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Abstract: In this study, a Ni–WC–TiC alloy coating was fabricated by laser to improve the wear
resistance and service life of Cr12MoV die steel. The microstructures and phases of the coating were
analyzed by a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and
X-ray diffraction (XRD). The properties of the coating were tested by a hardness and friction wear
tester. The results show that the coating has a good metallurgical bond with the substrate. The
microstructures from top to bottom are mainly equiaxed crystal, columnar dendrite, and cellular
dendrite. Combined with the physical phase analysis and elemental distribution of the coating, there
are some phases, such as γ~(Fe, Ni), Cr23C6, WC, TiC, Fe3W3C, and Cr2Ti. Compared with the
Cr12MoV steel substrate, the Ni–WC–TiC alloy coating has good properties of hardness and wear
resistance. In the coating, the background region of the grains is γ~(Fe, Ni). From the EDS results, it
can be seen that there are some rod-like particles, Cr23C6, which are uniformly distributed on the top
of the coating. Some W and Ti carbides form in grains. The addition of TiC particles improves the
WC particles refinement. The highest hardness of the coating is 770.7 HV0.5, which is approximately
3.3 times higher than that of the substrate. The wear volume is 0.26 mm3, or approximately 8.6% of
the substrate, which is contributed to the reinforced phases and finer microstructure of the coating.
The wear volumes of the Cr12MoV substrate are 1.8 and 4.5 mm3 at 20 and 60 min, respectively.
While the wear volumes of the Ni–WC–TiC coating are 0.2 and 0.7 mm3 at 20 and 60 min, respectively.
The increased amplitude of the coating’s wear volume is smaller than that of the substrate. The
results show that this Ni–WC–TiC alloy coating is helpful for improving the properties and service
life of Cr12MoV die steel.

Keywords: laser cladding; Cr12MoV; Ni–WC–TiC; coating; hardness; wear resistance

1. Introduction

Mold is widely used in industrial production due to its advantages of good quality,
high efficiency, and low cost. The Cr12MoV die steel has excellent hardenability, hardness,
and flexural strength, so it is often used as a material for manufacturing molds [1,2]. The
material has good thermal processing properties due to the presence of Mo and V alloying
elements in Cr12MoV steel [3,4]. Therefore, it is widely made into some molds with large
cross-sections and complex shapes [5,6]. However, the working conditions for the mold
are harsh. In addition to the impact of force and heat, the working surface of the mold is
also subjected to intense friction with the blank, which often leads to mold breakage and
failure [7,8]. The requirements for mold materials are becoming more stringent, which
makes the defects of Cr12MoV mold steel increasingly prominent, especially in the current
situation of rapid industrial development. Therefore, it is necessary to improve the wear
resistance of Cr12MoV steel.

Surface modification is one of the effective methods for improving the service life
of molds [9,10]. At present, surface properties are generally improved in industry by
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carburizing [11], ion implantation [12], and thermal spray strengthening [13]. However,
the above surface modification methods have disadvantages, such as high operational
difficulty, high cost, and easy peeling of the reinforcing layer. Compared with traditional
surface modification technology, laser cladding technology, which is a laser-based additive
manufacturing process with a more complex process, has the advantages of low deforma-
tion, high bonding strength, and dense organization [14–16]. It can be used not only to
repair the surface of critical parts but also to produce parts of specific shapes and sizes
by multi-channel and multi-layer methods [17]. Therefore, laser cladding technology is
widely used in the industrial field as a new surface strengthening technology with no
environmental pollution and a high degree of automation [18].

The cladding materials are usually Ni-based [19], Fe-based [20], and Co-based [21]
alloy powders. Compared with the other two powders, Ni-based alloy powder has the
advantages of a low melting temperature and good self-melting property [22–25]. Therefore,
Ni-based alloy powder is widely used to fabricate coatings. Farzaneh et al. [26] performed
a detailed defect characterization of (Ti-6Al-4V)-Ni-(Ti-6Al-4V) sandwich structures and
showed that by varying the process parameters of Laser Engineered Net Shaping (LENS),
it is possible to produce sandwich structures suitable for various applications. However,
the hardness and wear resistance are not very good due to the lack of reinforcing phases.
The ceramic particle WC is a good material to enhance the wear resistance, which is usually
added into the laser cladding powder [27,28]. The fabrication of WC particle-reinforced
Ni-based alloy coatings by laser cladding is widely used in actual production due to its
excellent wear resistance [29–31]. Although the proper amount of WC is helpful to improve
the coating’s properties, an excessive amount of WC particles is prone to cracks. In order to
reduce the cracks, the TiC is usually added to fabricate coatings without cracks [32,33]. In
past studies, most of them prepared Ni-based alloy coatings on its surface and studied the
effect of laser power on the properties of Ni-based alloy coatings. However, there are few
studies about the preparation of coating with WC and TiC ceramic particles by Ni-based
alloy powder on the Cr12MoV die steel. Therefore, a mixed powder of Ni–WC–TiC is
proposed to fabricate a coating on the substrate of Cr12MoV die steel.

