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Abstract: It is known that contact of rough surfaces occurs over an area much smaller than the
nominal contact area, and at asperity scale, increased hardness results in experimentally observed
asperity “persistence”, namely that it is hard to flatten asperities. Here, we consider Persson’s
elasto-plastic solution for rough contact together with an hardness equation proposed by Swadener,
George and Pharr for spherical indentation, including size effects depending on sphere radius, in
particular to define a new plasticity index that defines the tendency to plastic deformation. While
the classical plasticity index shows that at sufficiently small scales, there will be plastic deformations
unless surfaces are extremely smooth, and with size effects, the small roughness scales the content of
spectrum matter in defining the real state of asperities. In particular, what may appear as plastic at a
bulk scale returns to an elastic behaviour at a small scale, as suggested by the “asperity persistence”
experimental observation. Some illustrative examples are shown, but clearly, our index and elasto-
plastic solution are mainly qualitative, as a realistic investigation is much more complex and still
computationally too demanding.

Keywords: rough contact; Persson’s solution; hardness; indentation size effects

1. Introduction

It has been known for a long time that in the contact of metallic bodies, due to
roughness, the real contact area is much smaller than the nominal contact one, unless the
load is exceptionally high. However, even when the load is very high, like in a hardness
test, so the bulk of the material does deform plastically and the nominal contact area
increases (nearly) linearly with the load, even in a spherical geometry, the asperities do
not flatten out perfectly. Only some fraction at the top of the asperities actually flattens,
and classical experiments suggested that this part was a certain percentage of the projected
macroscopic indentation area [1–4]. One possible explanation for the phenomenon, called
the “persistence of asperities”, is the increase in indentation hardness at smaller length
scales, which contradicts the classical theory of plasticity, but which has been reported in
micro- and nanoindentation experiments and explained by several authors using concepts
of density of dislocations or strain gradient plasticity [5–7]. Indeed, hardness measured in
crystalline materials with sharp indenters increases with decreasing depth of penetration,
whereas for spherical indentation, the relevant length scale is the radius of asperity. In
spherical indentation, then, it has been suggested by Swadener, George and Pharr that
hardness, which at macroscopic scale appears as H0, increases with decreasing sphere
radius R as Hy(R)

Hy(R)
H0

=

√
1 +

R∗

Rp(R)
(1)

where Rp is the radius of the impression, which is 10–20% larger than the radius of the
asperity R, so we can assume Rp = 1.2R for the purpose of our discussion, and R∗ is written
strictly in terms of material constants [7]. Some authors suggest that at nanoscales, the
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hardness would be overpredicted, and alternative theories exist, for example, with a maxi-
mum allowable density of geometrically necessary dislocations [8]—but for its simplicity,
the Swadener, George and Pharr law is the most simple assumption for our purposes.

It should be said that other mechanisms may be at play to justify the increase in
hardness, one being interaction between asperities, studied, for example, by Gao and
Bower [9], who found that this could double the typical hardness Tabor prediction of
H0 = 3σy (where σy is the yield stress in uniaxial conditions), and Manners [10] showed
that there would be no finite limit to this increase in a rigid perfectly plastic model in a
situation of full containment of plastic flow. Yet, another mechanism is work hardening,
which is, however, relevant only for some materials, and generally is governed, for a
spherical indentation, by the strain level expressed as a/R, where a is contact radius [7].
Generally size effects tend to be more pronounced than hardening effects, and we shall
consider mainly the former.

