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Abstract: The solution of equilibrium positions is a critical component in the calculation of the
dynamic characteristic coefficients of aerostatic bearings. The movement of the rotor in one direction
leads to bidirectional variations in the air film force, resulting in low efficiency when using conven-
tional calculation methods. It can even lead to iterative divergence if the initial value is improperly
selected. This study concentrates on the orifice throttling aerostatic bearings and proposes a novel
method called the bivariate interpolation method (BIM) to calculate the equilibrium position. The
equilibrium equation for the rotor under the combined influence of air film forces, gravity, and
external loads is established. A calculation program based on the finite difference method is devel-
oped to determine the equilibrium position. The process of solving the equilibrium position and the
convergence is compared with the secant method and the search method. Furthermore, the variation
trend of the equilibrium position and stiffness when the external loads changes are studied based on
the BIM. Finally, the correctness of the BIM to solve the equilibrium position is proved by comparing
it with the experiment results. The calculation results indicate that the BIM successfully resolves the
problem of initial value selection and exhibits superior computational efficiency and accuracy. The
equilibrium position initially moves away from the direction of the external load as the load increases,
and then this gradually approaches the load direction. The main stiffness increases with increases in
the external load, while the variation in cross stiffness depends on the direction of the external load.

Keywords: equilibrium position; bivariate interpolation method; aerostatic bearing; external load; stiffness

1. Introduction

Aerostatic bearings utilize compressed air from external air sources to form an air film
that supports the movement of the parts. Compared to precision rolling bearings, aerostatic
bearings offer significant advantages in terms of motion accuracy, friction, rotation speed,
and environmental impact [1]. Consequently, aerostatic bearings have found widespread
applications in aerospace, precision machine tools, electronics and semiconductors, and
medical equipment [2–4]. Commonly used orifice throttling aerostatic bearings materials
are steel, brass, and aluminum [5]. In addition, porous materials also have more appli-
cations because of their superior characteristics [6], and the commonly used material is
graphite. Research on aerostatic bearings primarily focuses on topics such as bearing ca-
pacity, stiffness, stability, and flow rate [7,8]. The equilibrium position is an important basis
for judging the stability of aerostatic bearings [9], and it is also the premise of analyzing the
dynamic characteristic coefficients of aerostatic bearings under normal operation. While
the static load of practical bearings is typically known, the equilibrium position remains
unknown [10]. The accurate and efficient solution of the equilibrium position of a bearing
under a given load is a necessary prerequisite for studying the relevant characteristics of
aerostatic bearings.
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Solving the Reynolds equation is the first step to study the relevant characteristics of
aerostatic bearings, which can be divided into the finite difference method (FDM), the finite
element method (FEM), and the finite volume method (FVM) according to different solving
methods [11]. Due to the nonlinearity of the equilibrium equation, multiple iterations are
necessary to determine the equilibrium position of the bearing. Scholars have proposed
numerical calculation methods to solve the equilibrium position of the rotor. Shuai [12]
used the coordinate rotation method to solve the equilibrium position of the three-lobe
journal bearing and proved the feasibility of the numerical calculation method to solve
the equilibrium position of the three-lobe journal bearing. However, this method is not
suitable for the cylindrical sliding bearing. Qian [13] determined the equilibrium position
of the three-lobe journal bearing using the secant method. Wang [14] analyzed the influence
of unbalance force on the vibration characteristics of the narrow slit throttling aerostatic
bearing and observed that as the speed increases, the rotor’s equilibrium position gradually
moves towards the center of the bearing. However, no detailed method was provided for
solving the equilibrium position. Yu [15] used the search method to solve the equilibrium
position of the tilting pad journal bearing. By calculating the direction of the fastest
convergence of the air film force based on a given trial calculation point, the equilibrium
position of the bearing can be obtained. Results show that the method effectively solves the
divergence problem, although its calculation efficiency is low due to the frequent calculation
of the air film force. Wan [16] used the Newton iteration method to solve the equilibrium
position of the bearing and proposed a load approaching method to solve the problem of
the Newton iteration method, getting stuck in a dead loop due to inappropriate initial value
selection. Zheng [17] used the fast convergence speed of the Newton–Raphson method to
solve the equilibrium position of the bearing and subsequently determined the dynamic
characteristic coefficients. The accuracy of the method was proven by comparing it with
relevant references. Pokorny [18] optimized the Newton iteration method and compared it
with the Newton–Raphson method. The equilibrium position of the tilting pad bearing was
then determined, demonstrating the superiority of the optimized Newton method over the
Newton–Raphson method. Yang [19] has demonstrated through numerical analysis that
the twofold secant method converges faster than both Newton’s method and Newton’s
method with the P.C. format. Zhou [20] used the twofold secant method to solve the static
equilibrium position. The results show that the twofold secant method significantly narrows
down the search range in the initial iteration and achieves faster convergence compared
to the dichotomy method and the secant method. All of the aforementioned methods
for solving the equilibrium position used the static Reynolds equation. Furthermore,
the dynamic trajectory method can be employed to determine the equilibrium position,
although it often necessitates two to three days to ensure accurate calculations, making it
relatively time-consuming [21].

When the rotor is in a stable state, the dynamic characteristic coefficients of the bearing
during normal operation can be solved and analyzed. The methods for solving the dynamic
characteristic coefficients of the bearing include the difference method, the partial derivative
method, the small parameter method, and the finite element method [22–25]. Meng [26]
used the difference method to solve the stiffness of the oil-lubricated journal bearing and
analyzed the influence of bearing parameters. The accuracy of the calculated values was
proved by comparing the theoretical calculation values with the experimental data. Qi [27]
used the partial derivative method to solve the Reynolds equation defined in the complex
range and focused on investigating the effect of rotor disturbance frequency on stiffness
and damping coefficients. Li [28] solved the Reynolds equation using the partial derivative
method. The calculation results indicate that as the rotor position gradually approaches
the equilibrium position, the dynamic characteristic coefficients gradually converge to a
stable value.

