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Abstract: We propose a new variational formulation to model and predict friction-induced vibrations.
The multi-scale computational framework exploits the results of (i) the roughness measurements
and (ii) the micro-scale contact simulations, using the boundary element method, to enrich the
contact zone of the macroscopic finite element model of rubbing systems with nominally flat contact
boundaries. The resulting finite elements at the contact interface of the macroscopic model include
(i) a modified normal gap and (ii) a micro-scale description of the contact law (i.e., pressure gap)
derived by solving the frictionless contact problem on a rough surface indenting a rigid half-plane.
The method is applied to a disc brake system to show its robustness in comparison with classical
deterministic formulations. With respect to the traditional complex eigenvalues analysis, the proposed
multi-scale approach shows that the inclusion of roughness significantly improves the results at low
frequencies. In this panorama, any improvement of dynamic instabilities predictions should be based
on an uncertainty analysis incorporating roughness combined with other parameters such as friction
coefficient and shear moduli of the pads, rather than on roughness itself.

Keywords: dynamic instabilities; frictional system; multi-scale framework; contact mechanics;
roughness

1. Introduction

The frictional contact problem plays a major role in engineering applications, whether
in studying the fretting fatigue in dovetail blade roots in aeronautics [1], valve systems for
nuclear cooling [2] or braking systems in the automotive industry [3–5]. The mechanical be-
havior of frictional systems mentioned above is micro-scale dependent. Their performance
is conditioned by numerous microscopic phenomena, such as roughness, progressive dam-
age of asperities as well as resulting debris [6,7]. For instance, it was shown in [8] that
the macroscopic behavior of the braking system is strongly influenced by the microscopic
contact properties, which involves the roughness of the sliding interfaces. Hence, it is
important to review and to overcome the assumption of perfectly flat surfaces by taking
into account the statistical characteristics of rough surfaces.

In general, the modeling of rough surfaces requires the knowledge of two functions:
(i) the height distribution function (HDF) [9] and (ii) the spatial function, also known by
the autocorrelation function (ACF) or its Fourier transform, which is called the power
spectral density (PSD) function [10]. The first one characterizes the roughness through the
average height parameters [11,12], while the second describes the spacial arrangement and
the variation of the asperities, which often depicts a fractal behavior [13,14]. Most rough
surfaces have a self-affine property, which means that the profile remains similar under dif-
ferent magnification [13,15]. The latter can be decoded by a PSD having a power-law shape
as a function of the wavenumber (or wavelength) with a potential plateau characterized by
a longer wavelength, namely the long-distance roll-off wavevector [16–18].

With regard to the mechanical contact models, the first contribution goes back a
century with the widely used Hertz theory [19,20]. This theory assumes perfect smooth
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contacting surfaces, and hence, it is not valid for rough surfaces since it failed to give a
reasonable estimation for the real contact area and for the pressure-gap behavior. The strong
deviation from the perfect contact assumption led researchers to develop more realistic
models to take into account the roughness. The first asperity-based models, pioneered
by research work [9,21], are based on a statistical method and the random process theory
introduced for the first time in [10,22]. The concept of their approach is to transform the
problem of two contacting rough surfaces to a deformable rough one in contact with a rigid
plane. Then, the roughness is modeled by a number of isolated spherical asperities with the
same radius, and their height is described randomly following a given probability density
function. The asperity-based models provide a good approximate solution for the evolution
of the contact area especially in the case of a small load [23]. However, their main drawback
is the omission of interactions between the asperities, which can lead to an overestimation
of the contact pressure. With the development of advanced analytical models [24–27],
interactions between asperities can be taken into account. The coalescence of asperities is
another effect that has to be considered for a realistic representation. In fact, the contact
spots do not grow independently in reality. They merge and, therefore, contact patches
develop. Afferante et al. [28] proposed a suitable approach to address the coalescence of
two contacting spots. The concept of their approach is that the asperities with overlapping
contacts spots are eliminated and corrected with a single contact patch, namely the equiva-
lent asperity. It should be noted that the contact area of the new asperity includes the area
of the suppressed contact spots. In parallel to the aforementioned analytical models, Person
proposed an ingenious theory [13,14,29] to tackle the contact problem for rough surfaces.
The fundamental concept of the fractal approach is to solve the contact problem at different
scale by introducing the evolution of contact pressure probability density. The author
mentioned in [14] that the latter satisfies a diffusion-like equation with an appropriate
boundary conditions. Persson’s approach has been criticized on the pretext that the proof
of the diffusion-like equation is not rigorous, since it is derived assuming full contact and
used with the boundary condition on its solution to model the partial contact. In general, it
provides a solution that is quantitatively inconsistent with the available solutions, which
leads to somewhat smaller contact areas and, thus, greater pressures than those found in
the literature [30,31].

