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Abstract: Advancements in industrial machinery and manufacturing equipment require more reliable
and efficient polymer tribo-systems which operate in conditions associated with increasing machine
speeds and a lack of cooling oil. The goal of the current research is to improve the tribological
properties of elastomeric composites by adding a solid lubricant filler in the form of ultrafine polyte-
trafluoroethylene (PTFE) with the chemical formula [C2F4]n and recycled polytetrafluoroethylene
(r-PTFE) powders. PTFE waste is recycled mechanically by abrasion. The elastomeric composites
are prepared by mixing a nitrile butadiene rubber with a phenol-formaldehyde resin and PTFE
powders in an extruder followed by rolling. The deformation-strength and tribological tests of
r-PTFE elastomeric composites are conducted in comparison with the ultrafine PTFE composites.
The latter is based on products of waste fluoropolymer processing using a radiation method. The
deformation-strength test shows that the introduction of ultrafine PTFE and r-PTFE powder to the
composite leads to a decrease in strength and elongation at break, which is associated with the poor
compatibility of additives and the elastomeric matrix. The friction test indicates a decrease in the
coefficient of friction of the composite material. It is determined that the 15 wt.% filler added in
the elastomeric matrix leads to a reduction in the wear rate by 20%. The results obtained show the
possibility of using ultrafine PTFE powder and r-PTFE for creating elastomeric composites with
increased tribological properties. These research results are beneficial for rubber products used in
many industries, mainly in mechanical engineering.

Keywords: unvulcanized rubber compound; phenol formaldehyde resin; recycled polytetrafluo-
roethylene; elastomeric composite; wear resistance

1. Introduction

Despite the fact that rubber products made on the basis of nitrile butadiene rubber
have a whole range of excellent properties, including high tensile strength and ductility,
relative elongation, tensile and abrasion resistance, and excellent oil and gasoline resis-
tance, this material also has some flaws. Tightening operating conditions associated with
increasing machine speeds and a lack of cooling oil leads to the fact that rubber elements
can only operate at temperatures up to +150 ◦C. In the case that the operating temperature
increases above this value, the structuring and then the destruction of rubber occurs, i.e.,
heated rubber becomes hard and brittle. Exposure to low temperatures also has a negative
effect on rubber products manufactured using nitrile butadiene rubber. The optimal operat-
ing temperature for them is considered to be no lower than −35 ◦C. It is known that the
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addition of materials to elastomers that have higher mechanical properties and resistance
to aggressive environments over a wide temperature range can significantly increase their
impact strength characteristics [1–7]. The advantage of such composites is the ability to
combine in one material the properties of significantly different components, for example,
rubber and thermoplastic or rubber and thermoset [8–10]. A high complex of physical
and mechanical properties of such composites is ensured by the uniform distribution of
filler particles in the elastomeric matrix, as well as the chemical interaction between the
components of the polymer mixture during the mixing process. In early works [9–14] in
this direction, modifications of polystyrene and epoxy resin were used, including ther-
mosets such as phenol-aldehyde resins. Zhang et al. [15] show that treating reinforcing
fiber by resorcinol–formaldehyde resin leads to better adhesion to natural rubber. The
interfacial strength of the resulting composites reached 10 MPa. In a previous study, we
reported on the modification of nitrile rubber by phenol–formaldehyde resin [16]. The
interaction of these materials results in semi-interpenetrating polymer networks’ forma-
tion by structuring the thermoset on a linear polymer matrix. The components of such
a mixture are inseparable due to the mechanical interweaving of the chains. In addition,
chemical interaction between the methylol group of the resin and the nitrile fragment of
the rubber can lead to a noticeable increase in the level of strength. Complete structuring
is not observed, which is explained by the difficulty of diffusion due to a decrease in the
segmental mobility of the interacting polymers. The inclusion of 15 wt.% resin in nitrile
butadiene rubber leads to the production of materials with excellent deformation-strength
properties (δp = 10–15 MPa, εp = 150–270%, Shore hardness 76–93), which allows their use
in hydraulic systems with increased pressure of working media.

