measured as 0.108 mm in dry turning, decreased by 35.1% with Pure MQL and
was measured as 0.07 mm. While this rate was 39.8% when nMQL GNP was used, 51.8%
improvement was observed for nMQL MWCNT. nMQL MWCNT can be considered a
proven option, especially when it is desired to have low surface roughness values, which
can be considered as a result of cutting tool wear. Another factor that needs attention is
the correct selection of cutting parameters. No catastrophic failure was observed, even in
dry turning at the highest feed and cutting speeds. Moreover, the 0.2 mm wear limit was
complied with, where the tool was considered worn and unusable.
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Figure 5. Change of flank wear.

After all the experiments, macro images of the cutting tools were taken under DINO
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While
BUE formation is observed especially in dry turning, a decrease is observed when Pure
MQL is used. In addition, with the effect of nanopowders, BUE formation was considerably
reduced. This situation is proved by the SEM images in Figure 6. The images also appear to
remove the coating that nMQL GNP failed to protect the cutting tool coating. This situation
is thought to cause increased wear.

Table 5. Images of cutting tool wear.

Feed Rate,
mm/rev

Cutting Speed, m/min

40 60 80

Dry

0.04

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

0.06

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

0.08

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   



Lubricants 2023, 11, 159 8 of 12

Table 5. Cont.

Feed Rate,
mm/rev

Cutting Speed, m/min

40 60 80

Pure MQL

0.04

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

0.06

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

0.08

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

Lubricants 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Change of flank wear. 

After all the experiments, macro images of the cutting tools were taken under DINO 
LITE 2.0 optical microscope. Table 5 shows the wearing surfaces of all cutting tools. While 
BUE formation is observed especially in dry turning, a decrease is observed when Pure 
MQL is used. In addition, with the effect of nanopowders, BUE formation was considera-
bly reduced. This situation is proved by the SEM images in Figure 6. The images also 
appear to remove the coating that nMQL GNP failed to protect the cutting tool coating. 
This situation is thought to cause increased wear.  

Table 5. Images of cutting tool wear. 

 Feed Rate, 
mm/rev 

Cutting Speed, m/min 
40 60 80 

Dry 

0.04 

   

0.06 

   

0.08 

   

Pure MQL 

0.04 

   

0.06 

   

0.08 

   

nMQL GNP

0.04

Lubricants 2023, 11, x FOR PEER REVIEW 9 of 14 
 

 

nMQL GNP 

0.04 

   

0.06 

   

0.08 

   

nMQL 
MWCNT 

0.04 

   

0.06 

   

0.08 

   

With the effect of high temperature in the cutting zone, the cutting tool loses its hard-
ness. This causes rapid wear of the cutting tool. In the SEM images seen in Figure 5, it is 
seen that flank wear is higher in Dry with a high cutting zone temperature. In addition, 
EDS analysis proves the BUE formed on the cutting tool. EDS results show that BUE for-
mation is very high with the effect of heat, especially in dry turning. With Pure MQL, the 
BUE formation is slightly reduced, but the intensity of the wear is noticeable. BUE does 
not appear when using nMQL GNP. However, this does not mean that BUE does not oc-
cur. It is understood from the SEM and EDX no. 3 that the BUE formed, broke off, and 
took a part of the coating with it when breaking off. When the SEM image no. 3 is exam-
ined, and the W element, which is the cutting tool substrate, is seen instead of the remains 
from the TiN or TiAlN layers, which are the upper layer of the cutting tool. Removal of 
the coating is an important disadvantage. It is known that when BUE moves away from 
the environment, it moves away with the coating. Therefore, an important wear problem 
can be mentioned here due to BUE. However, BUE and wear were observed to be quite 
low when nMQL MWCNT was used. It can be said that nMQL MWCNT causes low wear 
and low BUE formation due to its low cutting temperature. This also affected the wear 
results. 
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EDS analysis proves the BUE formed on the cutting tool. EDS results show that BUE
formation is very high with the effect of heat, especially in dry turning. With Pure MQL,
the BUE formation is slightly reduced, but the intensity of the wear is noticeable. BUE does
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part of the coating with it when breaking off. When the SEM image no. 3 is examined, and
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an important disadvantage. It is known that when BUE moves away from the environment,
it moves away with the coating. Therefore, an important wear problem can be mentioned
here due to BUE. However, BUE and wear were observed to be quite low when nMQL
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MWCNT was used. It can be said that nMQL MWCNT causes low wear and low BUE
formation due to its low cutting temperature. This also affected the wear results.
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3.3. Surface Roughness and Surface Topography

