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Abstract: This article explores the influence of polymers on the boundary layer flow, heat transfer,
and mass transfer control of non-Newtonian-based nanofluids flowing past a stretching surface. The
mathematical model incorporates the Oldroyd-B model to analyze the effects of polymers, while
the Powell–Eyring and Reiner–Philippoff viscosity models are employed to study the behavior of
non-Newtonian fluids. The dispersion model is adopted to account for nanofluid characteristics.
Appropriate transformations yield governing equations with similar forms, which are solved numeri-
cally to investigate the impact of polymer inclusion on skin friction, Nusselt number, and Sherwood
number. The study’s findings reveal that the addition of polymers to the non-Newtonian-based
nanofluids leads to a reduction in heat and mass transport while enhancing skin drag. Detailed
analysis of these effects sheds light on the underlying physical mechanisms.

Keywords: polymers; non-Newtonian; nanofluid; Reiner–Philippoff; Powell–Eyring; heat and
mass transfer

1. Introduction

In recent years, the study of rheology, or the science of the deformation and flow
of matter, has become increasingly important in the field of polymers. As polymers are
widely used in various scientific and technological fields, it is essential to understand
their physical behavior and properties. At the same time, non-Newtonian fluids have also
gained significant attention due to their occurrence in natural and industrial processes. The
introduction of small amounts of polymers to non-Newtonian fluids can bring about a
significant rheological change, leading to a wide range of remarkable phenomena. Nanoflu-
ids have shown immense potential in improving the heat transfer performance of fluids.
However, the addition of nanoparticles often leads to an increase in viscosity, making the
flow more challenging to control [1]. To address this issue, the use of polymers has been
proposed as a means of reducing viscosity and controlling heat transfer [2]. This innovation
has opened new avenues for research and development, leading to novel applications in
the fields of thermal management, and energy storage.

In the realm of polymer fluid dynamics, two distinct approaches have been developed
to account for the effects of polymer microstructure and concentration in order to describe
the impact of viscoelasticity. The first approach is the molecular approach, which includes
models such as the elastic dumbbell, rigid dumbbell, and chain. The second approach is
the continuum approach, which includes models such as the convected Maxwell, corota-
tional Maxwell, Oldroyd-8 constant, and many others [3]. Recent studies have explored
the impact of polymers on fluid dynamics using both approaches. Celani et al. [4] used
the Hookean dumbbell model to investigate the dynamics of polymers in a random flow,
while Al-Yaari et al. [5] employed the same model to examine the impact of polymers as
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drag-reducing agents on horizontal oil–water flow. Another recent study focused on the
turbulent Rayleigh–Benard (RB) convection of water in a cylindrical cell, where the addition
of polymers resulted in reduced heat transport. This effect is believed to be due to the inter-
play between polymers and the flow of the boundary layer in turbulent RB convection [6].
Benzi et al. [7] utilized the Oldroyd-B model, a molecular approach, to investigate the im-
pact of polymers on the heat transport of a boundary layer flow. Athar et al. [8] explored the
effects of polymers on the flow of a Newtonian fluid over a heated and permeable stretching
surface, utilizing the continuum approach. Marenduzzo et al. [9] used the same approach
to study polymers with finite thickness, while Doufas et al. [10] investigated the effects
of polymers in homogeneous flow fields under isothermal conditions. Zhang et al. [11]
examined the use of superhydrophobic surfaces and their potential applications in drag
and heat transfer, and Ahmad et al. [12] employed the FENE-P model to investigate the
impact of magnetic effects on heat transfer and drag reduction.