In recent years, significant attention has been paid to the description of contact bodies
with rough surfaces. Persson introduced a successful theory of elastic contact between
randomly rough surfaces [11], where the probability distribution of contact pressures is
found to evolve as more wavelengths of roughness are introduced, resulting in a linear
diffusion equation for the probability distribution. The theory was mostly developed for
elastomers, for which very high strains can be reached in the elastic regime (although
nonlinearity may emerge). A much less known generalization of the theory to the case of
elasto-plastic materials exists [12], which could be more appropriate for metallic materials,
and is perhaps simplistic as it merely replaces a boundary condition on his linear diffusion
equation so that no pressure can be higher than the hardness limit. Persson also attempted
to introduce the size-dependence of hardness as a function of the “magnification” (the
ratio of the upper wavevector cutoff q1 to lower wavevector cutoff q0 in the roughness
power spectrum PSD) without specific reference to actual possible dependencies [13],
while Xu et al. [14] obtained a closed-form result for the elasto-plastic theory (which we
summarize in Appendix A, as we use here). The theory can only give the area–load
relationship, and not the load–displacement one. Venugopalan et al. [15] attempted to
compare Persson’s elasto-plastic theory with full dislocation dynamics simulations, and
found the results to be in good agreement when the rough surface has a very small root-
mean-square (rms) height. This is rather expected, since in that case, the contact is mainly
elastic, and Persson’s theory is known to work well in this case. For larger and more
realistic rms heights for metal surfaces, the agreement is no longer good if one uses a
size-independent hardness, so Venugopalan et al. [15] introduced the yield strength found
directly in the simulation, which makes the agreement good again, but quite obvious.
Venugopalan et al. [15] obtain that the pressure on the asperities is low for the low hrms case
(and not far from the reference hardness without size effect), while it is high (10 time higher)
for the large hrms where the radius of asperities will be smaller by way of how the construct
roughness with same upper and lower wavevector cutoffs, in qualitative agreement to our
view of the Swadener, George and Pharr law (our Equation (1)).

Tiwari et al. [16] conduct an interesting experimental campaign of indentation experi-
ments of aluminum blocks, of which they measure roughness before and after spherical
indentation, and compare them with a BEM numerical simulations where elastic deforma-
tions are exact but plastic deformations are simply obtained without restricting perfectly
plastic flow without work hardening. As size-independent indentation hardness leads to
a spherical-cup indented area with all asperities flattened, contradicting the experiments,
Tiwari et al. [16] increase indentation hardness at the asperity level by a factor of about
2.5—ad hoc for their case. The deformation predicted by the simple BEM model then
agrees well (at least, qualitatively) both in terms of the strongly skewed height probability
distribution and the surface roughness power spectra of the plastically deformed sur-
faces. However, results that seem valid for their aluminum may not be general, as indeed
they recall that for some polymers, in particular polyethylene, after plastic deformation,
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a perfectly symmetric Gaussian-like height probability distribution was experimentally
previously found.

Jackson and Jacobs [17] recently discussed multiscale and statistical models, showing
that the inclusion of scale-dependent strength leads to a prediction of contact area closer
to that of the elastic model, particularly when a wide range of size scales is included.
Violano and Afferrante [18] use a model of interacting and coalescing spherical asperities,
so that they can use well-known previous results of indentation of elasto-plastic spheres,
but neglect size effects. They find, as expected, that the nanoscale amplitude of roughness
can correspond to the elastic solution, but for microscopic scale roughness, plasticity is
important, and a good approximation for the area–load relationship is Persson’s elasto-
plastic solution, which converges when adding smaller wavelengths in the roughness due
to the constant hardness.

In conclusion of this brief overview, we see that the existing literature strongly differs
in the conclusion, depending on the assumption of size effects of the hardness, with simpler
models without size effects leading to plasticity at small scales, while more refined models,
which include size effects, show a strong increase in asperity pressures, and therefore
hardness, and a behavior close to the elastic one.

Returning to more classical work, one indicator for the emergence of plasticity in
the contact of rough surface of rms roughness hrms was introduced by Greenwood and
Williamson [19] whose model was based on identical (and independent) asperities of radius
R, leading to an index

ΨGW =
E

H0

√
hrms

R
(2)

where E is the (composite) elastic modulus of the contacting surfaces. Large roughness or
small asperity radius contribute to a higher likelihood of plastic deformations, indicated by
ΨGW > 1.

