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Abstract: In order to improve the tribological performance of PVD–MoS2 coatings, which are fre-
quently used as a solid lubricant for operating in challenging environments, e.g., in a vacuum,
they can be modified with nitrogen. This work evaluates the tribological behavior and a possible
compaction occurring during the initial tribological load in the rolling contact for pure and nitrogen-
modified PVD–MoS2 coatings in a vacuum. Short-running tests (1000 cycles) of coated steel discs
paired with uncoated steel discs made from 100Cr6 (1.3505, AISI 52100) were conducted on a two-disc
tribometer. The slide-to-roll ratio of 10.5% was kept constant, while the load was varied in two steps
from 1.1 GPa to 1.6 GPa. Subsequently, a comparison was made between the worn and the pristine
coatings by means of nanoindentation and an optical analysis of the wear track. The formation of a
load-bearing solid lubrication was achieved for both MoS2-variants. The main differences affected
the material transfer and wear mechanisms. The worn coatings reached a similar wear coefficient
of 4 × 10−6 mm3N−1m−1 and a possible compaction of the coatings was found, indicated through
an increased indentation hardness (for MoS2 1158% and MoS2:N 96% at a 1.1 GPa load). The as-
sumed tribological mechanism changed with nitrogen modification, but scales with increasing load.
The nitrogen-modified MoS2 coating showed less compaction than pure MoS2, while the frictional
behavior was improved by a 17% reduction of the coefficient of friction.

Keywords: MoS2; tribology; vacuum; solid lubrication; transfer layer; two-disc

1. Introduction

The solid lubricant molybdenum disulfide (MoS2) is widely employed in challenging en-
vironments where conventional oil and grease lubrication are ineffective or undesirable [1,2].
Application proved particularly effective at low temperatures [3,4], high temperatures [5,6],
and, especially, under vacuum conditions, for instance, in space applications [7–10]. There-
fore, a common technique for applying such coatings is the (reactive) physical vapor
deposition (PVD) process. Under vacuum conditions, the layered microstructure [11] of
MoS2 unfolds its full potential due to the easy sliding of the individual MoS2 lamellae
against each other. In combination with the coating transfer to the counterpart and the
formation of a tribofilm, this results in a self-lubrication mechanism [12,13]. Conversely, it
means excellent tribological behavior, which is reflected in very low coefficients of friction
(COFs) [8,14,15] and low wear [16,17]. The preferred layer growth of MoS2 coatings for
tribological applications is the basal orientation, which is characterized by MoS2 lamellae
aligned parallel to the substrate and is associated with good lubrication performance and a
prolonged service life [18–22], although, in the case of sputter-deposited coatings, an initial
basal orientation may not be achieved, resulting in vertical [23,24] or nanocrystalline [25,26]
growth, which, in turn, tends to be accompanied by lower lubrication performance. To
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alleviate these structural issues, which may be detrimental to coating performance, MoS2
coatings were often co-sputtered with metals such as titanium (Ti), chromium (Cr) [27–29],
gold (Au) [30,31], or silver (Ag) [32] in the past. Also, the combination with diamond-like
carbon (DLC) coatings receives attention in the literature [33,34]. Another approach to
increase coating performance is the combination of different coating types, the so-called
“chameleon coatings”. This ensures that the best coating works under the particular operat-
ing conditions (temperature, relative humidity, and load case) [35,36]. The improvement
of the coatings by means of modification with gaseous nitrogen has been given less con-
sideration, and even only in the last few years [37–41] While the tribological behavior
(friction and wear) of MoS2 coatings in the literature is most often represented by simple
model tests, such as pin (ball)-on-disc tests, these studies often refer only to sliding contact
conditions. Investigations on nitrogen-modified coatings under rolling conditions are still
completely lacking.

For tribological experiments under rolling–sliding conditions, a two-disc tribometer
(2DT) can be used for a variety of materials and lubricants [42–45]. The 2DT is applicable
for the characterization of tribological systems in a wide range, from pure sliding to various
slip conditions to pure rolling. With regard to tooth flanks or rolling bearings, findings from
tests in 2DTs are more transferable than those from the ball-on-disc tests usually performed,
and allow the possibility of high Hertzian contact stresses. While the investigations mainly
focus on the testing of tribologically effective thin coatings or bearing steel under oil
lubrication conditions, the two-disc test rig is also a suitable test method for dry lubrication
conditions [42–44,46,47].