The development of computing facilities has enabled the emergence of accurate nu-
merical models that, unlike previous analytical models, are free of assumptions. A couple
of numerical techniques can be distinguished: (i) the finite element method (FEM) [2,32],
(ii) the boundary element method (BEM) [33] and (iii) Green’s function molecular dynamics
(GFMD) [34,35]. The first class of methods is the most used and the most accurate technique.
It is based on the optimization of the variational formulation of the contact problem [36,37].
In general, it is applied to a representative volume element (RVE) of the rough surface and
requires intensive computing, since the element size should be small enough to capture
the asperity waviness and the roughness [2]. The last two classes are more attractive for
modeling rough contacts. This is essentially due to the fact that only the rough surface
needs to be discretized, and not the bulk, as required by FEM, which allows increasing the
mesh density and, hence, perform more accurate studies. Despite these advances, BEM
and GFMD are based on the fundamental elasticity theory. The generalization of these
approaches to take into account non-linearities is sometimes possible but is not an easy
task. For a detailed review, see [32,38].

In the industrial context, FEM is mainly used to model and predict the behavior of fric-
tional systems. In most applications, the contact interfaces are assumed to be flat and have
dimensions generally much larger than the microscopic scale of the roughness. Therefore,
explicit integration of the roughness in these interfaces is not possible, since it generates
extremely dense meshes which, in turn, will increase the computation time. In consequence,
authors in literature abandon the classical path of explicitly modeling surface roughness
by proposing multi-scale embedded strategies to enhance the computational cost of the
direct FEM. For instance, the authors in [39–41] suggested integrating the micro-mechanical
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contact laws in the sliding interfaces. The fundamental concept behind this approach is
to derive and then integrate the constitutive contact equations using the homogenization
process, which describes the microscopic behavior within the contact zone. Bonari et al. [42]
also developed a novel multi-scale formulation that takes advantage of micro-scale simula-
tions to enrich the contact interfaces of macroscopic FE models. The developed method
allows taking into account any desirable topography to model efficiently and within a
reasonable CPU time the frictional system. In the same spirit, Paggi et Reinoso [43] in-
troduced a new idea that takes into account the shape of the roughness to correct the
normal separation in macroscopic contact interfaces. Tison et al. [3,44] investigated the
use of rough contact to model the dynamic behavior of a disc brake system. They used a
multi-scale framework based on the random field theory [45,46]. The integration of the
latter within the complex eigenvalues analysis (CEA) provides a remarkable prediction,
which allowed for better correlation with the experimental results.

Regarding the dynamic instabilities that represent the core of this paper, it is well
accepted that the frictional contact influences drastically the global dynamic behavior of a
rubbing system [47,48]. Taking into account the contribution of the frictional contact to the
system’s overall stiffness matrix, dynamic instabilities are predicted using two methods:
(i) transient analysis and (ii) CEA. The latter is the most widely used in the industry, as it
offers a very good compromise between computation time and accuracy. Indeed, CEA
approach uses the mode coupling theory to evaluate the stability of the rubbing system.
Thus, it will be unstable if and only if at least one predicted vibratory mode has a strictly
positive real part [49]. Since the frictional contact problem is closely linked to dynamic
instabilities, the contribution of the roughness should be taken into account and investigated
in detail for a potential enhancement of the deterministic CEA. As pointed above, the classic
FEM is time consuming since the mesh should be fine enough to capture all the physics of
the rough surface. A novel strategy has therefore to be found to fulfill two main criteria:
(i) an accurate prediction of the dynamic instabilities and (ii) a reasonable computational
cost. In this light, the main contribution of this paper is to suggest a simple alternative
approach, highly flexible, that allows accurately and reliably predicting the dynamic
instabilities of an industrial braking system. The proposed multi-scale finite element
formulation, presented in detail in Section 2, abandons the traditional path of explicitly
introducing roughness by means of the asperities in the contacting interfaces. In fact, it
considers that the contact interfaces of a large-scale FE model are perfectly flat and smooth.
But each element (contact patch) is enriched by adding two contributions, namely (i) the
pressure-gap contact law and (ii) the contact element activation. The first one is derived
using BEM on a generated rough surface and is assigned to each patch. The use of micro-
scale contact law, for each patch, will modify the penalty method and will introduce the
roughness in an implicit manner. The second enhancement is introduced within the normal
gap function. Indeed, a critical gap is added to the classic formulation. It is derived from
HDF resulting from the topography measurement. The embedded strategy is then applied
to a disc brake system in Section 3 to investigate the prediction of dynamic instabilities.