Two distinct models have been proposed to study the characteristics of nanofluids.
The first model, the two-phase model, was proposed by Tiwari and Das [13] and is based
on the homogeneous principle. The second model, the dispersion model, was proposed by
Buongiorno [14] and is based on the slip mechanism between nanoparticles and conducting
fluid. This latter model takes into account the implications of Brownian and thermophoresis
mechanisms, in addition to other slip mechanisms. Various studies have been conducted
based on these models, with different features aimed at examining various characteristics of
nanofluid flows (see, for example, [15–21] and the references cited therein). The nonlinear
motions of axisymmetric ternary hybrid nanofluids in thermally radiated expanding or
contracting permeable Darcy Walls with various forms and densities were studied by
Raju et al. [22]. Kumar et al. [23] investigated the effects of hybrid nanoparticles and
transpiration on linear and quadratic convection on 3D flow. Recently, Ahmed et. al. [24]
studied the influence of polymers on drag reduction and heat transfer enhancement of a
nanofluid past a uniformly heated permeable vertically stretching surface with a prime
focus on analyzing the possible effects of polymer inclusion in the nanofluid on drag coeffi-
cient, Nusselt number, and Sherwood number. Reductions in the drag coefficient, Nusselt
number, and Sherwood number are reported in this study because of polymer additives.

In this article, we analyze the flow of polymeric fluids in the presence of nanoparticles
using the molecular approach. While there has been some research on these topics, no
theoretical study has yet explored the interaction of polymeric fluids with non-Newtonian-
based nanofluids. Therefore, we aim to contribute to this field by investigating the possible
effects of polymer additives on the drag, heat, and mass transfer of the boundary layer
flow of non-Newtonian-based nanofluids over a stretching sheet. To achieve our research
objectives, we will use the Reiner–Philippoff and Powell–Eyring viscosity models, which
are commonly employed in the study of non-Newtonian fluids. Our focus will be on
understanding how the presence of polymers can affect the behavior of non-Newtonian-
based nanofluids. Specifically, we aim to analyze how the addition of polymers can alter
the drag force, as well as the heat and mass transfer characteristics of the boundary layer
flow. Our study is primarily theoretical in nature and will be based on a careful analysis of
the relevant mathematical models. We anticipate that our research will help to shed light
on the fascinating ways in which polymers and nanoparticles interact in fluids, and will
have important implications for a range of industrial applications. Ultimately, we hope that
our work will serve as a springboard for future studies in this exciting area of research.

2. Mathematical Model

The aim of this study is to investigate the effects of polymers on the boundary layer
flow and heat transport of a non-Newtonian-based nanofluid past a stretching sheet. The
presence of polymers produces an extra stress term in the momentum equation of the flow.
This stress tensor due to the presence of polymers, denoted by =ij, relies upon the amount
of stretching of the polymers and is a characteristic of the dimensionless conformation
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tensor βij of the polymers, which is derived from the ensemble average of the product of
the polymer end-to-end distance vector. Using the Oldroyd-B model of polymers gives [7]:

=ij =
νp

κ

(
βij − δij

)
, (1)

where κ is the largest relaxation time for polymers, δij is the Kronecker delta, and νp is the
kinematic viscosity due to the contribution of polymers in the solution.

We consider a horizontal surface that stretches with nonlinear velocity in the x-
direction in a non-Newtonian-based nanofluid. The temperature T and the nanoparticle
fraction N assume the constant values Tw and Nw at the surface (See Figure 1). Assuming
that the nanoparticle concentration is dilute, the boundary layer equations for the con-
servation of mass, momentum, energy, and nanoparticle concentration in the presence of
polymers are written as [7]:

∂u
∂x

+
∂v
∂y

= 0, (2)

u
∂u
∂x

+ v
∂u
∂y

=
1
ρ f

∂τxy

∂y
+

∂

∂y

(νp

κ
βxy

)
, (3)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 + ε

(
DB

∂T
∂y

∂N
∂y

+
DT
T∞

(
∂T
∂y

)2
)

, (4)

u
∂N
∂x

+ v
∂N
∂y

= DB
∂2N
∂y2 +

DT
T∞

∂2T
∂y2 . (5)
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Figure 1. Geometry of the problem. Figure 1. Geometry of the problem.