For the wider use of rubber products, it is necessary to enhance the mechanical
and tribological properties by adding antifriction fillers. The wear resistance and low
friction properties of polymers can generally be improved by incorporating carbon; glass
and steel fibers; and solid lubricants such as graphite, polytetrafluoroethylene (PTFE),
molybdenum disulfide MoS2, etc. [17]. It is known that polytetrafluoroethylene is one of
the best anti-friction materials, which characterized by a low coefficient of friction, high
heat resistance, and performance in a wide temperature range from −269 to +260 ◦C [18].
A feature that enhances the usefulness of PTFE as a solid lubricant is the fact that it easily
forms chemically stable transfer films on the opposing surface even at low pressures of
only a few kPa. The friction surface consists of PTFE-PTFE contacts when forming a
transfer film on the opposite surface, providing low friction. A number of studies show
the application of PTFE as an internal solid lubricant for some polymers and demonstrate
that the friction and wear-resistant properties of polymer matrices filled with PTFE are
increased [7,17–25]. The high molecular weight and chemically inert surface of PTFE limit
its use as an effective filler in polymer matrices, including elastomeric ones. The low surface
energy of PTFE causes poor wetting and adhesion, which makes it difficult to uniformly
disperse and chemically bond PTFE powder to rubber [23–25]. Special compounding
processes have been developed to reduce the fibrillation effect and facilitate the dispersion
of high-molecular-weight PTFE in elastomers. Methods for the surface modification of PTFE
powder to improve compatibility with hydrocarbon elastomers and reduce agglomeration
have also been reported [22,24–26]. It is known that high-energy gamma radiation and
electron beam radiation affect the physical and mechanical properties of PTFE [27–30]. For
instance, radiation-treated PTFE exhibits a better reinforcing effect than non-irradiated
PTFE in polar systems [23]. Khan et al. [24,25] and Cao et al. [26] report that high-energy
irradiation reduces the energy required to produce PTFE powder from its waste and results
in a powder that does not agglomerate. Portnyagina et al. [31] show that the introduction
of ultrafine polytetrafluoroethylene into propylene oxide rubber leads to a decrease in
the coefficient of friction and an improvement in the wear resistance of the material by
21%. In addition, elastomeric composites containing 50 phr ultrafine PTFE perform stably
under wear conditions over a wide range of loads and sliding speeds at a temperature
of −25 ◦C [31].
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The global consumption of polytetrafluoroethylene in various industries increases
by 5–8% annually, which is due to its unique properties: high chemical and thermal
resistance, good dielectric properties, and a low coefficient of friction. At the same time,
a large amount of waste accumulates during the fabrication of PTFE products, which
leads to environmental and economic problems [32,33]. In this regard, the issue of the
polymer waste processing into commercial products or raw materials for further reuse
becomes urgent.

The current research considers the novel approach to PTFE composites’ production
with enhanced tribological properties by using recycled PTFE waste. Hence, the goal of the
work is to improve the tribological properties of elastomeric composites by introducing
recycled PTFE. The influence of the PTFE waste recycling method on the properties and
structure of recycled PTFE is assessed, and the properties of elastomeric composites are in-
vestigated. It should be noted that the approaches we use to obtain elastomeric composites
are adapted to waste-free technology based on the processing and use of polymer waste,
which leads to a reduction in environmental stress [34–38].

2. Materials and Methods

A polymer–polymer mixture based on an industrial unvulcanized rubber compound
(URC) and phenol–formaldehyde resin (PhFR) was used as an elastomeric matrix.

Commercial URC of 3826 grade according to Technical Specifications No. 2512-046-
00152081-2003 is intended for the manufacture of rubber products operating in contact
with oils and fuels, such as rings, cuffs, technical plates, etc. Its operating temperature
range is from −20 to +100 ◦C. Shore A hardness is 50–75. The base component of the URC
of 3826 grade is nitrile butadiene synthetic rubber type BNKS-40 according to Technical
Specifications No. 38.30313-2006.

Phenol–formaldehyde resin of SF-010A grade (resin type is Novolaks) is an irregularly
shaped piece of dark yellow color, produced by Uralchimplast LLC (Nizhny Tagil, Russia)
according to State Standard No. 18694-80 [39]. Phenol–formaldehyde resin was melted at
80–90 ◦C, and 8–12% of dinitrile was introduced. The mixture was stirred until the hardener
was completely dissolved. After its cooling down to room temperature, it was ground into
a powder.