2. Governing Equation

The first section introduces the basic governing equations for the non-linear contact
problem. After recalling the general framework of the boundary value problems with
constraints, the variational formulation of the weak problem will be presented for the case
of frictionless contact problems of two deformable solids. This is the first step of a complex
eigenvalues analysis (CEA) where the equilibrium position, ue, is determined. Finally,
we will present the principle of our approach, which consists of integrating roughness in
macroscopic FE models in order to predict dynamic instabilities of a frictional system in a
more realistic way.
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2.1. General Framework

In the framework of continuum mechanics, a solid is modeled by an open domain Ω,
which is assumed to be bounded and regular. The boundary of Ω is divided in two parts:
(i) the first one denoted ∂Ωu where the Dirichlet boundary conditions are applied and
(ii) the second one denoted ∂Ω f where the Neumann boundary conditions are applied. So,
without any loss of generality, the formulation of the problem when two deformable bodies
Ω1 and Ω2 (see Figure 1), with Ω = Ω1 ∪Ω2, come in contact at a single contact zone ∂Ωc is
given by a system of elliptical partial differential equations that can be categorized as follows:

• static balance of momentum equation,{
∇ · σ = 0 in Ω = Ω1 ∪Ω2

σ.n = σ0 at ∂Ω f
, (1)

• compatibility equations,{
ε(u) = 1

2 (∇ · u +∇ · uT) in Ω = Ω1 ∪Ω2

u = u0 at ∂Ωu
, (2)

• constitutive relation,
σ = 4C : ε(u) in Ω = Ω1 ∪Ω2, (3)

where σ is the Cauchy stress tensor and ε is the so-called small strain tensor, which is
related to the displacement field u. σ0 and u0 are the stress and the displacement field
imposed on the boundaries ∂Ω f and ∂Ωu, respectively. 4C is the Hook fourth-order tensor
for the considered domain.

In the case of a frictionless contact between two bodies, a relevant complimentary
conditions should be formulated. The latter defines the geometrical and the mechanical
state of the two contacting surfaces. The complimentary conditions are called Hertz–
Signorini–Moreau conditions and can be written as

g ≥ 0, σn ≤ 0, g.σn = 0, σt = 0 at ∂Ωc = Γ1
c ∪ Γ2

c , (4)

where σn and σt refer to the normal and the tangential contact stresses, respectively. g refers
to the gap function between the slave and master surfaces. Hence, the Hertz–Signorini–
Moreau conditions can be read as the non-penetration–non-adhesion conditions. In other
words, if the two bodies Ω1 and Ω2 are in contact, then the gap function g is equal to 0 and
the normal contact stress σn is below 0; otherwise, g > 0 and σn = 0.

Figure 1. Contact between two deformable solids Ω1 and Ω2. Ω1 refers to the slave body and Ω2 is
the master one. The active contact interface is Γc = Γ1

c = Γ2
c .
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2.2. Variation Formulation of the Frictionless Contact Problem

The statement of the weak formulation for the contact problem is obtained by multi-
plying the strong form in Equation (1) by a test function v and integrating over the domain
Ω, and we write ∫

Ω
∇ · σ · v dΩ = 0 ∀v ∈ V. (5)

By performing integration and applying the divergence theorem, Equation (5) becomes∫
∂Ω

n · σ · v dΓ−
∫

Ω
σ : ∇v dΩ = 0, (6)

where : is the contraction operation of two second-order tensors and n denotes the outward
normal at the slave surface Γ1

c . We have n = −ν where ν is the outward normal at master
surface Γ2

c (see Figure 1).
Note that by introducing the traction vector σ0, the contact boundary conditions and

the virtual displacement δu in the test function v, the first term in Equation (6) may be
rewritten as the sum of two main parts: (i) the frictionless contact contribution and (ii) the
Neumann boundary condition contribution. Symbolically, we write∫

∂Ωc
n · σ · δ(ρ− r) dΓ +

∫
∂Ω f

σ0 · δu dΓ−
∫

Ω
σ : δ∇u dΩ = 0, (7)

where ρ and r are the displacement vectors of master and slave points, respectively. Fur-
thermore, the quantity r− ρ is the gap vector describing the position of the slave point r
and his projection into the master surface ρ.