In the present paper, we shall combine Persson’s elasto-plastic solution with the
Swadener, George and Pharr law (Equation (1)) and introduce an appropriate plasticity
index as a consequence. The state of asperities in the contact of (metallic) rough surfaces is
a problem which is still largely unresolved but is relevant to a wide spectrum of applica-
tions in tribology, starting from friction. While the classical Bowden and Tabor theory of
friction is based on a plastic state of asperities, already classical experiments and theory
by Archard [20] suggested that Amonton’s law for friction could hold also with an elastic
multiasperity model especially for loading after a phase of running in. Lim et al. [21]
do report for poorly lubricated metallic contact at low speeds a friction coefficient which
increases with roughness. Tabor [22–24] discusses the implications of the classical plasticity
index for the basic understanding of friction wear and adhesion. In particular, he argues
that for most engineering surfaces, the classical plasticity index is greater than 1, the true
contact pressure is the hardness, and the contact is predominantly plastic. In particular,
Tabor recognizes that only for bearing steel (which is quite hard), the contact is predomi-
nantly elastic even for relatively rough surface. Even Tabor does discuss the effect of size
in the yield strength of material, mentioning for example that gold had been observed to
have 10 times higher strength at small scales, although this increase may be reduced for
work hardened materials. However, at the time of Tabor there was no theoretical model
to take this size effect into consideration. Unfortunately, there are many difficulties to
make the connection between the plasticity indexes and actual tribological performances
quantitative: the plasticity index is not related quantitatively to any macroscopic quantity
such as wear or friction coefficient, and hence it is difficult to make quantitative judgements
on what should be its correct form. Only recently numerical and experimental techniques
are starting to give some progress on the real conditions at asperity levels (and we have
given some examples), and would lead in the future to a better understanding at this scale,
and make connection with the macroscopic scale in quantitative terms.

Our new index and our discussion is mainly aimed at prompting more discussion on
rough contacts and guiding full-scale simulations, which are emerging recently; see, for
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example, the case of repeated indentation [25], which in the future will be able to include
broad spectra of roughness, size effects, and other realistic features in the plastic behavior.
A plasticity index is certainly a concise measure that we hope to have as an alternative to
full-scale simulations or very sophisticated experimental investigations, and this gives the
motivation of the present paper. Notice that we are looking at the size effect in hardness,
while we are assuming dry contact, isothermal conditions, and an absence of adhesive
effects, and we are neglecting strain hardening.

2. The Model

Assume the surface h(x, y) has a continuous noise spectrum in two dimensions and is
described by a Gaussian stationary process. In such case, we write

h(x, y) = ∑
n

Cn cos
[
qx,nx + qy,ny + ϕn

]
(3)

where the wave-components qx,n and qy,n are supposed to be densely distributed through-
out the

(
qx, qy

)
plane. The random phases ϕn are uniformly distributed in the interval

(0.2π). The amplitudes Cn are also random variables. The function C
(
qx, qy

)
is the power

spectral density (PSD) of the surface h. Defining in general for the (s, t)th moment of
C
(
qx, qy

)
as

mst =
∫ +∞

−∞

∫ +∞

−∞
C
(
qx, qy

)
qs

xqt
ydqxdqy (4)

In particular, one can show that the rms roughness hrms =
〈

h2〉 = m0, while the
root-mean-square slope of the surface is

h′rms =

√〈
|∇h|2

〉
=

√√√√〈(
∂h
∂x

)2
+

(
∂h
∂y

)2
〉

=
√

m20 + m02 =
√

2m2 (5)

Finally, if we define the rms curvature as h′′rms =

√〈
(∇2h)2

〉
, then

h′′rms =

√√√√〈(
∂2h
∂x2 +

∂2h
∂y2

)2
〉

=

√√√√〈(
∂2h
∂x2

)2

+

(
∂2h
∂y2

)2

+ 2
∂2h
∂x2

∂2h
∂y2

〉
=

√
m40 + m04 + 2m22 =

√
8m4/3 (6)

Let us consider, for simplicity, a roughness for a self-affine surface of pure power law
isotropic PSD (power spectrum density) C(q) = Zq−2(1+H) for q1 > q > q0, [C] = [m4],
[Z] = [m2−2H ] where H is the Hurst exponent, not to be confused with hardness Hy.
The moments of the spectrum are therefore

m0 ≃ π

H
Zq−2H

0 , m2 ≃ Zπq2−2H
0

(
ζ2−2H

2 − 2H

)
(7)

m4 ≃ Z
3
4

πq4−2H
0

(
ζ4−2H

4 − 2H

)
(8)

The mean radius of asperities (summits) from random process theory is therefore

Rs =
3
8

√
π

m4
(9)