In Equations (2)–(5), u(x, y) and v(x, y) are the velocity components, ρ f is the density
of the fluid, α is the thermal diffusivity, ε is the volumetric volume expansion coefficient of
the nanofluid, and DT and DB are the thermophoretic diffusion and Brownian diffusion
coefficient, respectively. Also, τxy is the shear stress that is correlated to the rate of strain
nonlinearly in unique forms for different non-Newtonian fluids.

The appropriate boundary conditions of the problem are as follows [25]:

u(x, y) = Uw, v(x, y) = Vw, T(x, y) = Tw, N(x, y) = Nw at y = 0,
u(x, y)→ 0, T → T∞, N → N∞ as y→ ∞.

(6)
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Larson et al. [26] found out that the friction coefficient of the fluid depends on the
shape of the polymer. The value of this coefficient is small when the polymers are in the
equilibrium state and large when the polymers are stretched. Hence the relaxation time
increases with the stretching of the polymers. κ is a linear function of the end-to-end
distance vector of polymers, β ≡ (βxx + βyy)

1/2.

κ = κ0

(
1 + aβ

1 + a

)
, (7)

where κ0 is the relaxation time of the polymers in the equilibrium shape and a is a positive
parameter. In the equilibrium state, β = 1 and κ is equal to κ0 and when there is stretching,
β > 1 and κ > κ0.

Understanding the behavior of a polymeric chain affected by a fluid flow is the first
step in the study of polymer transport. When polymers are placed in a flow, they deform
and stretch. Two effects determine the deformation of polymers; their stretching due to
the velocity gradients and the elastic relaxation towards the equilibrium shape [4]. In
the presence of polymers, even when they are not stretched, the viscosity of the solution
increases. Now, the kinematic viscosity of the polymer solution without the stretching can
be written as, ν = ν + νp. To proceed further, we transform our equations into ordinary
differential equations using appropriate similarity transformations. For the stretching
velocity of the form; U(x) = U0x

1
3 , we have [25]:

ψ =
√

U(x)xν f (η), τ = ρ
√

U3
0 νg(η),

θ = T−T∞
Tw−T∞

, φ = N−N∞
Nw−N∞

,

and the independent variable

η =

√
U(x)

νx
y,

Equation (3) has unique forms for different non-Newtonian fluids models. Here, we
will be using two models, Reiner–Philippoff and Powell–Eyring, to study the effects of
polymers on the flow and heat transfer of the nanofluid and concentration of nanoparticles
by using a non-Newtonian fluid as a base fluid.

2.1. Reiner–Philippoff Fluid

The stress deformation of a Reiner–Philippoff fluid is expressed as [25]:

∂u
∂y

=
τxy

µ∞ + µ0−µ∞

1+
(

τxy
τs

)2

, (8)

where τs is the reference shear stress, µ0 and µ∞ is the zero and upper Newtonian limiting
viscosity, respectively. The Reiner–Philippoff fluid model is one of the few models that
exhibits all the pseudoplastic, Newtonian, and dilatant behaviors.

The transformed Equations (3)–(5) and (8) can be written as:

g′ +
γ

Wi
√

Re
∂

∂η

(
1 + a

1 + aβ
βxy

)
=

1
3

f ′2 − 2
3

f f ′′ , (9)

g = f ′′
λγ2

1 + (1− γ)g2

γ2
1 + g2

, (10)

θ′′ +
2
3

Pr f θ′ + Nbθ′φ′ + Ntθ
′2 = 0, (11)
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φ′′ +
2
3

Le f φ′ +
Nt

Nb
θ′′ = 0, (12)

where Wi is the Weissenberg number, which is the ratio of elastic forces to the viscous
forces, and Re is the Reynolds number, the ratio of inertial forces to the viscous forces. By
substituting x = L such that L is the plate’s total length, we have:

Wi ≡ τ0U0

L2/3 , Re ≡ U0L4/3

ν
, (13)

and γ ≡ νp
ν+νp

is a function of the concentration of the polymers and λ and γ1 are the
Reiner–Philippoff model parameters, Pr is the Prandtl number, Le is the Lewis number,
Nb is the Brownian motion parameter, and Nt is the thermophoretic diffusion parameter,
which are expressed as [25]:

γ1 =
τs

ρ
√

U3
0 ν

, λ =
µ0

µ∞
, Nb =

εDB∆N
α

, Pr =
ν

α
, Le =

ν

DB
, Nt =

τDT∆T
αT∞

The boundary conditions transform to:

f (0) = s, f ′(0) = 1, θ(0) = 1, φ(0) = 1,
f ′ → 0, θ → 0, s→ 0 as η → ∞.