Hence, the aim of our work presented here is to obtain a more precise understanding
of the tribological behavior of sputter-deposited MoS2-based coatings in rolling–sliding
contact conditions. For this purpose, tribological experiments were carried out on a novel
2DT under vacuum conditions for the first time. Two coatings were investigated: pure
MoS2 and a nitrogen-modified variant, which shall henceforth be referred to as MoS2:N.
The tribological tests run up to 1000 cycles while the load was varied in two steps, allowing,
in particular, a comparison of the running-in behavior. The appearing wear phenom-
ena were evaluated visually, post mortem. To identify tribologically induced changes,
nanoindentation measurements were conducted before and after the tribological loading of
the coatings.

2. Materials and Methods
2.1. Specimens, Coatings, and Deposition Process

For tribological experiments, discs (height h = 10 mm; diameter d = 45 mm) made
from rolling bearing steel 100Cr6 (1.3505, AISI 52100) were used. Half of the samples were
cylindrical, serving as substrates for coating deposition, and half were crowned with a
secondary curvature of R = 42 mm, being the counterparts in the two-disc tests. Addi-
tionally, for reference measurements, planar specimens were coated on their face side. All
specimens were hardened and tempered to provide a hardness of 62 ± 1 HRC. The lateral
surface of the discs was fine-polished to a roughness Ra < 0.03 µm (Bestenlehrer GmbH,
Herzogenaurach, Germany). Prior to charging the specimens, they were ultrasonically
cleaned in acetone and in isopropyl alcohol for 10 min each and blown dry with nitrogen.

The coatings were deposited utilizing an industrial-scale PVD coating unit (TT 300 K4,
H–O–T Härte- und Oberflächentechnik GmbH & Co. KG, Nuremberg, Germany). The
process used in this study refers to PVD and reactive PVD. Preceding the deposition process,
the coating chamber was evacuated to reach an initial pressure of 2.5 × 10−3 Pa and heated
to 50 ◦C for 15 min. Furthermore, the surface of the specimens was plasma-etched and
cleaned by argon (Ar+)-ion plasma etching for 15 min, working with an argon (Ar purity
99.999%) gas flow of 500 sccm and a bipolar pulsed bias voltage of −500 V (pulse frequency
40 kHz, reverse recovery time 5 µs). Subsequently, a sputtering process was carried out
for 3 min with closed shutters to remove impurities and the thin oxide layer from the
hot-pressed MoS2 powder targets (purity of 99.5%). The targets were positioned opposite
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to each other in the coating chamber and had a dimension of 260 × 163 mm (Sindlhauser
GmbH, Kempten, Germany).

For this study, two coatings based on MoS2 were fabricated by (reactive) PVD through
unbalanced magnetron (UBM) sputtering in argon atmosphere. The threefold substrate
rotation (rotational speed of 6 rpm) ensured that all specimens were coated homogeneously
on all sides. The pure MoS2 coating was fabricated with a previously thin reactive sputtered
adhesive layer. In this case, the adhesion layer was applied by reactive sputtering for 240 s
with 20 sccm nitrogen and 240 s with 14 sccm, and, afterwards, the MoS2 layer was
deposited by non-reactive UBM sputtering. For chemically modifying the pure MoS2
coating, nitrogen (N2 purity 99.999%) was introduced at 15 sccm throughout the process to
ensure that the modification was homogeneously distributed over the entire growth time
of the coating. No adhesive layer was applied for this coating. Both coatings were each
deposited on four test specimens and compared in two different test settings, respectively.
The relevant deposition parameters are listed in Table 1.

Table 1. Relevant deposition parameters for the pure and the nitrogen-modified MoS2 coating.