The polymer–polymer mixture was prepared by mixing URC with prepared PhFR on
a screw extruder in a ratio of 85 wt.% rubber and 15 wt.% resin, followed by rolling. At
first, URC in the form of a strip was placed in an extruder and spun. The obtained prepack
product was passed through rollers to produce a sheet of 1 mm thick. Then, PhFR powder
was evenly distributed onto the rolled rubber sheet, and the sheet was rolled lengthwise and
passed through rollers. The resulting polymer–polymer composition was passed through an
extruder and then again through rollers for the more uniform distribution of PhFR particles
in URC. The cycle was repeated several times until a uniform polymer–polymer mixture
was obtained. Elastomeric composites were prepared by mixing the URC/PhFR polymer–
polymer mixture and recycled polytetrafluoroethylene (r-PTFE, TOMFLONTM) powder in
an extruder followed by rolling according to the scheme depicted on Figure 1. Recycled
PTFE powder was evenly distributed onto a rolled sheet of the URC/PhFR mixture. Then,
the sheet was twisted and passed through rollers and the extruder. Operations using rollers
and an extruder were repeated 5 times. The content of recycled polytetrafluoroethylene in
the composite was 10, 15, 20, and 30 wt.%.
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Figure 1. The procedure of elastomeric composite fabrication. 
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in jet mills, the particles are destroyed along these defects. As a result, ribbon-shaped par-
ticles are formed whose molecular structure completely corresponds to the structure of 
industrial samples of polytetrafluoroethylene [38]. 

Recycled polytetrafluoroethylene (r-PTFE) was produced by mechanically grinding 
waste polymer by attrition in a designed and manufactured plant [34]. The particle sizes of 
the powder obtained by this method have a wide scatter and are in the range of 5–100 µm. 

Micrographs of the fluoropolymer powders were obtained using an optical micro-
scope Altami МЕТ 2С with 5 MP camera and Altami Studio program. Samples of r-PTFE 
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X-ray diffraction data of the samples were obtained at room temperature on a D8 
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shooting interval 2θ = 10–70°; scanning step—0.02076°). The processing of experimental 
data using full-profile analysis methods and the calculation of the degree of crystallinity 
were performed using the TOPAS 4.2 software package [40]. The profile analysis proce-
dure is based on modeling an experimental X-ray pattern by the sum of approximating 
functions for the background and individual diffraction maxima [41]. A 1st-degree Che-
byshev polynomial was used to model the XRD pattern background. The total integrated 
intensity of all observed reflections, which were described by the Split-PearsonVII analyt-
ical functions, was taken as the crystalline component of PTFE. Split-PseudoVoigt analyt-
ical functions were used to model the amorphous contribution [40]. The refinement of 
variation parameters by nonlinear OLS was stable and resulted in low Rwp factors. The 
degree of crystallinity of the sample was calculated automatically in Topas 4.2 software 
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line_area is the total integral area of all peaks assigned to the crystalline component, and 
amorphous_area is the total area reflexes attributed to amorphous phases. Reflection areas 
are calculated automatically, taking into account the necessary corrections, e.g., Lorentz 
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The co-rotating extruder with screw thread and screw feed with 60 rpm was used for
the experiments. The size of the extruder working area (L/D) was 25 cm × 15 cm.

Ultrafine polytetrafluoroethylene of the TOMFLONTM trademark is a loose friable
white powder with a particle size of ~5 µm (Technical Specifications No. 2213-001-12435252-
03) produced by radiation in Fluoropolymer Technologies LLC (Tomsk, Russia). This
method of processing PTFE waste is a combinational one, combining radiation and mechan-
ical processing. Radiation treatment is carried out by accelerated electrons and leads to the
accumulation of defects, which in turn initiate the appearance of micro- and macrocracks in
the polymer. During the subsequent mechanical processing of the material in jet mills, the
particles are destroyed along these defects. As a result, ribbon-shaped particles are formed
whose molecular structure completely corresponds to the structure of industrial samples of
polytetrafluoroethylene [38].

Recycled polytetrafluoroethylene (r-PTFE) was produced by mechanically grinding
waste polymer by attrition in a designed and manufactured plant [34]. The particle sizes of
the powder obtained by this method have a wide scatter and are in the range of 5–100 µm.

Micrographs of the fluoropolymer powders were obtained using an optical microscope
Altami MET 2C with 5 MP camera and Altami Studio program. Samples of r-PTFE and
TOMFLONTM powders were dispersed by ultrasonication in an GA008G ultrasonic bath
(40 kHz, 60 W) for 2 min in ethyl alcohol and then placed on a glass substrate.