In this paper, the CO2 laser was used to fabricate a Ni–WC–TiC ceramic metal-based
coating on the substrate of Cr12MoV die steel. Then the morphology, microstructure,
hardness, and wear resistance of the coating were studied. Analyses were carried out
using a metallographic microscope, a friction and wear tester, a Vickers hardness tester, a
scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS),
and X-ray diffraction (XRD). The results show that this Ni–WC–TiC alloy coating is helpful
for improving the properties and service life of Cr12MoV die steel. It is hoped that our
research can reduce the production loss, save on production costs, and provide a theoretical
basis for the surface modification work of Cr12MoV mold steel.

2. Experiment and Methods
2.1. Materials

The Cr12MoV steel die was used as the substrate. The main chemical composition of
Cr12MoV steel was Cr 11.5~13%, Mo 0.7~1.2%, and Fe balance as shown in Table 1. The
substrate’s length, width, and height were 50, 30, and 15 mm, respectively. The Ni-based
alloy powder was used as cladding material. The main chemical composition of Ni-based
alloy powder was Cr 16.5%, Fe 7%, and Ni balance, which is included in Table 2.

Table 1. Elemental composition (wt.%) of Cr12MoV.

Cr C V Mo Si Mn Ni S P Fe

11.5~13 1.4~1.6 ≤1.0 0.7~1.2 ≤0.6 ≤0.6 ≤0.25 ≤0.03 ≤0.03 Bal.
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Table 2. Elemental composition (wt.%) of Ni-based alloy powder.

Cr Fe Si C B Ni

16.5 7.0 4.0 0.8 4.0 Bal.

The Ni-based alloy powder size was 200–300 meshes, and its morphology is shown
in Figure 1. The shape of the powder was mainly circular. The maximum diameter of
Ni-based alloy particles was about 52 µm. There were also some small particles with several
microns. There were a few stripe and block particles, which were conducive to the flow
of the liquid phase during the melting process. The ceramic particles were added to the
Ni-based alloy, mixed, and ground in a mortar for 30 min. Then the Ni–WC–TiC powder
was made from 60% Ni-based alloy, 30% WC, and 10% TiC.
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Figure 1. SEM micrograph of Ni-based alloy powder.

2.2. Experimental Details

The substrate was first sandpapered, then cleaned with acetone and dried in a drying
dish for two hours to eliminate the oxide film on the surface. The Cr12MoV die steel was
then rinsed with an absolute alcohol solution for 30 min in an ultrasonic machine. In this
experiment, DL-HL-T2000 CO2 laser cladding equipment was used for the laser cladding
process. The thickness of the prefabricated Ni–WC–TiC powder is 1 mm. The laser cladding
process parameters are shown in Table 3. The selected laser power was 1.65 kW, and the
scanning speed was 100 mm/min. The spot diameter was 3 mm. The overlapping ratio
was 30%.

Table 3. Laser cladding process parameters.

Parameters Laser Power
(kW)

Scan Speed
(mm/min)

Spot Diameter
(mm)

Overlapping
Ratio

Value 1.65 100 3 30%

Figure 2 depicts the schematic diagram of the laser cladding process. The energy
from the laser melted the Ni-based alloy powder, which made a liquid molten pool. A
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coating with a combination of Ni-based alloy and Cr12MoV substrate was formed. Then
this coating of substrate was cut into four specimens along the cladding direction using a
wire cutter. The length, wide, and height were all 10 mm. The coating was then polished on
a polishing machine until the surface was free of scratches. Aqua regia (HCl: HNO3 = 3:1)
was used as a corrosive agent to corrode the cross section of the coating for 10~25 s. When
light yellow bubbles appeared on the surface of the coating, it was immediately washed
with absolute ethanol and blown dry.