Deposition Parameters MoS2 MoS2:N

Adhesion layer duration in s 480 -
Functional layer duration in s 3600 4200
Sputtering power in kW 2.0
Bias voltage in V –100
Argon gas flow in sccm 120
Nitrogen gas flow in sccm – 15
Temperature (chamber) in ◦C 50

2.2. Coating Characterization

The characterization of the as-deposited coatings is of major interest. Thickness and
surface topography are to be documented as references. Coating thickness was measured
on the flat specimens by laser scanning microscopy (LSM, VK-X200, Keyence Corp., Osaka,
Japan) using the incremental step method. For this purpose, a small area of the substrate
surface was masked with Kapton® tape prior to deposition process to create a step jump
between the substrate and the coating, from which the coating thickness was averaged by
three measurements. Roughness parameters and surface topography were also analyzed
optically by LSM.

In order to investigate the differences in the mechanical properties of the coatings, the
indentation hardness HIT and the indentation modulus EIT were determined on the discs
for the pristine coatings via nanoindentation (Picodentor HM500 and WinHCU, Helmut
Fischer GmbH, Sindelfingen, Germany) according to Oliver and Pharr [48,49]. A Vickers
indenter was used for the measurement with a maximum indentation force of 1.0 mN.
The measurements were performed in the enhanced stiffness procedure (ESP) mode, with
incremental loading and unloading processes. Using this method, the mechanical properties
(HIT, EIT) can be calculated at any point on the measurement curve in relation to force and
depth. Here, the evaluation was carried out at 5% ± 1% of the respective coating thickness
in order to minimize the substrate influence and to evaluate below 10% of the coating
thickness according to Bückle’s rule [50]. Eight indentations were made for each of the
four measurements per disc and the arithmetic mean was determined for the indentation
hardness HIT and the indentation modulus EIT.

Scanning electron microscopy (SEM) was conducted to identify the chemical compo-
sition and, thus, the S/Mo-ratio of the coatings via energy dispersive X-ray spectroscopy
(EDS) mappings and to verify the formation of a transfer layer on the counterpart af-
ter the tribological tests. Therefore, a FEI Helios Nanolab 600i (ThermoFisher Scientific,
Waltham, MA, USA) equipped with an Xmax50 detector (Oxford Instruments, Abingdon,
UK) was used.
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2.3. Tribological Testing

Tribological testing was executed on a two-disc tribometer (2DT, Optimol Instruments
Prüftechnik GmbH, Munich, Germany) under vacuum conditions (pressure 0.2 Pa) and
at room temperature (RT) with a constant slide-to-roll ratio (SRR); load was varied in two
steps. In this study, the coated cylindrical discs were pressed against uncoated crowned
discs (Figure 1) to simulate the contact conditions similar to rolling bearings.
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Figure 1. Schematic illustration of the 2DT set-up and geometry of the specimens.

The speeds of the discs were chosen to achieve a differential circumferential speed ∆v
of 0.1 ms−1 and an SRR of 10.5%. Two series of tests were carried out with normal loads of
265 N and 675 N, respectively, corresponding to initial Hertzian pressures at the contact
center of approximately 1.1 GPa and 1.6 GPa. The relevant parameters of the tribological
tests are summarized in Table 2.

Table 2. Load cases for the tribological testing using the 2DT.