In the case of a normal gap, gnn = r− ρ, the variational form in Equation (7) may be
written as follows: ∫

∂Γ1
c

σnδgn dΓ−
∫

∂Ω f

σ0 · δu dΓ +
∫

Ω
σ : δ∇u dΩ = 0. (8)

It should be noted that the mathematical constraints of the strong and weak forms
are not the same. For the strong form in Equation (1), the Cauchy tensor is required to be
smooth enough; i.e., σ ∈ C1(Ω), which is not the case for the weak form in Equation (6).
The order of differentiation in the weak formulation is lower than the strong one. In fact,
the order of differentiability in the weak integral form is distributed between the Cauchy
stress tensor and the test function.

Finally, the balance of virtual work, called also the weak form, for the frictionless
contact problem can be formulated as follows:

Find u ∈ U =
{

u ∈ H1(Ω) | u = u0 on ∂Ωu
}

such as
∫

Γ1
c

σnδgn dΓ−
∫

∂Ω f

σ0 · δu dΓ +
∫

Ω
σ : δ∇u dΩ = 0

V =
{

δu ∈ H1(Ω) | δu = 0 on ∂Ωu
}

C =
{

δu ∈ V | (r + δr− ρ + δρ) · n ≥ −gn0

} , (9)

where H1(Ω) denotes the Hilbert space of the first order, δr and δρ refer to δu but in the
contact interface. And, finally, gn0 represents the initial gap between contacting surfaces.

2.3. Overview of the Embedded Computational Strategy to Include the Roughness on
Macro-Scale Model

Under the framework of the finite element method, the formulation in Equation (9)
will be solved using the most popular scheme: the penalty method. The goal as mentioned
above is to find the equilibrium position due to the frictionless contact (see Section 1 in [4]
for more detail).
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To approximate the Hertz–Signorini–Moreau condition, the normal contact stress
arising at the contact interface will be expressed as a function of the gap using the
following approximation:

σn(g) = εn(< −g >) =

{
0 g > 0, there is no contact
εn(−g) g ≤ 0, there is contact

, (10)

where εn is a non-positive, continuous and strictly decreasing function defining the evolu-
tion of the contact stresses, σn, as a function of the gap, g, between the master and the slave
surfaces. In the case of the linear penalty method, the function εn will simply denote the
classic contact stiffness (i.e., penalty coefficient). Finally, < · > refers to max{·, 0}.

The penalty method can be seen as an approximation of the contact constraints. It
leads to a small penetration between the slave and master surfaces (see the case when
g < 0 in Equation (10)). It should be noted that the definition in Equation (4) will be met
if the contact stress is higher for a small penetration. In other words, the penalty method
does not restrict the penetration between the contacting surfaces but it resists it. If it is
deeper (i.e., g < 0), the value of εn(−g) will be higher and, hence, the real contact stress
(i.e., reaction) will appear.

Under the last assumption, the virtual work in Equation (9) can be divided into the
classic solid mechanics part, δWs, and the contribution from the contact problem, namely
δWc. The weak formulation of the system is obtained using the penalty method. We have

δWc + δWs = 0, (11)

where
δWc =

∫
Γ1

c

εn(< −gn >)δgn dΓ, (12)

and
δWs =

∫
Ω

σ : δ∇u dΩ−
∫

∂Ω f

σ0 · δu dΓ. (13)

In this paper, the the potential energy of the contact interaction will be formulated
as follows:

Πc =
1
2

∫
Γ1

c

εn(< −(gn − gcr
n ) >)2 dΓ, (14)

where gcr
n is called the critic gap. It is a value that will be defined for each contact element

and from which the latter will be activated. The first enrichment introduced in Equation (14)
will allow for a non-homogeneous activation of the contact status for all nodes of the
contact interface.

Considering Node-To-Surface (N2S) discretization, the slave surface Γ1
c can be pre-

sented by nodes denoted by ri and the master one, Γ2
c , can be discretized as set of segments

denoted by Γ2
c,j. Let us assume that we have N slave points and M master segments. One

can observe from Figure 2 that for all slave nodes ri, one or more master segments Γ2
c,j can

be determined using the normal projection. Hence, the i-th contact element can be defined
by a combination of one slave node ri with its correspondent master segment Γ2

c,j. By using
the last definition and the fact that we have nc contact finite elements, the discretized form
of Equation (14) can be rewritten as follows:Πc ≈ 1

2 ∑nc
i=1

∫
Γ2

c,i
εi

n(< −(gi
n − gcr,i

n ) >)2 dΓ

εi
n 6= ε

j
n ∀i 6= j

, (15)

where εi
n denotes the contact law for the i-th contact element. It pairs up the normal contact

stress with the gap distance. Note that the contact law from one element to another is not
the same. Each contact element will have its own law constituting the second enrichment.
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Figure 2. Construction of the contact finite element using Node-To-Surface (N2S) discretization.
The contact element contains only one slave node attached to a master surface. The case presented in
this figure contains nc = 5 contact elements.