Lubricants 2023, 11, x FOR PEER REVIEW 4 of 14 
 

 

When light yellow bubbles appeared on the surface of the coating, it was immediately 
washed with absolute ethanol and blown dry. 

 
Figure 2. Schematic diagram of laser cladding process. 

The copper target X-ray diffractometer (XRD, TD-3500X) was used to determine the 
phase of the coating, operating at 40 kV and 40 mA in a diffraction range of 20°~80° and a 
scanning speed of 4.08°/min. The cross-sectional morphology, microstructure, and com-
position of the coating were observed by scanning electron microscopy (SEM, ZEISS300). 
The elemental distribution of the Ni–WC–TiC coating was analyzed by EDS. The Vickers 
hardness tester (HXD-1000TMC/LCD) was used to measure the hardness of the coating 
with a test load of 500 gf for 10 s. The hardness was measured from the top of the Ni–
WC–TiC coating to the Cr12MoV substrate, and each point was repeated three times at 
the same height. The reciprocating fatigue and wear tester (MGW-02) was used to test the 
tribological properties of the Ni–WC–TiC coating. The parameters are included in Table 
4. The Φ6.5 mm GCr15 grinding ball was selected as the friction pair. The wear time was 
30 min. The frequency was 2 Hz. The load was 3 N. 

Table 4. Experimental parameters of friction and wear. 

Parameters Wear Time (min) Frequency (Hz) Load (N) 
Value 30 2 3 

2.3. Surface Morphology 
The schematic diagram of the laser cladding fabrication process is shown in Figure 

3. The parameters were selected from Table 3. The Ni–WC–TiC alloy powder was melted 
by a high-energy laser. The multi-pass coating was made along with the repeated 
movement. The fabricated Ni–WC–TiC coating was shown in Figure 3. It can be seen that 
the surface morphology is smooth and uniform. 

 

Figure 2. Schematic diagram of laser cladding process.

The copper target X-ray diffractometer (XRD, TD-3500X) was used to determine the
phase of the coating, operating at 40 kV and 40 mA in a diffraction range of 20◦~80◦

and a scanning speed of 4.08◦/min. The cross-sectional morphology, microstructure,
and composition of the coating were observed by scanning electron microscopy (SEM,
ZEISS300). The elemental distribution of the Ni–WC–TiC coating was analyzed by EDS.
The Vickers hardness tester (HXD-1000TMC/LCD) was used to measure the hardness of
the coating with a test load of 500 gf for 10 s. The hardness was measured from the top
of the Ni–WC–TiC coating to the Cr12MoV substrate, and each point was repeated three
times at the same height. The reciprocating fatigue and wear tester (MGW-02) was used to
test the tribological properties of the Ni–WC–TiC coating. The parameters are included in
Table 4. The Φ6.5 mm GCr15 grinding ball was selected as the friction pair. The wear time
was 30 min. The frequency was 2 Hz. The load was 3 N.

Table 4. Experimental parameters of friction and wear.

Parameters Wear Time (min) Frequency (Hz) Load (N)

Value 30 2 3

2.3. Surface Morphology

The schematic diagram of the laser cladding fabrication process is shown in Figure 3.
The parameters were selected from Table 3. The Ni–WC–TiC alloy powder was melted by a
high-energy laser. The multi-pass coating was made along with the repeated movement.
The fabricated Ni–WC–TiC coating was shown in Figure 3. It can be seen that the surface
morphology is smooth and uniform.
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3. Results and Discussion
3.1. Phase Composition

Figure 4 shows the X-ray diffraction pattern of Ni–WC–TiC coatings. It can be found
that the Ni–WC–TiC coating is mainly composed of γ~(Fe, Ni), Cr2Ti, Cr23C6, WC, TiC,
and Fe3W3C. Others were decomposed and formed the Cr2Ti and Fe3W3C phases. During
the formation of the coating, when the temperature of the liquid pool decreased, the γ~(Fe,
Ni) phase with a higher diffraction peak appeared, which was detected at about 43◦ and
50◦. The WC phase was detected at about 50◦ and 74◦, and the TiC phase was detected
at 41◦, indicating that some WC and TiC were still present in the coating after the laser
cladding process.
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Under the action of the high-energy laser beam, the Cr12MoV substrate and Ni–WC–
TiC powder underwent some complex chemical and physical changes in the liquid molten
pool, resulting in the formation of different phases [34]. The reaction equation is as follows:

2Cr + Ti→ Cr2Ti (1)

Cr + C→ Cr23C6 (2)

L + WC + W→ Fe3W3C (3)

where L represents the high-temperature solvent of W, C, and Fe.
Therefore, the addition of WC and TiC not only brings some ceramic particles into a

Ni-based coating but also makes some new phases, such as Cr2Ti and Fe3W3C. These new
phases are helpful to improve the mechanical properties of the coating.