Load Case 1 2

FN in N 265 675
pmax in GPa 1.1 1.6

n1 in rpm 423
n2 in rpm 381

∆v in ms−1 0.1
Cycles ntotal 1000

T in ◦C RT
Repetitions n 2

SRR in % 10.5

The rotational speed of the discs and the load were chosen to be comparable as much
as possible to previous studies from Seynstahl et al. [22], which were executed on a ball-
on-disc tribometer. That means load case 1 aimed to mimic the sliding contact from the
ball-on-disc tests by setting the difference in rotational velocities of the two discs to 0.1 ms−1,
and to adjust the load, resulting in the same maximum Hertzian pressure of 1.1 GPa at the
contact center. To evaluate the influence of a higher applied normal force on the tribological
behavior, load case 2 with a maximum pressure of 1.6 GPa was employed. By measuring
the friction force (data acquisition rate of 50 Hz) in the two-disc tests, the coefficients of
friction (COFs) over the running time or revolutions could be determined directly. The
revolutions are referred to as cycles hereinafter, following [22]. Since tribological run-in
processes and initial compaction of the coating are of primary interest, the tests were limited
to 1000 cycles. In addition, the specimens were inspected visually post mortem and ex situ
to determine any sign of wear, and the compaction of the coating by comparing initial and
residual coating thickness in the wear track and possible transfer layer formation. In order
to identify possible compaction of the coatings after wear testing, the indentation hardness
HIT and the indentation modulus EIT were determined accordingly to 2.2 inside the wear
track; see Figure 2.
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Figure 2. Evaluation of the pristine surface and the wear track on the coated discs using LSM and
nanoindentation in the designated areas: (a) pristine coating; (b) transition region with compaction
of the coating; and (c) worn coating.

As illustrated in Figure 2, the average profile of 50 cross-section measurements was
obtained at four points on each specimen, offset by 90◦ to each other. From the resulting
surface profiles, the wear track width and depth were measured, and the wear track area
with the arithmetic mean values were calculated. Based on the mean wear area and the
circumference, the wear coefficient (wwear) was calculated by corresponding the wear
volume (WV) to normal force (FN) and rolling distance (s), according to Archard [51].

wwear =
WV

FN · s
(1)

3. Results and Discussion
3.1. As-Deposited Coating Characterization

The as-deposited coating properties had to be determined first in order to evaluate the
changes caused to the coatings due to tribological loading. The results of the LSM measure-
ments and the nanoindentation tests are listed in Table 3. Both coatings showed smooth
surfaces with a similar roughness value (Ra), indicating that the applied modification with
nitrogen caused no significant effect on the roughness. Apart from that, the roughness
values are within the known range for sputter-deposited MoS2 coatings produced under
similar conditions [6,52].

Table 3. As-deposited coating properties measured by LSM, EDS, and nanoindentation.

Coating Properties MoS2 MoS2:N

Roughness Ra in nm 45 ± 7 46 ± 7
Coating thickness in µm 4.0 ± 0.2 2.7 ± 0.1

Indentation modulus EIT in GPa 7.44 ± 1.29 17.29 ± 1.40
Indentation hardness HIT in GPa 0.07 ± 0.02 0.56 ± 0.06

O2 content in at % 3.34 ± 0.85 4.87 ± 1.21
S content in at % 60.57 ± 0.67 55.42 ± 2.19

Mo content in at % 33.13 ± 0.45 30.09 ± 1.48
S/Mo-ratio 1.83 ± 0.01 1.84 ± 0.03

Measuring the coating thickness, the difference between the pure and the nitrogen-
modified MoS2 coating was obvious, and it was noticeable that the modification cor-
responds to a 32.5% reduced coating thickness for an almost identical deposition time.
On the one hand, it is known from previous work [21,22] that pure MoS2 coatings de-
posited by PVD under threefold substrate rotation tend to a certain degree of porosity;
therefore, its presence was assumed here as well. On the other hand, the lower coating
thickness of MoS2:N indicated a densification of the coating with fewer pores. For instance,
Fu et al. [38] and Hudec et al. [37] demonstrated via scanning electron microscopy and
transmission electron microscopy the reduction of pores and, thus, a densification of the
MoS2-based coating by adding nitrogen. Another possible explanation was provided by
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Hebbar Kannur et al. [40]. In their study, the nitrogen modification resulted in a lower
deposition rate due to a mixed nitrogen–argon plasma during the deposition process, thus
possibly reducing S and Mo sputtering yields. In our study, the indentation hardness
(HIT) and indentation modulus (EIT) of pure MoS2 and MoS2:N differed significantly for
the as-deposited state. Hence, adding nitrogen during the deposition process caused a
remarkable upsurge of 700% in HIT and 132% in EIT compared to the pure MoS2 coating
(see Table 3). In turn, these observations indicated the previously suggested densification
of the MoS2:N coating due to nitrogen modification. An enhancement of the mechanical
properties by adding nitrogen with similar trends was reported in [37–41].