X-ray diffraction data of the samples were obtained at room temperature on a D8
ADVANCE Bruker AXS powder diffractometer with a Vantec-1 detector (CuKα radiation;
shooting interval 2θ = 10–70◦; scanning step—0.02076◦). The processing of experimental
data using full-profile analysis methods and the calculation of the degree of crystallinity
were performed using the TOPAS 4.2 software package [40]. The profile analysis procedure
is based on modeling an experimental X-ray pattern by the sum of approximating functions
for the background and individual diffraction maxima [41]. A 1st-degree Chebyshev poly-
nomial was used to model the XRD pattern background. The total integrated intensity of
all observed reflections, which were described by the Split-PearsonVII analytical functions,
was taken as the crystalline component of PTFE. Split-PseudoVoigt analytical functions
were used to model the amorphous contribution [40]. The refinement of variation parame-
ters by nonlinear OLS was stable and resulted in low Rwp factors. The degree of crystallinity
of the sample was calculated automatically in Topas 4.2 software using the formula [42] de-
gree_of_crystallinity = 100 × crystalline_area/(crystalline_area + amorphous_area), where
degree_of_crystallinity is the degree of crystallinity, crystalline_area is the total integral
area of all peaks assigned to the crystalline component, and amorphous_area is the total
area reflexes attributed to amorphous phases. Reflection areas are calculated automatically,
taking into account the necessary corrections, e.g., Lorentz polarization.

Thermographic studies were carried out on a synchronous thermal analyzer STA
449C Netzsch at a temperature rise rate of 5◦/min in an air atmosphere, in corundum
crucibles. The flow of the main gas N2/O2 was 50 mL/min, and the protective gas N2/O2
was 20 mL/min. The sample weight varied from 7 to 50 mg.
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Morphological studies and local elemental analyses were carried out using scanning
electron microscopy on a high-resolution microscope JSM-7800F Jeol with a mounted
energy-dispersive microanalysis system X-MAX-20 Oxford Instruments in the laboratory of
Technology of polymer nanocomposites of the North-Eastern Federal University in Yakutsk
(Yakutsk, Russia). Sample preparation for studying the structure in the bulk of the samples
was carried out using the brittle cleavage method by cooling in liquid nitrogen. Carbon
was used to create a conductive layer on the surface of the samples.

Relative elongation and tensile strength were determined according to State Standard
No. 11262-80 [43] on an INSTRON 3367 testing machine at room temperature and a moving
speed of movable grips of 200 mm/min on standard blades. The number of samples per test
was five. The tribological parameters (friction coefficient and wear rate) of the elastomeric
composites were determined using an SMT-1 friction machine according to the following
scheme: rotating shaft–fixed liner during friction without lubricants. The sliding speed was
0.85 m/s, the load was 5 kg, and the duration of the test was 3 h. For each material, five
samples were used. A bushing made of carbon steel 45 (the analog to AISI 1045 steel) with
a diffusion-hardened surface after boriding (2100 HV100), polished to Ra < 0.01 µm, was
used as a counter-body. The chemical composition of AISI 1045 steel is given in Table 1.
The relative wear rate of elastomeric composites was determined as the weight loss of the
sample by the time of abrasion (mg/h). The weight loss of the samples was measured on
an AGN-200 analytical balance every 10–15 min with an accuracy of ±2 × 10–3 g.

Table 1. The chemical composition AISI 1045 steel, wt.%.

Element C Mn P S Fe

Content 0.42–0.5 0.6–0.9 up to 0.04 up to 0.05 98.51–98.98

3. Results

Figure 2 shows microimages of recycled r-PTFE and TOMFLONTM powders. The
particle size of r-PTFE ranges from 5 to 180 µm (Figure 2a). TOMFLONTM is a powder that
is more uniform in dispersion, the particles of which have a size of ~5–10 µm (Figure 2b).
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Figure 2. Microphotographs of PTFE powders: (a,b) r-PTFE; (c,d) TOMFLONTM.

The XRD patterns show the most intense peak at 2θ 18◦, small peaks in the region of
2θ 30–70◦ characteristic of the crystalline phase of polytetrafluoroethylene, and a halo for
the amorphous phase in the region of 15–17◦ and 30–50◦ (Figure 3). All samples had a clear
match with card 00-047-2217 of the ICDD database (PDF-2).