3.2. Microstructure Analysis

Figure 5 shows the microstructure of the coating’s overall and local regions. From top
to bottom, there are a coating, bonding region, and substrate, as shown in Figure 5a. In
Figure 5b, it shows the morphology of zone A, which is mainly dominated by equiaxed
crystals at the top of the coating. As can be seen in Figure 5b, the size of the equiaxed
crystals at zone A is about 3~5 µm. Because zone A has a larger cooling rate due to heat
transfer between the molten pool and air. Then the composition overcooling phenomenon
appears at the zone of liquid and solid phases, which leads to spontaneous crystallization.
Therefore, a lot of equiaxed crystals form and grow. In Figure 5c, it shows the morphology
of zone B, which is mostly made of columnar and cellular dendrites in the middle of
the coating. As can be seen in Figure 5c, the size of the cellular dendrites in zone B is
about 5~9 µm. From Figure 5c,d, it can be seen that the size of the columnar dendrites
is larger, which is about 10~20 µm. The cooling rate is smaller than that of the coating’s
top. Therefore, the crystal has enough time to grow and become columnar dendrites and
cellular dendrites. In Figure 5d, it can be seen that the bonding region appears to contain
some large planar crystals. Because the temperature gradient G is larger at the bonding
region while the growth rate R is smaller. The large value of G/R promotes the crystals to
become a lot of planar and columnar crystals.

In order to investigate the Ni-WC-Ti coating, the points D in Figure 5c and E in
Figure 5d were selected, and the elemental composition of those two points was obtained
by EDS. The elemental composition results are included in Table 5. At point D, the mass
fractions of Fe and Ni elements inside the crystal are 47.14% and 20.32%, respectively.
The main composition of this region is γ~(Fe, Ni) solid solution, which is in accordance
with the XRD pattern. The mass fractions of Cr, W, and C elements are 9.49%, 8.86%, and
11.46%, respectively, indicating that some Cr and W carbides are present in this region. At
point E, the mass fractions of the W and Ti elements are 26.34% and 21.94%, respectively.
This indicates that the gray-white particles in the coating are Ti and W carbides, which is
consistent with the literature [35]. These gray-white particles are uniformly distributed in
the grain boundary caused by the addition of WC and TiC, which are helpful to improve
the coating’s properties. It is worth noting that no large WC particles were found in
the coating because some WC particles are decomposed under the laser’s high energy.
From the previous research, it can be known that the TiC particles are also helpful in
making the WC particles small. Therefore, the addition of TiC particles improves the WC
particles refinement.
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Table 5. Elemental composition (wt.%) of points D and E.