The chemical composition, measured via EDS, of the coatings showed a sulfur-deficient
character and, therefore, a sub-stoichiometric S/Mo-ratio of approximately 1.8. It is known
from the literature that resputtering effects can cause a sulfur deficit in MoS2 coatings
produced by PVD processes [53,54]. In addition, the coatings contained 3–4 at % oxygen,
which is attributable to the oxidation of the coatings after the tribological tests during
optical characterization in the LSM under atmosphere. Therefore, it was expected that the
measured oxygen content did not have any influence on the tribological tests.

3.2. Frictional Behavior

Two-disc tests (see Section 2.3) were carried out for a subsequent evaluation of the
frictional behavior. The COF curves over cycles for the two performed runs (V1 and V2) of
each coating are depicted in Figure 3. While a distinct running-in behavior was observed
in all tests during the first 200 cycles, the overall COF is visibly higher for MoS2 (Figure 3a)
compared to MoS2:N (Figure 3b).
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Figure 3. COF over the complete testing time (1000 cycles): (a) MoS2 and (b) MoS2:N, for two load
cases (solid line 1.1 GPa, and dashed line 1.6 GPa). V1 and V2 represent the two test runs.

The results for the COF are summarized in Table 4. In order to provide comparable
values independent of the running-in behavior for each coating, the arithmetic mean over
the last 500 cycles—assuming a steady state in the frictional behavior—was calculated. The
results revealed that the COF of MoS2:N decreased by approximately 17% compared to
pure MoS2 for a Hertzian pressure of 1.1 GPa, and even 20% for 1.6 GPa, respectively. For
both MoS2-based coatings, the COF declined slightly with increasing loading. Comparable
behavior was observed for the sliding contact in ball-on-disc tests [16,37,39]. It is notewor-
thy that the steady-state COF for the sliding contact was usually lower than 0.05, so our
determined values for the rolling contact were rather high.

Table 4. COF as arithmetic mean over the last 500 cycles.

Frictional Behavior MoS2 MoS2:N

1.1 GPa 1.6 GPa 1.1 GPa 1.6 GPa

Mean COF f 500–1000 0.090 ± 0.007 0.084 ± 0.003 0.075 ± 0.007 0.068 ± 0.003
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3.3. Coating Compaction

The tribomechanical response of the coatings, represented by EIT and HIT, was studied
by comparing these parameters before and after tribological loading in the two-disc tests.
Figure 4 depicts the results of the measurements for the as-deposited condition and inside
the wear track for both coatings. With regard to the results from the wear tracks, eight
indentations were considered for evaluation. For the as-deposited MoS2 coating, the EIT
and HIT values were comparable to similar coatings, as previously published [21,22],
and, therefore, well in line with expected mechanical properties. These coatings are
representative of porous coatings and, in terms of mechanical properties in the as-deposited
state, not comparable to dense coatings, deposited under laboratory conditions, which are
predominantly reported in the literature [55,56].
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As well, the as-deposited MoS2:N exhibited increased EIT (+132%) and HIT (+700%)
values compared to the pure MoS2 coating, presumably due to its nitrogen-induced in-
creased density, similar to the relative change in hardness observed in other studies [38,39].
After the tribological testing, both coatings showed strongly increased EIT and HIT values,
which scaled accordingly to the respective load case. For load case 1 (1.1 GPa), pure MoS2
showed an increase of 48% in EIT and 1158% in HIT. For load case 2 (1.6 GPa), an increase of
70% was measured for EIT and 1337% for HIT. MoS2:N showed, for HIT, an increase of 96%
in load case 1 and 118% in load case 2. The only exception to this tendency occurred for
the EIT value of the MoS2:N coating in load case 1, where a decrease of 17% was measured,
while, for load case 2, an increase (+25%) was determined, as expected. Fluctuations in
the values of the indentation modulus (EIT) may be due to small inhomogeneities in the
compacted tribofilm, because the HIT values for the same specimens followed the general
trend of increased mechanical properties. Therefore, the improvement of elasticity and
hardness for both coatings after tribological testing was attributed to a compaction of the
respective coating. Thus, the increased indentation hardness of the MoS2:N coating could
be correlated with the reduction of the steady-state COF (see Figure 3) in comparison to the
pure MoS2 coating. Similar correlations between hardness and COF were discussed in [57].
Notably, HIT reached a similar level, regardless of the initial state (as-deposited), and was
only slightly dependent on the load. A possible explanation suggested that compaction
resulted in an increased density for both coatings according to the applied load. While
the as-deposited MoS2 possessed a more porous, less dense structure [21,22], a higher
relative compaction can be achieved compared to the less porous, denser nitrogen-modified
MoS2:N, exhibiting a lower compaction and, therefore, a reduced relative increase of EIT
and HIT. The remaining difference in elasticity and hardness might be attributable to the
modification with nitrogen.