(14)

For λ = 1− γ, the above problem reduces for the flow of Newtonian fluid and when
γ = 0, we get the flow of a Reiner–Philippoff fluid without polymers.

2.2. Powell–Eyring Fluid

For a Powell–Eyring fluid, we have the following stress-strain relationship [27]:

τxy = µ
∂u
∂y

+
1
ξ

sinh−1
(

1
C∗

∂u
∂y

)
, (15)

where µ is the dynamic viscosity, and ξ and C∗ are material constants. Considering the
second-order approximation of the above function [27]:

sinh−1
(

1
C∗

∂u
∂y

)
∼=

1
C∗

∂u
∂y
− 1

6

(
1

C∗
∂u
∂y

)3
, (16)

where
∣∣∣ 1

C∗
∂u
∂y

∣∣∣ << 1.
The momentum equation for a Powell–Eyring fluid in the presence of polymers

becomes,

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 +

1
ξC∗ρ f

∂2u
∂y2 −

1
2ξC∗3ρ f

(
∂u
∂y

)2 ∂2u
∂y2 +

∂

∂y

(νp

κ
βxy

)
. (17)

In the case of the Powell–Eyring model, we apply the same transformations as above,
and the transformed Equation (17) attains the form:

1
3

f ′2 − 2
3

f f ′′ = (1− γ) f ′′′ + K f ′′′ − KA f ′′′ f ′′ 2 +
γ

Wi
√

Re
∂

∂η

(
1 + a

1 + aβ
βxy

)
, (18)

where K and A are the fluid parameters and can be expressed as:

K =
1

ξC∗µ
, A =

U3
0

2νC∗2
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Equations (4) and (5) and the boundary conditions remain the same for the model.

2.3. Polymers End-to-End Distance Vector

To proceed further, we must provide the momentum equation with specific infor-
mation on βxy. Neglecting the thermal noise, we obtain the following equations for the
components of a dimensionless polymer’s end-to-end distance vector [7]:

dqx

dt
= − 1

2κ
(qx − q0x) + qx

∂u
∂x

+ qy
∂u
∂y

, (19)

dqy

dt
= − 1

2κ
(qy − q0y) + qx

∂v
∂x

+ qy
∂v
∂y

, (20)

where α is the angle of equilibrium orientation and q0x = cos α and q0y = sin α. We assume
that the polymers follow streamlines of the flow so that:

dη

dt
= u

∂η

∂x
+ v

∂η

∂y
. (21)

Now, Equations (19) and (20) take the form:

f
dqx

dη
=

3
4
(1 + a)(qx − q0x)

Wi(1 + aβ)
− 1

2
( f ′ − η f ′′ )qx −

3
2

√
Re f ′′ qy, (22)

f
dqy

dη
=

3
4
(1 + a)(qy − q0y)

Wi(1 + aβ)
− 1

6
√

Re
(2 f − η2 f ′′ )qx −

1
2
( f ′′ η − f ′)qy. (23)

The quantity βxy is the average of qxqy over the polymers in a small region. This
ensemble average is the same as an average over α, which is uniformly distributed in
[0, 2π], thus βxy =

〈
qxqy

〉
α
. It is observed that the equation of motion remains unchanged

on reflection and inversion, thus averaging α upon [0, 2π] is the same as averaging upon
[0, π/2]. If q̂x and q̂y are values of qx and qy at α = π/4, Equations (22) and (23) take
the form:

f
dq̂x

dη
=

3
4
(1 + a)(q̂x − 1/

√
2)