The idea behind the proposed strategy is to integrate the heterogeneity observed in the
asperity scale into macroscopic models. In general, the present methodology incorporates
three main steps: (i) The first one consists in characterizing the rough surface (the objective
of Section 3.1). (ii) The second one aims to solve, at the roughness scale, the frictionless
contact problem. This step is important as it allows deriving the pressure-gap’s contact
law by taking into account the roughness. Finally, (iii) the third one consists in introducing
the height distribution as well as the local behavior of the contact stiffness to enrich the
gap, equivalently the contact detection, and the penalty function. The overall procedure is
summarized in Figure 3.

In the first step (Figure 3a), the rough surface is characterized for example by using a
confocal laser scanning microscopy (CLSM) technique in order to measure the height z of
each point. Since the roughness is random [10], the height of the rough surface is consid-
ered, in this work, as a random variable (RV) with an independent Cartesian coordinates.
The measured realization of the RV will be used to estimate the HDF denoted by P(z).
The latter will be introduced in the third step into the macroscopic FE model through the
gap function. Practically, the statistics of the rough surface will be transmitted to the FE
model using the new form of the normal gap in Equation (14) or (15). Hence, we write

P(z) ≡ P(∆), (16)

where ∆ = gn − gcr
n is a RV. The realization ∆j

i of ∆ will be assigned for each contact
element i.

In a second step (Figure 3b), several rough surfaces will be generated numerically
based on the statistics and the spectral analysis of the measured surface. The objective
is to apply the BEM in order to solve microscopically the contact problem of the rough
surfaces. The purpose of this micro-scale simulation is to compute the micro-mechanical
behavior of the contact interface involving the roughness. The latter is modeled by the
pressure-gap law for each generated rough surface and injected into the weak form through
the function εn of Equation (10). It is agreed that this requires intensive computation on
several rough surfaces, especially if advanced BEM solvers are used to take into account
interfacial or material non-linearities such as adhesion or plasticity. Here, the crucial goal is
to derive a set of local contact laws, by taking into account the roughness, for each contact
element (patch).



Lubricants 2023, 11, 344 8 of 17

Figure 3. The flowchart of the computational framework: (a) The first step aims to measure and then
characterize the observed roughness. The functions deduced from the characterization, namely the
height distribution function and the power spectral density function, will be used in the second step
(b) to numerically generate rough surfaces similar to what has been measured. In this step (b), BEM
solver is used to solve the low-scale contact problem. The results of the BEM and the characterization
will enrich the contact laws and the separation between master and slave surfaces. In the third step
(c), the friction-induced vibrations of an automotive disc brake system are predicted.

Finally, in the last step (Figure 3c), the contact laws as well as the enriched gap function
will be assigned to each patch. The integration procedure is the same for both parameters.
Indeed, assuming that the contact interface is smooth and flat, the sampled results resulting
from the BEM simulations and the measured surface characterization will be embedded
within the contact elements. Following the logic of the embedded approach, the roughness
will not be represented explicitly in the FE model. It will be included implicitly through the
new formulation of the contact gap and the modified penalty function. Next, the enriched
FE model can be solved using CEA to compute the dynamic instabilities. In general,
the procedure falls into a fully parallelizable loop. After the surface characterization,
steps 2 and 3 (Figure 3b,c) can be repeated as many times as needed in order to obtain a
representative statistical prediction.

3. Application to a Disc Brake System

In this section, the previously proposed computational strategy is implemented to
predict the dynamic behavior of an automotive disc brake system. First, the pad surface
is measured by a CLSM. The objective is to characterize the pad surface topography by
means of (i) the height distribution function (HDF) and (ii) the power spectral density
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(PSD) function. Second, a batch of artificial surfaces will be randomly generated based on
the previously measured functions (HDF and PSD). The aim is to apply BEM, developed
in [50], to predict the contact laws, i.e., the evolution of the load as a function of the gap.
These elements will be integrated, toward the end, into a macroscopic FE model of a disc
brake to reproduce the heterogeneity observed in the contact interfaces in order to predict
the dynamic instabilities induced by friction.

3.1. Pad Surface Characterization

The pad’s surface is measured experimentally through a CLSM. Figure 4 shows an
example of the measured topography over a scan area of 1.8× 1.4 mm2 with a resolution of
256× 256 pixels. The measured topography (see Figure 4b) appears irregular and depicts
characteristics of randomness. Hence, the random process theory, widely applied to analyze
roughness, can be used to model accurately the probability function of the surface heights
also known by the HDF. The latter holds only the out-of-plan information. To complete the
characterization, the PSD is used to describe the spatial arrangement in the plane.