3.4. Wear Behavior

The resulting wear was acquired and quantified according to Section 2.3. Represen-
tative LSM images of specimen couples (coated basebody and uncoated counterpart) are
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provided in Figure 5 for each coating–load combination. Similar wear tracks were observed
for each coating and its counterpart for both load cases. The width and appearance of the
pronounced wear track were described qualitatively in Section 2.3, except that MoS2:N
appeared to have residual coating on the slopes of the wear track.
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coatings after testing in two load cases at 1.1 GPa and 1.6 GPa. Representative images acquired by
LSM measurements.

The visible darker residual spots on the counterparts (Figure 5a,c,e,g) indicate a
partial coating transfer, as shown in previous studies in which an investigation of coating
transfer with energy dispersive spectroscopy or transmission electron microscopy was
observed [6,41,58]. The matching pattern of the basebody and counterpart for each coating
and load case, therefore, represent that coating transfer occurred (see Figures 6 and 7) and
will henceforth be referred to as such.

To obtain a more detailed analysis of the aforementioned coating transfer on the coun-
terpart after the tribological tests, EDS measurements were carried out on the counterparts’
surface. Mapping results over the width of the wear tracks are shown for MoS2 in Figure 6
and for MoS2:N in Figure 7. In the case of the MoS2 coating, the mappings revealed almost
no coating transfer for load case 1 (1.1 GPa), as evidenced by a high concentration of
Fe in the element mapping due to a large number of purple dots (Figure 6b), which is
indicative of the steel substrate. Mo and S showed no distinct measurement signals except
for one MoS2 wear debris (Figure 6c,d). At higher pressure in load case 2, however, more
coating transfer was observed, especially in the center of the wear track and the slope areas
(Figure 6g,h).

As already indicated by the images of the optical analysis in the LSM, even more
coating was transferred to the counterpart in the case of the nitrogen-modified coatings
(MoS2:N). Figure 7b showed some faint purple areas for load case 1 for the Fe concentration
in the element mapping, which, in turn, matched the mappings of Mo (Figure 7c) and S
(Figure 7d). Thus, this is clear evidence of partial transfer coating formation. In load case 2
with higher pressure, a pronounced coating transfer was observed, extending almost over
the entire width of the wear track, but varying in its concentration (see Figure 7g,h). For both
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load cases and coatings, no indication of oxygen was visible in the measurements. In terms
of the coating transfer, a certain amount of partial coating transfer occurred, depending on
the load case and coating, which, in turn, contributes to the self-lubricating mechanism.

Lubricants 2023, 11, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 6. SEM images and EDS element mappings for the MoS2 counterpart of the load cases 1.1 
GPa, (a–d) and 1.6 GPa, (e–h). 

 
Figure 7. SEM images and EDS element mappings for the MoS2:N counterpart of the load cases 1.1 
GPa, (a–d) and 1.6 GPa, (e–h). 

To obtain a more detailed analysis of the aforementioned coating transfer on the 
counterpart after the tribological tests, EDS measurements were carried out on the coun-
terparts’ surface. Mapping results over the width of the wear tracks are shown for MoS2 
in Figure 6 and for MoS2:N in Figure 7. In the case of the MoS2 coating, the mappings 
revealed almost no coating transfer for load case 1 (1.1 GPa), as evidenced by a high con-
centration of Fe in the element mapping due to a large number of purple dots (Figure 6b), 
which is indicative of the steel substrate. Mo and S showed no distinct measurement sig-
nals except for one MoS2 wear debris (Figure 6c,d). At higher pressure in load case 2, how-
ever, more coating transfer was observed, especially in the center of the wear track and 
the slope areas (Figure 6g,h). 