Wi(1 + aβ)
− 1

2
( f ′ − η f ′′ )q̂x −

3
2

Re f ′′ q̂y, (24)

f
dq̂y

dη
=

3
4
(1 + a)(q̂y − 1/

√
2)

Wi(1 + aβ)
− 1

6
√

Re
(2 f − η2 f ′′ )q̂x −

1
2
( f ′′ η − f ′)q̂y. (25)

And thus we have:

βxy ≈Wi
√

Re
(

1+aβ
1+a

)
f ′′ + (q̂x − 1/

√
2)(q̂y − 1/

√
2)

= Wi
√

Re 1+aβ
1+a f ′′ (1 + h),

(26)

where

h(η) ≡

(
q̂x(η)− 1/

√
2
)(

q̂y(η)− 1/
√

2
)

Wi
√

Re f ′′ (η)(1 + aβ(η))/(1 + a)
(27)

with β(η) =
√

q̂2
x(η) + q̂2

y(η). Moreover, we have the viscosity as

ν ≈ νp(1 + h),

and the polymeric solution’s total viscosity is:

νtot = ν + νp ≈ ν + νph(η).
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Substituting the expression of βxy from Equation (26) in (9) and (18), we have for the
Reiner–Philippoff model:

g′ =
1
3

f ′2 − 2
3

f f ′′ − γ
d

dη
( f ′′ (1 + h)), (28)

f ′′ = g

(
γ2

1 + g2

λγ2
1 + g2(1− γ)

)
, (29)

and for the Powell–Eyring model:

1
3

f ′2 − 2
3

f f ′′ = f ′′′ (1 + K− KA f ′′2) + γ
d

dη
( f ′′ h). (30)

Solving (24), (25), and (27)–(29), and then with (30) gives f (η) for the polymeric flow
for Reiner–Philippoff and Powell–Eyring fluids, respectively.

3. Solution Methodology

In this study, the problem is solved using a numerical method iteratively. To obtain
the solution to the problem without the presence of polymers, a nonlinear shooting method
with a subroutine of the Runge–Kutta scheme is used, and the results are then utilized to
solve Equations (24) and (25) for q̂x and q̂y. The expression for h(η) is obtained from (27),
and this is used to solve (28), (29), and then with (30), again using the shooting method.
The solution of f (η), the velocity profile for polymeric flow, attained from (28), (29), and
(30), is then used in (24) and (25) to obtain a modified h(η). The convergence of the iterative
scheme is depicted in Figure 2, which shows that convergence is achieved after just a few
iterations. Finally, by using the solution of the momentum equation, the temperature and
concentration profiles of the problem are obtained. To clarify the numerical method used
to solve the set of equations for the given model, Figure 3 is presented, which shows the
step-by-step approach.
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4. Results and Discussions

This section investigates how polymers affect the drag coefficient, Nusselt number,
and Sherwood number of non-Newtonian nanofluids. We present graphs for both the
Reiner–Philippoff and Powell–Eyring models.

4.1. Impact of Polymers on Drag Coefficient

The skin friction for non-Newtonian fluids is influenced by various factors, including
the type of fluid, its rheological properties, and the presence of polymers. Understanding
these factors is crucial for predicting and optimizing the flow behavior of non-Newtonian
fluids in various industrial applications. Skin friction is the shear stress exerted on the
surface by the flowing viscous fluid and it can be mathematically expressed as:

C f =
τw

ρU2
w

, (31)

where τw is shear stress at the surface. For a Reiner–Philippoff fluid, τw can be written
as [26]:

τw =

µ∞ +
µ0 − µ∞

1 +
(

τw
τs

)2

 ∂u
∂y

∣∣∣∣
y=0

, (32)

and for a Powell–Eyring fluid [27]:

τw = µ
∂u
∂y

+
1
β

(
1

C∗
∂u
∂y
− 1

6

(
1

C∗
∂u
∂y

)3
)∣∣∣∣∣

y=0

(33)
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Using Expressions (31) and (32) in (30), skin friction for a Reiner–Philippoff fluid can
be expressed as:

C f Re1/2 =

(1− γ) +
λ− 1 + γ

1 + (g(0))2

γ2
1

 f ′′ (0), (34)

and for a Powell–Eyring fluid, we have:

C f Re1/2 = (1− γ + K) f ′′ (0)− KA
3

( f ′′ (0))3. (35)

Figure 4 depicts the behavior of skin friction (S f ) of the Reiner–Philippoff-based
nanofluid in the presence of polymers. Skin friction is plotted against the non-Newtonian
fluid parameter, λ, for different values of the polymer concentration parameter. The value
γ = 0 corresponds to the flow without the presence of polymers. In the present scenario,
the Reiner–Phippoff model acts as dilatant for λ < 1− γ, pseudoplastic for λ > 1− γ,
and becomes Newtonian for λ = 1− γ. It is observed that skin friction for a dilatant
fluid is higher than for a viscous fluid and a viscous fluid bears more skin friction than
a pseudoplastic fluid. Also, one can note that skin friction increases with increasing γ.
This implies that the interaction between the polymer molecules and the sliding surface
produces higher resistance, which increases skin drag. Figure 5 investigates the skin friction
for a Powell–Eyring fluid in the presence of polymers. Skin friction is plotted against the
non-Newtonian fluid parameter, K, for different values of the polymer concentration
parameter. The same behavior is seen as in the case of a Reiner–Philippoff fluid. As we
increase the value of the fluid parameter, the skin friction decreases, and increasing the
concentration of the polymers increases the skin friction of the fluid flow.
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Figure 5. S f of a Powell–Eyring fluid as a function of the fluid parameter, K, for different values of γ

at fixed A = 0.3, Wi = 2.8, a = 0.01, Pr = 5.0, Re = 4900, Nb = Nt = 0.1, and Le = 5.0.

Figure 6 shows the influence of the presence of polymers on the percentage of drag
enhancement (%DE) of the non-Newtonian-based nanofluid. Drag enhancement is defined
as the difference between the skin friction with polymers and without polymers (when
γ = 0) present. It can be expressed as DE = S f − S f0, S f0 being the value without the
presence of polymers. In Figure 6, %DE is plotted against the polymer concentration
parameter, γ, for varying non-Newtonian parameter, λ, and Weissenberg number. The
Weissenberg number is a dimensionless number that compares the relaxation time to the
characteristic stretching time. It is observed that the greater the concentration of polymers,
the greater the resistance between the polymer molecules and the surface, which will
increase the rate of enhancement in the skin drag; conversely, this increment decreases
with increasing Reiner–Philippoff fluid parameter. Also, increasing Wi implies that the
relaxation time increases and the elastic force minimizes, allowing the velocity gradients
to stretch the polymers. The fall in %DE with increasing Weissenberg number shows that
increasing the relaxation time reduces the enhancement in the drag. The same effects on
drag enhancement of varying γ and Wi are observed for a Powell–Eyring fluid.
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Figure 6. Effects on the percentage of drag enhancement (%DE) due to the presence of polymers as a
function of γ for fixed γ1 = 1.0, a = 0.01, Pr = 5.0, Re = 4900, Nb = 0.1, Nt = 0.5, and Le = 5.0 for a
Reiner–Philippoff fluid.