(a) (b)

Figure 4. Confocal (a) scan and (b) measurements on the surface of a disc braking system pad.

Figure 5a illustrates the computed 2D-PSD of the pad’s surface using the developments
in our previous research work [18,38]. It shows clearly that the pad’s roughness is highly
isotropic. Such a result allows computing the radial PSD (averaged) in order to study
the effect of resolution and scan length. Moreover, it can be seen, in Figure 5b, that the
behavior of the measured PSD is not sensitive to resolution or scan length. It conserves
its shape despite the change of the measurement parameters. With regard to the PSD
behavior, Figure 5b depicts roughly two linear regions in the log–log plot. It starts from
the lower frequency, which is inversely correlated to the scan length qL = 2π

L , up to a high
measured frequency, related to the short-distance cut-off wavevector, defined by qs =

2π
∆

where ∆ refers to the sampling length. In fact, the radial PSD has a shape similar to the
bi-fractal surfaces defined in [51]. The difference lies in the definition of the slopes of the
linear regions. In fact, bi-fractal surfaces have a theoretical PSD form that can be defined
as follows:

PSD(q) =


C0

(
q

qL

)c1
if qL < q < qc

C1

(
q
qc

)c2
if qc ≤ q < qs

0 else

, (17)

where the exponents ci, i ∈ {1, 2} (the slope of the linear regions in log–log plot) are related
to the Hurst exponent Hi as follows: ci = −2(Hi + 1) with 0 < Hi < 1. In our case,
the two regions have a slope of −2 and −4.5, which correspondents to Hurst exponents of
H1 = 0 and H2 = 1.25, respectively. The first region defines a borderline case of fractality,
while the second is completely outside the fractal or the self-affine framework. However,
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the model defined in Equation (17) will be used to characterize the PSD of the pad’s surface.
The parameters c1, c2, qL, qc, C0 and C1 are computed using a suitable optimization scheme
on the radially averaged PSD exactly as defined in Equation (22) of [18].

(a)

10
3

10
4

10
5

10
-23

10
-22

10
-21

10
-20

10
-19

10
-18

10
-17

10
-16

(b)

Figure 5. Power spectral density functions (PSD) of the pad’s rough surface: (a) 2D-PSD of the
15× 15 mm2 with a resolution of 512× 512 pixels. (b) The effect of scan length and resolution on the
averaged 2D-PSD.

Figure 6 complements the information given by the PSD. It presents the HDF of the
measured pad’s surface in a normalized manner and compares it with the centered and
reduced normal law. As a first observation, one can see that the surface is approximately
Gaussian. A notable difference is observed for the higher heights which makes the HDF
asymmetric. This behavior was expected since automotive disc brake pads are usually
compacted and ground to correct height. From Figure 6, the roughness of the pad can
be defined by means of several parameters. For example, the mean (or median) plan
z̄ = 0.0256 mm, the root mean square (rms) roughness σ = 0.0331 mm, the skewness
s = −0.2410 and the kurtosis κ = 3.6549.

Note that in the following, the fitted PSD and HDF will be taken into account to
numerically generate rough surfaces having the same spatial arrangement and roughness
as that measured experimentally. The numerical procedure to generate artificial rough
surface is inspired by Wu’s algorithm [52]. The latter is adapted to take into account PSDs
with shapes similar to what has been defined in Equation (17).
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Figure 6. Comparison between the normalized height distribution function (HDF) of the pad’s rough
surface (red curve) and the standard Gaussian distribution (back curve).
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3.2. Contact Law of Pad/Disc Interfaces

In the previous section, the surface of the pad has been fully described by two quan-
tities: (i) PSD and (ii) HDF. These will act as an input data to artificially generate a batch
of random rough surfaces. The artificial surfaces are intended to mimic the roughness
behavior of the automotive disc brake pads so that they can be used to compute contact
laws, i.e., load-separation curves. An example of an artificial rough surface is presented in
Figure 7a. It has the same spectral and statistical specifications as the measured pad’s sur-
face, namely (i) PSD properties (compare Figure 7b with Figure 5a) and (ii) the roughness
parameters (the mean plan and the rms roughness).

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
-19

(b)
Figure 7. 3D view of the artificial rough surface generated with a resolution of 512 pixels in both
directions (on the left—(a)) and its 2D-PSD (on the right—(b)).