As already indicated by the images of the optical analysis in the LSM, even more 
coating was transferred to the counterpart in the case of the nitrogen-modified coatings 

Figure 6. SEM images and EDS element mappings for the MoS2 counterpart of the load cases
1.1 GPa, (a–d) and 1.6 GPa, (e–h).

Lubricants 2023, 11, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 6. SEM images and EDS element mappings for the MoS2 counterpart of the load cases 1.1 
GPa, (a–d) and 1.6 GPa, (e–h). 

 
Figure 7. SEM images and EDS element mappings for the MoS2:N counterpart of the load cases 1.1 
GPa, (a–d) and 1.6 GPa, (e–h). 

To obtain a more detailed analysis of the aforementioned coating transfer on the 
counterpart after the tribological tests, EDS measurements were carried out on the coun-
terparts’ surface. Mapping results over the width of the wear tracks are shown for MoS2 
in Figure 6 and for MoS2:N in Figure 7. In the case of the MoS2 coating, the mappings 
revealed almost no coating transfer for load case 1 (1.1 GPa), as evidenced by a high con-
centration of Fe in the element mapping due to a large number of purple dots (Figure 6b), 
which is indicative of the steel substrate. Mo and S showed no distinct measurement sig-
nals except for one MoS2 wear debris (Figure 6c,d). At higher pressure in load case 2, how-
ever, more coating transfer was observed, especially in the center of the wear track and 
the slope areas (Figure 6g,h). 

As already indicated by the images of the optical analysis in the LSM, even more 
coating was transferred to the counterpart in the case of the nitrogen-modified coatings 

Figure 7. SEM images and EDS element mappings for the MoS2:N counterpart of the load cases
1.1 GPa, (a–d) and 1.6 GPa, (e–h).

Besides the optical matching of the wear tracks, the measured width of the resulting
profile and depth of the wear track were also analyzed. The calculated arithmetic mean
values are listed in Table 5.

With higher loads, the wear coefficient wwear was similar for both coatings with a
value of about 4 × 10−6 mm3N−1m−1. A negligible change in depth hwear and a clear
increase in width bwear was determined for both coatings after applying load case 2. As a
result, the wear area Awear depended mainly on the change of the wear track width. For
MoS2, only a slight increase in width bwear was measured after applying 1.6 GPa and the
resulting wear area was only increased by 7%. This divergence can be considered to be
within the accumulated fluctuations for materials, coatings, and testing-rig, and, in fact,
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would suggest that the tribological behavior of MoS2 can be assumed to be the same for
both load cases.

Table 5. Mean values of the wear track on the coated specimens and calculated wear coefficient
according to Archard [51].

Wear Behavior MoS2 MoS2:N

1.1 GPa 1.6 GPa 1.1 GPa 1.6 GPa

Mean wear track depth
hwear in µm

3.19
±0.27

3.02
±0.40

2.65
±0.14

2.62
±0.14

Mean wear track width
bwear in mm

1.54
±0.06

1.79
±0.06

1.34
±0.02

1.88
±0.04

Mean wear track area
Awear in mm2

2.54
±0.25

2.73
±0.44

2.16
±0.41

3.24
±0.29

Mean wear coefficient
wwear in 10−6 × mm3N−1m−1

9.57
±0.96

4.05
±0.65

8.14
±1.56

4.79
±0.42

As depicted in Figure 5a–d, for all MoS2 tests, primarily the middle of the wear
track showed (little) signs of coating transfer, indicated by the matching pattern on the
counterpart. The same behavior was observed for MoS2:N (Figure 5e–h), with the difference
of the wear track slopes of the basebody, displaying the accumulated coating alongside the
movement direction (Figure 5f,h). A more detailed illustration of the transition from the
middle of the wear track to the slope of the wear track is depicted in Figure 8. From these
images, it was demonstrated that a steady transition for MoS2 could be found from the wear
track to the slope and to the pristine MoS2. The middle of the wear track was identified
as compacted MoS2 by means of wear track depth hwear—which is lower than the initial
coating thickness—and the measured indentation hardness HIT, which were similar to
values measured for the MoS2 coating, which was verified to be compacted [21,22]. Insofar
as the coatings were already prepared dense in the as-deposited state, such phenomena
were not monitored.