The surface roughness is expected to increase with the increase in friction between the
cutting tool and the workpiece [33]. Increasing the feed rate and cutting speed increases
the cutting forces and, thus, the friction between the cutting tool and the workpiece [16].
As expected, a noticeable increase was observed in the surface roughness values with the
increase in feed rate and cutting speed (Figure 7). However, it is clearly seen that MQL and
nanoparticle-added MQL have the main effect on surface roughness rather than cutting
parameters. When the surface roughness values after dry turning were examined, the
surface roughness improved by 12.3% and 36.5%, respectively, with a 100% decrease in
feed rate and cutting speed. With Pure MQL, the surface roughness value improved by
21.4%. The cutting temperature decreased with the MQL fluid reaching this region, which
positively affected tool wear. The cutting tool, which wears less and maintains its form
with MQL coolant, resulted in better surface quality with the reduction of friction with
MQL coolant. It has been reported in previous studies that the mechanical and thermal
load on the workpiece decreases when nanoparticles are added to the cutting fluid [32,34].
The reason for this is the high thermal conductivity of nanofluids and their ability to lower
surface tension. When using nMQL GNP as nanopowder, the surface roughness improves
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by 37.5% compared to dry turning, while this rate increases up to 43.9% when nMQL
MWCNT is used. nMQL, which gives the best result in surface roughness compared to
dry turning, provided an 88% improvement by reducing the MWCNT cutting parameters
by 100%.
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In Figure 8, the surface topographies obtained from the turning experiments performed
at different cutting conditions (DRY, Pure MQL, nMQL GNP, and nMQL MWCNT) at
cutting speed (60 m/min) and feed rate (0.06 mm/rev) are given. Topographic images
obtained from the workpiece show that the use of nanopowders significantly improves
surface roughness.
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4. Conclusions

This paper investigated three MQL methods as an alternative to dry turning of super-
alloy Udimet 720, which is difficult to machine. These are (i) pure MQL, (ii) nMQL GNP,
and (iii) nMQL MWCNT.

In this study, in which the effect of cutting parameters was also investigated, the exper-
iments were carried out at three different feed rates (0.04, 0.06, 0.08 mm/rev), three different
cutting speeds (40, 60, 80 m/min), and a fixed depth of cut (0.6 mm) for all conditions.

With the cutting speed change, the highest temperature difference was 19.53%. With
the feed rate change, the cutting zone temperature increased by 10.39% at most. This shows
that the cutting speed is more effective than the feed rate at the cutting zone temperature.
Based on the highest cutting speed and feed rate values, the cutting zone temperature de-
creased by 21.7%, 27.6%, and 30% in Pure MQL, GNP, and MWCNT, respectively, compared
to dry turning.

In all cutting environments, the cutting tool wear reached its maximum at a higher
cutting speed and feed rate. With the reduction of cutting speed and feed rate in dry
turning, cutting tool wear has also decreased by approximately 36% and up to 27%.

The highest cutting tool wear occurred in the dry turning environment. When Pure
MQL, nMQL GNP, and nMQL MWCNT were used at the lowest cutting parameters, cutting
tool wear was reduced by approximately 35%, 39%, and 51%, respectively, compared to
dry turning. At the highest cutting parameters, this reduction in cutting tool wear was
approximately 9%, 14%, and 15%, respectively.

Higher cutting speed and feed rate resulted in higher surface roughness. In dry
turning, an improvement of approximately 36% and up to 12% was observed in the surface
roughness by reducing the cutting speed and feed rate.

The highest surface roughness occurred in the dry-turning environment. Using Pure
MQL, nMQL GNP, and nMQL MWCNT at the highest cutting parameters resulted in
approximately 21%, 37%, and 43% lower surface roughness, respectively, compared to dry
turning. Compared to dry turning, the most significant improvement in surface roughness
was achieved when nMQL MWCNT was used, with a rate of approximately 88%.

Studies can be carried out with mathematical models as a contribution to the current
research. In addition, many nanoparticles are added to cutting fluids, and their effects are
tested. Experiments with different particles can be performed in Udimet 720.
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