For all samples, a three-phase structure is observed: a crystalline phase and two
amorphous components. The first amorphous phase (I), characterized by a diffuse maxi-
mum in the region 2θ around 16–17◦, is the “ordinary” amorphous phase of the polymer,
consisting of entangled chains of macromolecules, while another amorphous phase (II),
observed at diffraction angles 2θ 30–50◦, is a low-molecular amorphous formation with a
molecular structure different from PTFE chains. The degree of crystallinity of the samples
was determined as the ratio of the integral intensity of the crystalline reflection to the total
intensity of this reflection and diffuse scattering located in the same region of diffraction
angles [44–46]. For instance, Figure 4a presents the results of a profile analysis of WPTFE:
experimental, calculated and difference X-ray diffraction patterns, as well as profiles of all
reflections attributed to both the crystalline and amorphous components of the sample. The
amorphous components of the polymer were taken to be the maximum of a diffuse nature,
localized in the region 2θaround 16–17.5◦, as well as a “powerful” amorphous halo with
2θ 38–40◦ (Figure 4b) [44–46]. Figure 4c shows the procedure for profile analysis based on
modeling an experimental X-ray diffraction pattern by the sum of approximating functions
for the background and individual diffraction maxima [41].

Table 2 presents the results of the profile analysis for all studied samples. Based on the
data obtained, the quantitative ratios of the crystalline and amorphous phases I and II of
WPTFE and processed PTFE powders were calculated, as well as the degree of crystallinity
of the samples depending on the processing technology (Table 3).
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Table 2. Results of profile analysis for all studied samples.

Sample Phase Reflection Positions by 2θ, ◦ Integral Peak Area Rwp

WPTFE

Crystalline 17.7◦; 31.2◦; 36.3◦; 36.8◦; 41.0◦;
48.9◦; 55.9◦; 65.9◦; 68.8◦ 30,571.2152

4.079
Amorphous I 17.4◦ 26,022.4045

Amorphous II 38.8◦ 27,561.4415

r-PTFE

Crystalline 18.2◦; 31.7◦; 37.2◦; 37.7◦; 41.4◦ 37,831.0084

3.317Amorphous I 16.7◦ 19,139.5714

Amorphous II 40.1◦ 2274.41598

TOMFLONTM

Crystalline 18.1◦; 31.6◦; 36.6◦; 40.4◦ 22,596.3958

6.069Amorphous I 17.3◦ 5457.07316

Amorphous II 38.2◦ 21,008.7386
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Amorphous II 40.1° 2274.41598 

TOMFLONTM 

Crystalline 18.1°; 31.6°; 36.6°; 40.4° 22,596.3958 
6.069 Amorphous I 17.3° 5457.07316 

Amorphous II 38.2° 21,008.7386 
  

Figure 4. XRD patterns: (a) modeling of the peaks of the crystalline phase for the WPTFE sample;
(b) modeling of halo of amorphous phases; (c) modeling of the entire radiograph, where blue line is
experimental X-ray diffraction pattern indicated, red line is calculated radiograph indicated, gray
line is difference radiograph, and lilac line is profiles of all reflections, assigned to both the crystalline
component of the sample and the amorphous one.

Table 3. Phase composition and degree of crystallinity of the studied fluoropolymer samples.

No Sample
Phase Composition, % * Degree of

Crystallinity, %Crystalline Phase Amorphous Phase I Amorphous Phase II

1 WPTFE 36.3 30.9 32.8 54.0
2 r-PTFE 64.0 32.3 3.7 66.5
3 TOMFLONTM 43.0 10.1 46.9 81.0

* The degree of crystallinity was calculated as the ratio of the fraction of the crystalline phase to the fractions of
the crystalline and amorphous phase I.