In addition, the pattern of the residual coating suggested that, in case of MoS2, the
homogenous coating remained in the middle of the wear track, while the slopes of the
wear track appeared to be mostly composed of the compacted coating originating from the
contact area. In contrast, for MoS2:N, the apparent residual coating on the slope of the wear
track and the mean wear track depth hwear, matching the coating thickness, suggested a
different wear mechanism during testing.

Based on the optical analysis of the wear tracks, it was assumed that the difference in
the wear mechanisms, schematically depicted in Figure 9, was dependent on the coating,
specifically the thickness. While the initial contact seemed to be independent of the load case
for each coating, the resulting wear tracks were different. Thus, during testing (Figure 9b),
it was assumed, for both coatings, that wear and subsequent coating transfer, the typical
lubrication mechanism for dry lubrication [59,60], occurred. The provided coating thickness
was sufficient; compaction could occur in this area, in addition to coating transfer. The
occurring wear debris, which was neither transferred nor compacted, was expected to
be pressed along the slopes of the wear track (Figure 9c). As the transferred coating of
pure MoS2 was found just in the middle of the wear track, it was considered that dry
lubrication occurred mainly in the middle of the wear track on the compacted coating. In
comparison, for MoS2:N, the residual coating was found on both the basebody and its
counterpart (see Figure 7) in the middle and the slopes of the wear track. While it seemed
apparent that the worn coating in the middle was mainly transferred to the counterpart
(evidence in Figure 7), it was also assumed that the accumulated coating on the slopes of
the wear track served as the ‘rails’ for the counterpart. This thesis was supported by the
matching residual coating visible on the specimens and the slightly lower COF, despite
the worn coating. In conclusion, it was found that, on the one hand, under sliding–rolling
conditions, a compaction of the MoS2 coating occurred and provided a functional surface
for dry lubrication, while, on the other hand, this compaction was dependent on the coating
thickness and could lead to a different wear mechanism (see Figure 9).
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4. Conclusions

This work presented the behavior of nitrogen-modified PVD–MoS2 coatings in terms
of tribological behavior under rolling–sliding conditions in a vacuum, tested on a 2DT.

Regarding the mechanical properties of the as-deposited coatings, an increase in the
indentation modulus of 132% and indentation hardness of 700% due to adding nitrogen
could be noticed, which was attributed to an assumed densification of the microstructure,
as indicated by a relative comparison of coating thickness and as reported in literature
before [37,38]. Moreover, the nitrogen modification resulted in a 17% reduction of the COF
in the two-disc tests. The COF was reduced with increasing pressure for both coating
variants (MoS2 6.6% and MoS2:N 9.3%). The tribologically induced compaction of the
initially porous coatings was verified after testing, on the one hand, by an increase in the
indentation hardness of the formed tribofilm in the wear tracks (for MoS2 1158% and 1337%
for load case 1 and 2, respectively, and for MoS2:N 96% and 118%) and, on the other hand,
on profiling in the cross-section of the wear tracks.

Based on the results, two wear mechanisms can be concluded: the pure MoS2 coatings
were mainly compacted in the center of the contact area and the dry-lubrication effect was
maintained without noticeable transfer to the counterpart. Under tribological loading, the
MoS2:N coating was pressed to the slope of the wear track and compacted there, with
the additional transfer of the tribofilm to the counterpart occurring predominantly in the
contact center but, also, on the slopes of the wear track. Both together caused a successful
lubrication effect. However, these wear mechanisms were not load-dependent, but coating-
dependent. This was also shown in the evaluation of the wear phenomena on the coated
basebody, because the wear depth was almost identical, although the wear track width
became wider due to higher loads and, thus, resulted in a larger wear area.
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