4.2. Impact of Polymers on Nusselt Number

Another important quantity of interest is the Nusselt number (Nu) expressed as [26]:

Nu =
xqw

k(Tw − T∞)
(36)

where qw is the heat flux defined as:

qw = −k
∂T
∂y

∣∣∣∣
y=0

(37)

Using Equation (36) in (35), we get:

Nur =Re−1/2Nu = −θ′(0), (38)

which is known as the reduced Nusselt number.
In Figure 7, the behavior of the Nusselt number (Nur) of a Reiner–Philippoff-based

nanofluid in the presence of polymers is discussed. Nur is plotted against the thermophore-
sis parameter, Nt, for nanoparticles with different values of the polymer concentration
parameter. The zero value of γ corresponds to the flow without the presence of polymers.
It is observed that increasing the value of Nt reduces the Nur. This implies that as the
thermophoresis parameter increases, it will slow down the process of heat transfer. Also,
the addition of polymers in the flow reduces the Nusselt number or the heat flux at the
surface. Figure 8 shows Nur plotted against the Brownian diffusion parameter, Nb, for a
Powell–Erying fluid. As can be seen, as the rate of diffusion between the particles increases,
the heat flux or heat transfer rate decreases. Furthermore, it can be seen that this rate is also
affected by increasing polymer concentration in the solution. The diffusion of the polymers
in the solution also contributes to decreasing the process of heat transfer.
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Figure 9 represents the effects of the presence of polymers on the percentage of
heat reduction (%HR) of the non-Newtonian-based nanofluid flow. Heat reduction is
defined as HR = Nur− Nur0 (Nur0 being the value without the presence of polymers).
In Figure 9, %HR is plotted against the polymer concentration parameter for different
values of Weissenberg number and non-Newtonian fluid parameter. This plot shows that
if we increase the concentration of polymers in the solution, there is more heat reduction.
Similarly, the reduction in %HR with increasing Weissenberg number shows that polymer
stretching impedes the heat reduction process of the flow at the surface. The same results
for heat reduction with varying γ and Wi are observed for a Powell–Eyring fluid. Also,
the heat reduction rate increases with the increasing value of the Reiner–Philippoff fluid
parameter. Figure 10 indicates the influence of the presence of polymers on %HR as a
function of γ for different Nb for a Reiner–Philippoff fluid. It has already been observed
that increasing the concentration of polymers in the solution increases heat reduction. One
interesting thing to note is that the presence of polymers also affects the concentration of
the nanoparticles in the flow. We see that as we increase the value of the Brownian diffusion
parameter, Nb, heat reduction at the surface decreases. This implies that as the random
movement of the particles increases due to collisions of the different molecules, the heat
reduction process is impeded. Figure 11 shows the influence of polymers on %HR for
different Nt for a Powell–Eyring fluid. We find that when the value of the thermophoresis
parameter increases, the heat transfer reduction at the surface decreases.
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Figure 9. Effects on the percentage of heat reduction (%HR) due to polymers as a function of
γ for fixed γ1 = 1.0, a = 0.01, Pr = 5.0, Re = 4900, Nb = 0.1, Nt = 0.5, and Le = 5.0 for a
Reiner–Philippoff fluid.
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Le = 5.0 for a Reiner–Philippoff fluid.
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function of γ for different Nt with K = 0.3, A = 0.3, a = 0.01, Pr = 5.0, Re = 4900, Nb = 0.1, and
Le = 5.0 for a Powell–Eyring fluid.

4.3. Impact of Polymers on Sherwood Number

Similarly, the Sherwood number can be defined as:

ShRe−1/2 = Shr = −φ′(0), (39)