The mean pressure at the asperity level at a given spectrum breadth (or “magnification”
in Persson’s notation), ζ = q1/q0 where q1 is the largest wavevector introduced in the
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spectrum and q0 is the smallest, in the elastic Persson model for not too large areas
(A/A0 < 0.3–0.4), is

pasp =
P
A

=
√

V =
1
2

Eh′rms =
1
2

E
√

πZ
1 − H

q1−H
1 (10)

where A is the real (elastic) contact area (not the nominal one A0) and
√

V = 1
2 Eh′rms is the

rms full contact pressure. In the present paper, we do not provide a criterion for when
a single asperity changes its behavior from elastic to plastic. For any value of plasticity
index, the mean pressure at the asperity level is constant and load-independent: although
some asperities will have increased load if macroscopic load is increased, new asperities
are formed and the average remains the same. Therefore, in this sense, following the exact
behavior of each asperity is not needed. Hence, the ratio of mean asperity pressure to
hardness defines a “plasticity index”:

ΨP =
pasp

H0
=

√
V

H0
=

E
2H0

√
2m2 =

1
2

E
H0

√
πZ

1 − H
q1−H

1 (11)

and hence since for metals E
H0

= 25 − 1000 [26], it seems that we need extremely smooth
roughness to avoid plasticity (since at small scales it is not uncommon to find

√
m2 ≃ 1),

neglecting indentation size effects. For example, the order of roughness reported in [18]
to be in the range between the elastic and plastic regime with magnification of ζ = 128 is
in the order of 30 nanometers, which is unlikely to be the surface finish of metallic rough
surfaces even after the process of running in. Hence, the standard case with macroscopic
hardness would show some tendency to plastic deformation at the asperity scale, and it
becomes important, therefore, to include indentation size effects if we want to speculate
more accurately.

A new plasticity index can therefore be formulated considering indentation size
effects by combining the elastic Persson’s theory with the Swadener, George & Pharr law
(Equation (1)) obtaining

Ψ∗ =
E

2H0

√
1 + R∗

1.2 3
8

√
π

m4

√
2m2 (12)

Assuming asperity radius is small enough so that R∗
Rp

>> 1 and the case of pure power law
spectrum, we obtain

Ψ∗ ≃ 0.335
E

H0
√

R∗
21/2π1/2(4 − 2H)

1/4( 3
4
)1/4

(2 − 2H)1/2
Z1/4q−H/2

1 (13)

and hence the new index (13) consists of two terms: a material parameter E
H0

√
R∗ and a

geometrical roughness-related quantity, which is low for low power spectrum intercept Z
and high large wavevector cutoff q1. Both the original index ΨP (Equation (11)) and the new
index Ψ∗ (Equation (13)) seem to depend crucially on how we truncate the roughness spec-
trum. However, while ΨP (Equation (11)) grows as q1−H

1 , the new index Ψ∗ (Equation (13))
decays as q−H/2

1 ; therefore, while we can obtain that for sufficiently high "magnification",
the old index indicates that all asperities smaller that a certain scale are in a plastic regime,
the next index could indicate that contact may appear as plastic at a bulk scale of large
asperities, but returns to an elastic behavior at small scales, in agreement with the “asperity
persistence” experimental observation.

3. Some Results Using the Persson Elasto-Plastic Solution

The plasticity index we have defined is based on the elastic classical solution from
Persson. However, the elasto-plastic solution suggests that there is always a certain per-
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centage of the nominal contact area that is under plastic contact. Simply, this percentage
becomes significant when the rms full contact pressure is in the same order of hardness,
and therefore when the plasticity index is 1. Any use of the elasto-plastic solution to define
an alternative plasticity index would be based anyway on a choice of a threshold of plastic
contact area, and hence would not be more precise.

Let us start with the case of the absence of indentation size effects. Since the solution
for low loads is linear, in the plastic regime, we can also write in this case simply

A
A0

=
p

H0
(14)

whereas the original elastic Persson’s solution is

A
A0

=
Ael
A0

=

√
2
π

p√
V

(15)

Expressions for the total contact area in the Persson plastic solution are given in
Appendix A, and the plastic contact area can therefore be obtained by subtracting the elastic
one. As we discussed in the introduction, even very smooth surfaces would show significant
plastic deformations for metals. We consider, for example, a very smooth surface having

q0 = 105×m−1 , H = 0.8 and Z = 10−8× m0.4 resulting in hrms =
√

m0 ≃
√

π
H Zq−H

0 =√
π

0.8 10−510−5×0.8 = 20 nm while ζ = q1/q0 = 128. For this case, we show the results
of Figure 1, showing that the total contact area (red solid line) as the ratio of hardness to
elastic modulus H0/E increases, transitions from coinciding with the fully plastic one (the
blue solid line) to the fully elastic Persson’s elastic one (green line). However, only because
the surface is very smooth and the “magnification” is quite low (smallest wavelengths on
the micron scale λ1 = 2π/q1 = 2π/

(
128 × 105) = 0.5 µm) do we find that for practically

the entire realistic range of hardness, we observe an elastic solution.