The analysis of the data presented shows that the content of amorphous phase II for
all fluoropolymers ranges from 3 to 50%. The TOMFLONTM sample has a significantly
higher degree of crystallinity compared to the r-PTFE sample, which may be due to the
virtually defect-free formation of polymer crystallites during irradiation with accelerated
electrons followed by mechanical processing. When PTFE is irradiated, the rupture of
macromolecular chains occurs predominantly in the amorphous region with the formation
of shorter macromolecular chains. The increase in crystallinity upon irradiation can be
explained by increased cross-linking at certain irradiation doses. The possible radiation
rupture of the macromolecular chain, which causes the mobility of the resulting molecular
fragments of the polymer, leads to the removal of residual stress in the amorphous region
and a decrease in the likelihood of the entanglement of macromolecular chains with the
formation of additional small crystallites [27]. Higher crystallinity (81%) is characteristic of
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the sample with a lower molecular weight (TOMFLONTM), which is consistent with the
results of TG and DSC (Figure 5). This indicates that during the radiation processing of
PTFE, the polymer chain is broken [29].
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Figure 5 shows the TG and DSC curves of fluoropolymers. The temperature of the
beginning of mass loss of waste PTFE (WPTFE) is 533 ◦C; recycled polytetrafluoroethylene
(r-PTFE)—525 ◦C; TOMFLONTM—501 ◦C (Figure 5a). Table 4 presents the temperatures at
which mass loss of 10, 30, and 50 wt.% occur for WPTFE, r-PTFE, and TOMFLONTM fillers.
The heat resistance of r-PTFE and TOMFLONTM powder is lower in comparison with
the heat resistance of WPTFE, by 1.5% and 6.0%, respectively. The peak phase transition
(melting) for WPTFE is observed at 333.5 ◦C and shifts to the low-temperature region for
recycled fluoropolymers (r-PTFE—329.2 ◦C and TOMFLONTM—325.5 ◦C) (Figure 5b). The
radiation method for producing dispersed particles is based on the low resistance of PTFE
to ionizing radiation. The destruction of PTFE occurs due to the rupture of macromolecules
under the influence of a flow of electrons or γ-quanta, which leads to a decrease in molecular
weight by approximately 10–30 times [37]. A partial mechanical destruction of the polymer
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is possible with the mechanical grinding of PTFE waste, which is also accompanied by a
slight decrease in molecular weight and, as a consequence, a decrease in heat resistance
and melting point (Figure 5).

Table 4. Temperatures T0.1, T0.3, and T0.5, at which, mass loss of 10, 30, and 50 wt.% occur,
respectively, for different PTFE fillers.

No. Sample PTFE Filler
Type

T0.1
10 wt.%

T0.3
30 wt.%

T0.5
50 wt.%

1 WPTFE 533 559 571
2 r-PTFE 525 543 554
3 TOMFLONTM 501 535 548

SEM micrographs of the cleavage surface of the elastomeric composite URC/PhFR/r-
PTFE and URC/PhFR/TOMFLONTM are shown in Figures 6 and 7. A heterogeneous
microstructure with a pronounced phase boundary is observed. The 10% additive results
in a microstructure with well-dispersed PTFE particles in the form of spherical particles for
the URC/PhFR/TOMFLONTM composite and in the form of elongated particles for the
URC/PhFR/r-PTFE composite (Figure 6a,b). The elemental composition of the composite
materials URC/PhFR/TOMFLONTM and URC/PhFR/r-PTFE is presented in tables in
Figures 6 and 7. Two morphological phases can be distinguished in the microimages of
the samples. The first composition in spectrum 1 corresponds to the antifriction filler,
while the second phase in spectrum 2 characterizes the polymer–polymer mixture based
on URC/PhFR (Figure 6a). The appearance of fluorine during EDS analysis in spectrum 1
(Figure 6b), spectrum 2 (Figure 7a), and spectrum 1 (Figure 7b) also indicates the presence
of recycled PTFE in the form of inclusions on the background of the monolithic part of the
samples. Particles’ agglomeration tendency is observed with an increase in the content
of the dispersed phase to 20% on SEM images (Figure 7). The maximum fluorine content
increases to 39% and 70% for the URC/PhFR/TOMFLONTM and URC/PhFR/r-PTFE
composites, correspondingly.
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It should be also noted that a brittle fracture surface is observed for the URC/PhFR/
TOMFLONTM composite, while the URC/PhFR/r-PTFE composite shows a ductile fracture
surface. This difference in microstructure affects mechanical properties, which will be
further discussed in this paper.