After generating batch of artificial random surfaces, the next step is to compute the
evolution of contact stresses against contact kinematics for each generated pad’s topography.
At this stage, many models can be used. The study of the latter has been addressed in
our previous research [38], where authors tried to explain the philosophy behind each
theory with a comparative study. The concern here is to apply directly the result of [38] in
order to solve frictionless rough contact and thus, obtain the evolution of contact stresses
against the surface separation, commonly known as the gap. More precisely, BEM solver,
introduced by Bemporad and Paggi [50], will be used to solve the contact problem between
the artificial rough surfaces and the rigid surface of the disc. The choice of using BEM is
motivated by the fact that it offers the best trade-off between FEM and semi-analytical
models. Indeed, it is free of any kind of assumption unlike semi-analytical models, and it
allows discretizing only the rough surface without the bulk, which can save considerably
the CPU cost.

As explained above, the curve load-separation for each generated rough surface is
obtained using BEM code developed in [50]. BEM simulation is performed on a generated
rough surface of 2.825× 2.825 mm2 with a resolution of 128 pixels in both directions. This
numerical setup is chosen because (i) BEM solvers show strong convergence on meshes
containing at least 128× 128 elements [38] and (ii) the single finite element (patch) of the
pad’s surface has a averaged area equal to 2.825× 2.825 mm2 (see the element j defined
in Figure 3c). Since the pad’s material involves an orthotropic behavior, only Young’s
modulus, Ez = 1983.3 MPa, in the most stressed direction, in this case the z-direction,
and the Poisson’s ratio νxz = 0.4054 are taken into account as inputs for BEM simulations.
It should be noted that these micro-scale simulations assume a homogeneous and linearly
elastic rough surface. Therefore, geometric (i.e., large deformations), material (i.e., plasticity)
and contact interface non-linearities (i.e., adhesion and friction) are not considered in this
computational framework.

Figure 8 shows BEM results for 100 generated rough surfaces. It depicts the evolution
of the normalized contact pressure, P

E∗ (where E∗ is the composite modulus) versus the
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separation. The latter is defined as a distance between the imposed displacement of the
rigid surface (i.e., the surface of the disc) and the median plan, z̄, of the rough surface. Each
simulation, performed on a generated rough surface of 2.825× 2.825 mm2, demonstrates a
non-linear mechanical behavior of the considered set of asperities. For a small displacement,
the separation between the two surfaces is large, which implies that only few asperities will
be in contact, thus generating a low contact pressure. As long as the imposed displacement
increases (synonymous to a decrease of the separation between the rigid surface and the
midplane), the real contact area evolves, leading to an increase in contact pressure and,
hence, the contact stiffness. This behavior, i.e., pressure-gap law, will be integrated into
each patch (i.e., finite element) of the pad’s surface of the macroscopic FE model. Following
this logic and according to the strategy defined in Figure 3, the macroscopic FE model of a
disc brake system will have flat and smooth contact interfaces including the finite element
patches. It should be noted that each patch will be driven by a contact law (BEM solution
on single generated rough surface), instead of the classic penalty coefficient. Moreover,
the gap of each patch is enriched by a threshold according to Equation (16). The new gap
formulation will benefit from the HDF of Figure 6 to add a contribution (i.e., threshold)
modeling the randomness of the measured height z. This enrichment is intended to ensure
the activation of the contact elements in a non-uniform way just like what happens in
surfaces with low-scale asperities.

-0.05 0 0.05 0.1 0.15
0

0.005

0.01

0.015

0.02

0.025

Figure 8. Evolution of the normalized contact pressure, P
E∗ , as a function of the gap, g for 100

generated rough surfaces. The contact pressure is defined as P = F
L2 , where F denotes the contact

load and L2 refers to the finite element path. The gap or the surface separation is defined as a distance
between the rotating disc (rigid flat surface) and the median rough surface, z̄.

3.3. Application to Dynamic Instabilities Prediction

The multi-scale approach is implemented to predict dynamic instabilities of a disc
brake system model composed from three main structural subsystems (see Figure 3c):
two pads and a rotating disc. The pad subsystem is broken down into three elements,
namely the lining material, the backplate (lining support) and the shim that tends to reduce
vibrations. The braking action is represented by a 5 bar pressure applied to the pads on
a circular surface. This pressure replaces the action of the hydraulic system which tends
to move the piston to squeeze pads against the rotating disc. The current FE model of the
braking system has been used to conduct several numerical tests in our previous work [4,5].

The applied multi-scale analysis is divided into four major steps that are part of
parallelized loop. After the pad’s topography characterization, the loop is started by:
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1. Artificial rough surface generation: The purpose of this step is to use the charac-
terized HDF and PSD to generate a batch of artificial rough surfaces similar to the
measured topography.