Figure 1. The normalized initial slope of the area–load relationship H0
A0

dA
dp as a function of hardness

to elastic modulus H0/E for a rough surface, indicated in the text with hrms = 20 nm and with
magnification of ζ = 128. Solid black line indicates elastic area, blue line the plastic area, red line the
total contact area. Green line is the elastic Persson solution.

However, if we now fix the hardness to a quite high value H0/E = 10−2 and expand
the magnification ζ = q1/q0 to various values to see the effect of a wider and wider
spectrum of scales, we obtain Figure 2. Clearly, we see that even with such a smooth surface
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(in the sense of low hrms, which is hardly affected by ζ = q1/q0), the inclusion of large
wavevectors (small scales content) implies a transition towards the plastic regime if we
consider asperities in the order of λ1 = 2π/

(
1000 × 105) = 60 nm. Here, such a model

would imply no asperity persistence.

Figure 2. The normalized initial slope of the area–load relationship H0
A0

dA
dp as a function of magni-

fication ζ = q1/q0 for a rough surface indicated in the text with hrms = 20 nm and material with
high hardness to a quite high value H0/E = 10−2. Solid black line indicates elastic area, blue line the
plastic area, red line the total contact area. Green line is the elastic Persson solution.

3.1. Persson’s Solution Modified with Size Effects

If we now consider the effect of size-dependent hardness, we obtain for the same
case of Figures 1 and 2 with macroscopic hardness H0/E = 10−2 and with R∗ = 1 mm,
the results of Figure 3 where the area–load slope is now given by the elastic solution in
the entire range of magnifications. The lines of total contact area overlap with those of the
elastic Persson’s solution, while the plastic area is zero in the entire range.

Figure 3. Same as Figure 2, but here, normalization is with actual size-dependent hardness Hy
A0

dA
dp , so

that it first decreases and then increases with magnification ζ.

In fact, thanks to size-dependent hardness, we can increase largely the rms amplitude
of roughness to more realistic ranges, and at the same time take an example with decreased
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macroscopic hardness, yet find asperity-level elastic behavior. For example, we take
H0/E = 10−3 and hrms = 600 nm, with all parameters remaining the same, obtaining the
results of Figure 4, which return to elastic behavior at magnification of about ζ = 104.

Figure 4. Same as Figure 3, but here with increased amplitude of roughness and decreased hardness,
namely H0/E = 10−3 and hrms = 600 nm.

3.2. Discussion

Independently of size effect, due to hardening, hardness is also dependent on the
ratio ε = a/R. Individual contacts are not circular in real rough contacts. With the
Pastewka and Robbins [27] full numerical model, which finds a repulsive diameter, which
is independent on load—a characteristic size that they estimate depends only on purely
geometrical quantities:

drep = 4h′rms/h′′rms (16)

The total contact area in the elastic regime then is obtained by multiplying this diameter
by a perimeter, resulting in a contact area that is fractal in character both for area and for
perimeter. Hence, the ratio ε = a/R

ε =
drep

R
= 4

h′rms
h′′rms

h′′rms
2

= 2h′rms =

√
2Zπ

2 − 2H
q1−H

1 (17)

increases with wavevector cutoff, like indentation size effects, but it is unclear how work-
hardening effects and size effects combine, namely if they are sinergistic or the combined
effect is smaller than the cumulative effect of each of the two in isolation.