During electron irradiation, the surface of PTFE powder is functionalized with car-
boxylic acid fluoride (–COF) and carboxyl groups (–COOH) [25,29]. During the mechanical
abrasion of WPTFE, chemical bonds in the polymer chain are broken and, as a result, active
fragments of macromolecules (radicals) are formed that initiate chemical reactions with at-
mospheric oxygen. The presence of such functional groups and persistent reactive radicals
improves the compatibility and uniform distribution of recycled PTFE in the URC/PhFR
matrix. Other studies [26,37] indicate that the stimulation of intramolecular stress relaxation
occurs under the influence of ionizing radiation, alternating mechanical and temperature
loads. In addition, in correspondence with a decrease in polarization in PTFE particles and
the transition of particles to an unpolarized equilibrium, an uncharged state takes place.
This condition fosters optimizing the shape and size of the resulting ultrafine particles and,
accordingly, obtaining a free-flowing PTFE powder that does not agglomerate.

On the contrary, obtaining a composite material was difficult when introducing in-
dustrial PTFE powder into the URC/PhFR elastomer matrix, which was associated with
slippage and the delamination of the material during rolling.

The thermal stability of the resulting elastomeric composites was studied (Figure 8).
The greatest weight loss during heat treatment at the beginning of destruction is ob-
served for the polymer–polymer mixture URC/PhFR and the elastomeric composite
URC/PhFR/TOMFLONTM, and the smallest for the elastomeric composite URC/PhFR/r-
PTFE. The temperature τ10 at which 10% mass loss of URC/PhFR occurs is 309 ◦C, and
for the elastomeric composites URC/PhFR/TOMFLONTM and URC/PhFR/r-PTFE, it is
316 ◦C and 381 ◦C, respectively (Table 5).
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Figure 8. TG curves of polymer–polymer mixture and elastomeric composites: 1—URC/PhFR;
2—URC/PhFR/TOMFLONTM; 3—URC/PhFR/r-PTFE.

Table 5. Temperatures T0.1 and T0.3, at which, mass loss of 10 and 30 wt.% occurs, respectively, for
different elastomeric composites.

No. Sample Type of Elastomeric
Composite

T0.1
10 wt.%

T0.3
30 wt.%

1 URC/PhFR 309 449
2 URC/PhFR/r-PTFE 381 499
3 URC/PhFR/TOMFLONTM 316 441

Studies of the deformation-strength properties of elastomeric composites have shown
that the introduction of TOMFLONTM and r-PTFE powder leads, in general, to a decrease in
strength and elongation at break, which is associated with the poor compatibility of recycled
PTFE with the URC/PhPR elastomeric matrix (Figure 9). It can be seen that with a low
filling of up to 10%, the deformation-strength properties of the composite are at the level of
the properties of the elastomeric matrix or decrease slightly, which can be explained by the
better dispersion of the filler in the matrix. With an increase in the content of antifriction
filler, the agglomeration of particles is observed, which leads to an increase in internal
stresses in the composite, and consequently, a decrease in deformation-strength properties.

Both PTFE fillers act as a solid lubricant for the elastomeric composites. The studies of
tribological properties show that when TOMFLONTM and r-PTFE fillers are introduced
into the elastomeric matrix, a decrease in the coefficient of friction (COF) (µ) is observed
over the entire filling range (Figure 10).
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Figure 10. Coefficient of friction of an elastomeric composite depending on the content of antifriction
filler: 1—URC/PhPR/r-PTFE; 2—URC/PhPR/TOMFLONTM.

A significant improvement in the tribological properties of the material is observed
with the introduction of filler in an amount of 15 wt.% (Figure 11). Thus, the wear rate of
materials is reduced by 20%, which is explained by the presence in the URC/PhFR elastomer
matrix of a component with a low coefficient of friction and antifriction properties.
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4. Discussion

A comparative analysis of the deformation-strength characteristics depending on the tech-
nology for processing the antifriction filler showed that the URC/PhFR/TOMFLONTTM elas-
tomeric composite is superior to URC/PhFR/r-PTFE. According to XRD data, TOMFLONTM

powder exhibits higher crystallinity of 81% (Table 3), which increases the tensile strength
of the elastomeric composite. In addition, the higher dispersion of the TOMFLONTTM

powder, its greater functionality due to the presence of groups (–COF, –COOH), and the
higher content of amorphous phase II contribute to obtaining a more homogeneous material
with improved mechanical properties (tensile strength and wear resistance) due to better
compatibility with the elastomeric matrix [25,29]. A mixing of the macromolecules of the
initial components occurs in the boundary region between the dispersed phase of the filler
and the elastomeric matrix. Apparently, in the boundary regions, shorter macromolecules
of both components are mixed, the thermodynamic affinity of which is the greatest [47].