2. Micro-scale contact simulations: Here, BEM solver introduced in [38,50] is used to
solve the elastic contact problem considering artificial surface asperities and a rigid
half-plane. The resolution is performed on the whole batch of the generated rough
surfaces. Solving the micro-scale contact problem minimizes the convex quadratic
program (QP) (see Equation (50) in [38]). The obtained results are the contact load (or
the contact pressure) and the separation between the two contacting bodies.

3. Enrichment of the contact element: The objective of the third step is to assign each
micro-scale contact law (obtained in the second step) to each flat patch (i.e., contact
element). Moreover, the gap between slave and master nodes of the macro-scale FE
model (disc brake system FE model) is modified by adding a threshold to each gap in
order to activate the contact elements in a non-uniform manner. As mentioned above,
the added threshold depends closely on the measured HDF.

4. Complex eigenvalues analysis: At this stage, the traditional CEA is performed.
The beginning of the last step starts with a quasi-static analysis. Its goal is to solve,
progressively as the load increases, the frictional contact using the enriched contact el-
ements. At the end of this step, the well-known complex modal analysis is performed
to compute both complex eigenvalues and eigenvectors and identify the unstable
modes (those with negative damping). For more details, see Section 2.1 in [4].

In the studied example, 300 iterations are used to compute the dynamic instabilities of
the braking system.

The result of the multi-scale approach is presented in Figure 9 (blue marker) where
the negative damping, a ratio between the real and the imaginary part of the complex
eigenvalues, is plotted as a function of the frequency. This figure shows only dynamic
instabilities, which means unstable modes with a positive real part (i.e., negative damping
below zero). In order to compare the robustness and limitations of the multi-scale approach,
the result of FEM considering perfect contact with a pad/disc friction coefficient of 0.5
(red square marker) as well the results of a stochastic model based on a FAST-FEM solver
(black marker) developed by Maaboudallah et al. [4] are added in the same figure. It is
known [3,44] that stochastic modeling leads to better correlation with experimental data.
At first sight, it can be seen that the introduced contact elements enrichment affects the
dynamic instability predictions. In particular, the unstable modes predicted by FAST-
FEM in the low frequency range are reproduced by the multi-scale approach. However,
the latter fails to reproduce the instabilities predicted by FAST-FE or even by standard
finite elements with perfect contact at high frequencies. Despite these observations, some
unstable family modes around 13 and 15 kHz are roughly highlighted by the multi-scale
approach. This unconventional behavior tends to demonstrate that the roughness affects
mainly low frequencies. In other words, the addition of the roughness contribution,
under the framework mentioned above, can be seen as a necessary but not sufficient
condition. Indeed, a robust prediction of dynamic instabilities requires the integration
of the roughness but also the randomness of the most sensitive variables like the friction
coefficient of pad/disc interface and the normal Young’s modulus of the pad.
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Figure 9. Prediction of dynamic instabilities: comparison between (i) the proposed multi-scale
approach considering 300 iterations, (ii) FAST-FEM solver [4] and (iii) the traditional FEM using
perfect contact.

4. Conclusions

In this paper, we have presented a multi-scale computational method to predict friction-
induced vibrations. The method uses micro-mechanic contact simulations on characterized
rough surface to enrich the macro-scale finite element of a rubbing system. The idea behind
the proposed approach lies in four essential points:

1. Roughness characterization using the power spectral density function and the height
distribution function;

2. Micro-scale contact simulations on the characterization roughness using the boundary
element method;

3. Enrichment of the contact finite element using (i) the micro-scale contact laws (ob-
tained from BEM) and (ii) the modified gap functions (obtained from HDF);

4. Performing the complex eigenvalue analysis on the updated stiffness matrix.

The multi-scale method was applied to a scale model of a braking system. The results
show that the proposed approach is more accurate than the classical one using a perfect
contact law, based on a comparison with a stochastic model accounting for the uncertainties
on several parameters such as friction. In addition, it is found that roughness has an effect
on the predictions of dynamic instabilities. Indeed, taking into account the roughness
brings out new unstable modes in the low frequencies. However, the effect of the integrated
roughness is not clear in the high frequencies, since many stochastically predicted modes
were not reproduced by the multi-scale strategy. Results of the investigation demonstrate
that roughness is only one element among others that must be taken into account for a
robust and accurate prediction of the dynamic instabilities. An uncertainty analysis must
be conducted by varying the most important parameters including roughness to correctly
model and predict the dynamic instabilities of frictional systems.
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HDF height distribution function
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PSD power spectral density
FEM finite element method
BEM boundary element method
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N2S Node-to-Surface
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