Point Fe Ni W C Ti Cr Si

D 47.14 20.32 8.86 11.46 1.19 9.49 1.54
E 20.97 12.19 21.12 14.81 23.75 6.54 0.62

The SEM image and elemental distribution at the top of the coating are shown in
Figure 6. Figure 6a shows that some relatively coarse rod-like particles are present in the
coating. In Figure 6b, it can be seen that the elemental distribution is mainly dominated
by the elements Fe, Ni, and Cr, supplemented by the elements W and Ti. As shown in
Figure 6c,d, these rod-like structures are rich in Cr and C, which are Cr carbides. Combined
with the X-ray diffraction pattern of the coating, it can be concluded that these rod-like
particles are Cr23C6, and the background region of the grains is γ~(Fe, Ni). These rod-like
particles are uniformly distributed on the top of the coating as solid solutions. This is
helpful for obtaining a Ni-based ceramic coating with good properties, such as hardness.
This is one of the reasons for the high hardness.
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Figure 7 shows the SEM image and elemental distribution of the grain in the Ni–WC–
TiC coating. In Figure 7a, there is a SEM image of the whole region, which has a gray-white
particle, grain boundary, and grain background. Figure 7b–g is the elemental distribution
of W, Ti, Fe, Ni, Cr, and C. In Figure 7b,c, it can be seen that the main elements in the
gray-white particle are W and Ti. There are some C elements. So these particles are W
and Ti carbides. Figure 7d,e shows that the main elements of the grain background are Fe
and Ni. Combined with the X-ray diffraction pattern, this is the γ~(Fe, Ni) solid solution.
Figure 7f,g shows that the grain boundaries are enriched in Cr and C elements. The grain
boundaries are some Cr carbides, which are helpful to increase the strength of the crystal.
The TiC and WC in the powder were decomposed under the action of a high-energy laser
beam. As new nuclei in the nucleation process, they play a role in increasing the nucleation
rate and promoting grain refinement in the remelting process.
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In order to investigate the elemental distribution of the bonding region, Figure 8
depicts a SEM image and the distribution of Ni, W, and Ti elements in the bonding region.
Figure 8a shows the microscopic morphology of the bonding region of the coating. It can be
seen that there is no cracking or porosity. The different elements have mutual penetration.
Therefore, there is a good metallurgical bond between the Ni–WC–TiC coating and the
substrate. Figure 8b,c shows the uniform distribution of Ni and W elements in the coating.
Figure 8d shows that the Ti element is distributed beyond the coating and extends into
the bonding region, indicating that the TiC is fully decomposed. Overall, the elements
Ni, W, and Ti are mainly distributed in the coating and show a decreasing trend from the
coating to the bonding region. It is proven that the added WC and TiC are concentrated in
the coating. The microstructure and distribution of elements in the coating are helpful in
fabricating a compact coating with good properties on a Cr12MoV die steel substrate, such
as hardness and wear resistance.
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3.3. Hardness

In order to investigate the coating’s property, the hardness of the coating’s cross-section
perpendicular to the laser beam direction was measured three times at the same height.
Figure 9 shows the hardness distribution of the coating from the top to the substrate. The
maximum hardness appears near the coating’s top, at about 0.1 mm. Combined with the
coating’s microstructure, as shown in Figure 5, the surface structure of the coating consists
of dense equiaxed crystals, while the middle and bonding regions are composed of coarse
dendrites. According to the Hall-Petch formula, as the grain size becomes finer and denser,
the grain strength would be higher [36,37]. The strength of the metal is negatively correlated
with the grain size. Therefore, the strength of the metal is greater and the hardness of the
material is higher when the grain size is smaller. The maximum hardness of the coating is
770.7 HV0.5. That is about 3.3 times the hardness of the substrate.

σy = σ0 + kd−1/2 (4)

σy—yield limit of the materials;
σ0—lattice frictional resistance when moving individual dislocations;
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k—related constants;
d—average grain diameter.
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Figure 9. Hardness of the coating’s cross-section, which is perpendicular to the laser beam direction.

Combined with the X-ray diffraction pattern analysis, the presence of hard phases
such as WC, Fe3W3C, and Cr23C6 can significantly enhance the hardness of the Ni–WC–
TiC coating, which is higher than that of the Cr12MoV substrate. However, the hardness
decreases from the coating’s top to the bottom because there are some substrates at the
bottom of the molten pool. The Cr12MoV melts with the high laser energy, and some
elements are easy to enter into the molten pool and stay in the coating after cooling. So
it has a decreasing trend in the coating. In the bonging region, the hardness also has a
decreasing trend and gradually approaches the substrate’s hardness because more elements
have entered this region. In the substrate region, the hardness will have a small change
and be uniform.

3.4. Wear Properties and Mechanisms

The wear volume could be calculated based on the length and width of the wear
scar when the experiment was conducted at room temperature [38]. Figure 10 shows the
frictional wear curve for the Cr12MoV substrate and Ni–WC–TiC coating. The friction coef-
ficient of the Cr12MoV substrate increased at the beginning of friction and then stabilized
at around 0.5. The variation of the friction coefficient of the Ni–WC–TiC coating had a short
fluctuation state, which increased to the maximum value (0.3) at 360 s and then decreased
to 0.2 in the stable stage. The friction coefficient of the Ni–WC–TiC coating was lower than
that of the Cr12MoV substrate at all stages.