It is clear that the exact state of asperities on one hand is difficult to assess either by
numerical or by experimental methods, and on the other may not be that relevant when we
consider the macroscopic result on the laws of tribology. Indeed, as we have recalled in the
introduction, classical models for friction explain Amonton’s law (linear dependence of
frictional force on normal load) both with a plastic state of asperities (Bowden and Tabor’s
theory) or with an elastic one (Archard). The quantitative value of the friction coefficient for
some metals and dry friction conditions is also close to what was suggested by Bowden and
Tabor, with the simple view that it should correspond to the ratio of the shear strength to
the yield strength, which substantiates the prevailing view of the plastic theory. However,
a full plastic model also seems to suggest the highest damage to surfaces and the highest
wear, whereas an elastic multiasperity model may be closer to the real state of the contact,
especially for loading after a phase of running in. Lim et al. [21,28] report for poorly
lubricated metallic contact at low speeds a friction coefficient that increases with roughness.
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Obviously, our new index and our discussion are mainly aimed at prompting more
discussion on rough contacts and guiding full-scale simulations, which are emerging
recently; see, for example, the case of repeated indentation, which in the future will be able
to include broad spectra of roughness, size effects and other realistic features in plastic
behavior. A plasticity index is certainly a concise measure that we hope to have as an
alternative to full-scale simulations or very sophisticated experimental investigations, and
this gives the motivation of the present paper. Notice that we are looking at the size effect
in hardness, while we are assuming dry contact, isothermal conditions, and an absence of
adhesive effects, and we are neglecting strain hardening.

4. Conclusions

We have discussed the role of indentation size effects in the contact of rough sur-
faces, combining the Swadener, George and Pharr law (Equation (1)) into Persson’s elastic
solution to define a new plasticity index Ψ∗ (Equation (13)), which depends on material
properties, including a characteristic radius of asperities, below which the size effect be-
comes important, and geometry dependent quantities. Contrary to classical plasticity index,
the new index shows that small-scale features may return to elastic behavior, even though
at a macroscale, contact shows some bulk plasticity.

Therefore, it becomes important to study the plasticity at different scales. Obviously,
our index is merely a combination of simple equations, and may serve as a rapid assessment
of rough contacts, which may be useful, because the full investigation, involving a broad
spectra of roughness with discrete dislocation models or strain gradient plasticity, seems to
date to be computationally very intensive, although some examples exist [15,29] that are in
line with the results of the present investigation.

Funding: This research received no external funding.

Data Availability Statement: Data are available upon reasonable request from the author.

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature
h(x, y) surface elevation of the rough surface
C
(
qx, qy

)
the power spectral density (PSD) of the surface h bR radius of asperity

Hy(R) hardness dependent on radius of asperity
H0 macroscopic-level hardness
R∗ characteristic length scale
Rp the radius of the indentation impression, 10–20% larger than the radius of the asperity R
σy the yield stress in uniaxial conditions
a contact radius
q1 upper wavevector cutoff in the roughness power spectrum PSD
q0 lower wavevector cutoff in the roughness power spectrum PSD
hrms rms surface roughness height
h′rms root-mean-square slope of the surface
ΨGW Greenwood–Williamson plasticity index
E the (composite) elastic modulus of the contacting surfaces

h′′rms =

√〈
(∇2h)2

〉
rms curvature of the surface

H Hurst exponent of the surface
m0, m2, m4, moments of the surface spectrum
Z amplitude of the surface power spectrum

Appendix A. Persson’s Elasto-Plastic Solution

We summarize here the Persson elasto-plastic solution in the form suggested by
Xu et al. [14]. We start by recalling the variance of full contact pressures

V =
E2

2
m2 (A1)
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where E is plane strain composite modulus of the material pair, and m2 is the second
moment of the roughness spectrum.

We define the basic Gaussian

P0(p, V) =
1√

2πV
exp

(
− p2

2V

)
(A2)

and the two coefficients

a =
P0(H − p, V)[P0(p, V)− P0(2H − p, V)]

P0(H − p, V)P0(p, V)− P0(H + p, V)P0(2H − p, V)

b =
P0(p, V)[P0(H − p, V)− P0(H + p, V)]

P0(H − p, V)P0(p, V)− P0(H + p, V)P0(2H − p, V)

Finally, the total area Atot(V) is the sum of the elastic and plastic area Ael , Apl , and
with respect to the nominal contact area A0, gives

Atot(p, V, H)

A0
=

1 + a
2

erf
(

p√
2V

)
+ b erf

(
p − 2H√

2V

)
+

1
2
(1 − a + b) (A3)

The classical Persson elastic solution mentioned in the introduction paragraph

Ael
A0

=
p√
V

=
2p

E
√

2m2
(A4)

is slightly different from that obtained from Persson’s full solution

lim
p→0

Ael
A0

= lim
p→0

erf
p√
2V

→
√

8√
π

p
E
√

2m2
(A5)

as is a small improvement considering numerical solutions.
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