where Shr is the reduced Sherwood number. In Figure 12, the behavior of the Sherwood
number (Shr) of a Reiner–Philippoff-based nanofluid in the presence of polymers is shown.
Shr is plotted against the Brownian diffusion parameter, Nb, due to nanoparticles for
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different values of the polymer concentration parameter. A zero value of γ corresponds
to the flow without the presence of polymers. It can be seen that increasing the value
of Nb increases the Shr. This implies that as the Brownian diffusion parameter increases,
convective mass transfer becomes dominant and the Sherwood number increases. Also,
the addition of polymers in the flow reduces the Sherwood number or the mass flux at the
surface. The same results are seen with the Powell–Eyring model.
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Figure 13 presents the effect of the presence of polymers on the percentage of mass
transfer reduction (%MR) of the flow, which is defined as MR = Shr− Shr0 (Shr0 being
the value without the presence of polymers). In Figure 13, %MR is plotted against the
polymer concentration parameter for different Wi and λ, which shows that if we increase the
concentration of polymers in the solution, mass transfer at the surface decreases. Similarly,
a decrease in %MR with increasing Weissenberg number shows that polymer stretching
also impedes the mass reduction process of the flow at the surface. An increasing non-
Newtonian flow parameter also causes a decrease in mass flux in the presence of polymers.
In Figure 14, one interesting thing to note is that the polymers also affect the concentration
of nanoparticles in the flow. We see that as we increase the value of the Brownian diffusion
parameter, Nb, the percentage of mass reduction at the surface increases. This implies
that as the random movement of the particles increases due to collisions of the different
molecules, mass transfer due to convection becomes dominant and so the reduction process
speeds up. Figure 15 shows the influence of the presence of polymers on %MR for different
Nt for a Powell–Eyring fluid. We find that when the value of the thermophoresis parameter
increases, the heat transfer reduction at the surface decreases.
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γ1 = 1.0, λ = 0.7, a = 0.01, Pr = 5.0, Re = 4900, Nt = 0.1, and Le = 5.0 for a Reiner–Philippoff fluid.
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All the results presented in this article are in agreement with [7], in which Benzi et al.
discussed the heat transport with polymers, and with [26], in which the authors studied
the boundary layer flow of a non-Newtonian-based nanofluid.

5. Conclusions

In summary, this theoretical study investigated the influence of the presence of
polymers on the boundary layer flow of non-Newtonian-based nanofluids. Various non-
Newtonian fluid models and a molecular approach were employed to derive the governing
equations. These equations were then solved numerically, and the results were analyzed.
The key findings are as follows:

1. The addition of polymers to a non-Newtonian fluid generally increases the viscos-
ity of the solution, although the viscosity reduction occurs to a lesser extent with
polymer stretching.

2. The introduction of polymers in non-Newtonian-based nanofluids leads to an increase
in the drag coefficient and a decrease in the Nusselt number and Sherwood number.

3. The concentration of polymers in the solution has a direct impact on skin friction,
showing that an increase in polymer concentration results in higher skin friction.

4. Higher polymer concentrations correspond to greater drag enhancement, as well as
increased heat and mass reduction.

5. The effects of thermophoresis and Brownian diffusion are not limited to reduced Nus-
selt number and Sherwood number; they also influence the behavior of the polymers.

This study primarily focused on the measurement of skin drag, heat transfer, and mass
transfer in non-Newtonian-based nanofluids with polymer additives. Subjects that were not
explored in this study present several avenues for further research, including investigating
viscous dissipation effects and entropy generation and conducting experimental studies to
support or challenge our findings.
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Nomenclature

νp viscosity due to polymers (m2s−1)

κ relaxation time
(
s−1)

µ dynamic viscosity
(

kg m−1s−1
)

Wi Weissenberg number.
γ polymer concentration parameter
DT Thermophoretic diffusion coefficient

(
m2s−1)

Pr Prandtl number
Uw stretching velocity

(
ms−1)

f (η) dimensionless stream function
κ0 κ0 relaxation time in equilibrium

(
s−1)

µ0, µ∞ zero and upper Newtonian limiting viscosity
T∞, N∞ ambient temperature and concentration
Nur reduced Nusselt number

ξ material fluid constants
(

ms2kg−1
)

ρ density (kgm−3)

α thermal diffusivity (m2s−1).
λ, γ1 Reiner–Philippoff fluid parameter
Re Reynolds number
DB Brownian diffusion coefficient (ms−1)

Nt thermophoresis diffusion coefficient
Nb Brownian diffusion coefficient.
T dimensional fluid temperature (K)
K, A Powell–Eyring fluid parameter
Le Lewis number
Tw, Nw temperature and concentration at the surface
S f skin friction coefficient
u, v dimensional velocity components

(
ms−1)

C∗ material fluid constants
(
s−1)
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