It is known that the improvement in tribological characteristics is explained by the
interaction between the polymer surface, the embedded filler particles, the counter-body
(often metallic), and the size of the resulting polymer wear particles [18]. The uniform
distribution of r-PTFE and TOMFLONTM particles in the elastomeric matrix of URC/PhFR,
due to the functional groups, leads to increased intermolecular interaction at the interface,
and as a result, a decrease in the mobility of macromolecules of the components, which
increases the wear resistance of the material. It is possible that friction of an elastomeric
composite (with a content of up to 15 wt.% filler) is accompanied by the formation of
thin, homogeneous, continuous, and durable transfer films in the form of wear products,
consisting of small-sized polymer particles that act as a lubricant. It should be noted
that the elastomeric composite URC/PhFR/TOMFLONTM is characterized by better wear
resistance in comparison with URC/PhFR/r-PTFE. Obviously, this is due to the higher
dispersion of TOMFLONTM powder, its greater functionality, and the lower molecular
weight of the polymer, as was mentioned above. High content of amorphous phase II
(46.9%) in TOMFLONTTM powder also contributes to better friction reduction. Due to
the fact that amorphous phase II is a low-molecular-weight fraction (LMWF), its macro-
molecules are more easily released for self-lubrication in response to applied stress and
temperature [44–46]. As a result, thin transfer films may form on the opposing surface,
which provide good lubrication effects and lead to increased tribological properties of the
URC/PhFR/TOMFLONTM composite [48]. However, at higher filler content above 15%,



Lubricants 2024, 12, 29 16 of 18

the agglomeration of its particles is observed (Figure 7), which intensifies the wear of the
material (Figure 11). The presence of agglomerates and weak intermolecular interactions
increase the likelihood of the formation of large wear debris. Large wear particles tend
to form clumpy, discontinuous, and incomplete transfer films that are unable to produce
ultra-low wear.

The enhanced performance characteristics of the developed elastomeric materials,
based on industrial nitrile butadiene rubber, phenol–formaldehyde resin, and solid lu-
bricant filler in the form of recycled PTFE, allows their use in tribological devices for the
manufacture of moving seals and sliding bearings, for example, Goodrich bushings.

Previous research established that r-PTFE retains most of its mechanical properties
and characteristics after processing [34]. The development of hybrid solid lubricants that
combine two or more fillers with their individual advantages is a prospective area for
further research and exploring new applications [49]. One possible direction is r-PTFE’s
combination with fullerenes and nano/micro-sized carbon particles [17]. It is necessary to
point out that, depending on the application operating conditions (sliding speeds, pressure,
temperature, etc.), these should be considered first while selecting additional fillers.

5. Conclusions

Elastomeric composites were obtained using waste products from polytetrafluoroethy-
lene. A decrease in the COF of the composite material is observed after the introduction
of the antifriction filler TOMFLONTM and r-PTFE. The filler content in the URC/PhFR
elastomeric matrix of 15 wt.% leads to a reduction in the wear rate of the resulting materials
by 20%. The results obtained show the possibility of using TOMFLONTM and r-PTFE
powder in an amount of 10–15 wt.% for creating elastomeric composites with increased
tribological properties.

It has been established that TOMFLONTTM powder is characterized by uniform
shape, homogeneous dispersion, and high content of low-molecular-weight amorphous
phase II, which leads to improved tribological properties of the URC/PhFR/TOMFLONTM

composite. Particles of r-PTFE powder have a greater tendency toward agglomeration and
broader particle size distributions which lower the properties of the elastomeric composite.
In this regard, further research is necessary to improve and modernize the PTFE waste-
processing installation, which will allow an antifriction filler with improved characteristics
to be obtained.

The following limitations must be taken into account in order to improve the tribologi-
cal characteristics of the materials being developed, such as aggregation, the dispersion
of filler particles, and functionality. Further study on the tribological performance of the
PTFE elastomeric composites is necessary to have a deeper understanding of their wear
mechanism. It is necessary to conduct research into contact surfaces of both components of
a tribosystem, an elastomeric composite and a counterpart. In addition, the examination
of wear products (debris, flake, etc.) will provide better understanding of the tribosystem
components’ interaction during the tests.
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