Figure 11 shows the wear volume of the Cr12MoV substrate and Ni–WC–TiC coating
at 30 min. It can be seen from the figure that the wear volumes of the Cr12MoV substrate
and Ni–WC–TiC coating are 3.02 mm3 and 0.26 mm3, respectively. The wear volume
of the coating is only 8.6% of the substrate, which demonstrates that the Ni–WC–TiC
coating has a smaller wear volume and is helpful in decreasing the wear volume of the
Cr12MoV substrate. It may have better wear resistance than the Cr12MoV substrate. The
improvement in wear resistance is caused by the reinforced phases, such as γ~(Fe, Ni), WC,
Cr23C6, Cr2Ti, and TiC.
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Figure 11. The Cr12MoV substrate and Ni–WC–TiC coating’s wear volume at 30 min.

To evaluate the long-term wear resistance of the coating, continuous friction wear tests
were conducted for 20, 40, and 60 min. Figure 12 shows the wear volume of the Cr12MoV
substrate and Ni–WC–TiC coating. It can be seen in the line chart that the wear volumes of
substrate and coating increase along with the increase in time. The wear volumes of the
Cr12MoV substrate are 1.8 and 4.5 mm3 at 20 and 60 min, respectively. While the wear
volumes of the Ni–WC–TiC coating are 0.2 and 0.7 mm3 at 20 and 60 min, respectively. The
increase in the amplitude of the coating’s wear volume is smaller than that of the substrate.
Therefore, the coating may be guaranteed to have good wear resistance during the long
period of service.
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Figure 13 shows the microscopic morphology of the friction and wear surfaces of the
Cr12MoV substrate and Ni–WC–TiC coating. As can be seen in Figure 13a, the worn surface
of the substrate is very rough. It has severe plastic deformation, deep pits, and severe
spalling. After a certain number of wear cycles, the flakes peeled off from the substrate
to form wear debris and adhered to the substrate surface under the action of the normal
force of the friction pair. The substrate wear mechanisms are abrasive wear and adhesive
wear. In contrast, Figure 13b shows that the furrows on the worn surface of the coating are
shallow and narrow, and no significant flaking occurs. This is because the presence of the
hard phase helps to resist the plowing effect under the combined action of the friction pair
and wear debris during the wear process. The hard phase greatly improves the hardness of
the coating, while the resistance to deformation of the coating is improved. The reinforced
phases, such as WC, TiC, and Cr23C6, improve the strength of the coating and bring it
closer together. However, there is still some wear debris in areas without the hard phase.
The substrate wear mechanisms are also abrasive wear and adhesive wear, but there is no
brittle spalling.
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Figure 13. Microscopic morphology of friction and wear surface; (a) Cr12MoV substrate; (b) Ni–WC–
TiC coating.

According to the above experimental analysis, the Ni–WC–TiC coating used in this
study can effectively improve the hardness and wear resistance of the Cr12MoV substrate,
which can extend the service life of the Cr12MoV substrate.

4. Conclusions

(1) The Ni–WC–TiC coating was fabricated on the substrate of Cr12MoV die steel by laser.
There is a good metallurgical bond between the coating and substrate. The surface
morphology of the coating is smooth and uniform;

(2) The coating’s microstructures, from top to bottom, are mainly equiaxed crystal, colum-
nar, and cellular dendrite. The phases of the coating are mainly composed of γ~(Fe,
Ni), Cr23C6, WC, TiC, Cr2Ti, and Fe3W3C. The grain boundaries are enriched in Cr
and C elements, which include some Cr carbides. There are some W and Ti carbides
in grains;

(3) The coating’s maximum hardness is 770.7 HV0.5, which is about 3.3 times the hardness
of the substrate. The hardness of the coating surface is higher and gradually decreases
down to the substrate. The presence of reinforced phases, such as WC, Fe3W3C, and
Cr23C6, can significantly enhance the hardness of the Ni–WC–TiC coating;

(4) The coating wear volume is 0.26 mm3, which is only 8.6% of the substrate. The
friction coefficients of the Cr12MoV substrate and Ni–WC–TiC coating are stable
at 0.5 and 0.2, respectively. The friction coefficient of the Ni–WC–TiC coating was
lower than that of the Cr12MoV substrate at all stages. This demonstrates that the
coating has an important role in improving the wear properties of the substrate.
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The reinforced phases, such as WC, TiC, and Cr23C6, improve the strength of the
coating and bring it closer together. The wear mechanisms of both the coating and
the substrate are abrasive wear and adhesive wear, but there is no significant brittle
spalling of the coating.
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