In summary, many existing references calculate bearing-related characteristics using a
fixed eccentricity, but there is a lack of research on solving the equilibrium position and
conducting characteristic analysis under given loads. The current methods for solving the
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equilibrium position are primarily used for the liquid sliding bearing, and varying levels
of efficiency and convergence problems exist. This paper focuses on the orifice throttling
radial aerostatic bearing as the subject of research and presents a new method, called
the BIM, for determining the equilibrium position. The influence of external load on the
equilibrium position and dynamic characteristic coefficients is studied, and the calculation
results are discussed and compared with references and experimental data.

2. Building and Calculation of the BIM
2.1. Establishment of Mathematical Model of Bearing

Figure 1 depicts the structural model of the orifice throttling aerostatic bearing studied
in this paper. Table 1 provides the fundamental parameters of the bearing. O1 is the center
of the bearing, and O2 is the center of the journal. When there are no external loads present,
the rotor experiences air film forces Fx and Fy, in addition to its own weight Mg, at the
equilibrium position.
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Table 1. Bearing structure parameters and environmental parameters.

Parameter Value

Journal length L1 (mm) 160
Journal radius R2 (mm) 25

Mean air film thickness c (µm) 10
Diameter of orifice d (mm) 0.2

Row number of Orifice on journal bearing 2
Orifice number of each row 8

Rotor quality M (kg) 6.5
Density of air ρ (kg·m−3) 1.204
Supply pressure Ps (MPa) 0.5

Environment pressure P (MPa) 0.1
Viscosity of air µ (N·s·m−2) 1.8 × 10−5

To determine the capacity of the aerostatic bearing, it is necessary to first obtain the air
film pressure distribution of the bearing. The bearing is at the equilibrium position, with
a stable air film pressure distribution. Because the influence of temperature on aerostatic
bearing is revlatively small, the flow process duration is short, so it can be isothermal
flow [29]. The commonly used Reynolds equation for compressible gas lubrication can be
expressed as

∂

∂x

(
Ph3 ∂P

∂x

)
+

∂

∂y

(
Ph3 ∂P

∂y

)
+ Qδ = 6µU

(
∂(Ph)

∂x

)
(1)

The air film thickness can be expressed as h = c(1 + ε cos θ), where ε is the eccentricity,
and θ is the attitude angle.
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It is noted that δk = 1 at the orifice entrance, and that δk = 0 at the orifice exit. Q is the
air mass flow factor:

Q = 12µ
Pa

ρa
· ρυ (2)

Orifice flow equation:

m = φPs A
√

2ρa

Pa
ψ = ρυdxdy (3)

and

ψ =


[

K
2
( 2

K+1
) K+1

K−1

]0.5
, P

Ps
≤ βk[

K
K−1

((
P
Ps

) 2
K −

(
P
Ps

) K+1
K

)]0.5

, P
Ps

> βk

(4)

where φ is the flow coefficient, A is the restriction area, K is the air constant, and βk is the
critical pressure ratio.

By utilizing the FDM to solve Equation (1), the air film pressure can be determined for
a given rotor position. Then, integrating the air film pressure using Equation (5) yields the
horizontal and vertical air film forces of the bearing.

Fx =
∫ L

0

∫ 2π
0 PR sin θdθdy

Fy =
∫ L

0

∫ 2π
0 PR cos θdθdy

(5)

Assuming that the initial position of the rotor is vertically oriented, as shown in
Figure 2a, the rotor is then horizontally displaced by a distance of +∆x, resulting in the
position shown in Figure 2b. The horizontal movement causes a change in the attitude
angle θ, subsequently impacting the distribution of the air film pressure P. According to
Equation (5), both the horizontal and vertical bearing capacity are consequently altered.
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2.2. Mathematical Model of the BIM

During the motion of the rotor, irrespective of the effects of other factors, the rotor is
affected by the combined action of the air film force of the bearing and the gravity of the
rotor. When the rotor reaches an equilibrium position, Equation (6) need to be satisfied.{

FX = Fx = 0
FY = Fy − Mg = 0

(6)
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When solving the equilibrium position using the secant method and the Newton
method, the horizontal and vertical coordinates are successively iterated in one direction, as
shown in Figure 3. When solving the process, the iterative process of abscissa is embedded
in the iterative process for the ordinate. The correction of the ordinate can only begin once
the horizontal bearing capacity satisfies the requirements. It can be seen from Figure 2 that
the movement of the rotor in one direction causes the bidirectional variations in the air film
force. Therefore, there are the following problems:

(1) After completing a calculation in the vertical direction, the horizontal bearing capacity
fails to satisfy the convergence requirements, necessitating a recalculation of the
abscissa. Therefore, until the ordinate satisfies the convergence requirements, each
correction of the ordinate requires iterative adjustments of the abscissa. This process
results in a reduction in computational efficiency.

(2) In the iterative calculation process, it is essential to determine the influence factors.
Influence factors are used to correct the coordinates. The influence factors vary
depending on the rotor’s position. If the influence factors are excessively large, it
can result in iterative divergence, whereas if they are excessively small, it can impact
computational efficiency.
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Figure 3. Common methods to solve the process.

The proposed BIM in this paper takes into account the simultaneous effect of horizontal
and vertical coordinates on the air film force. There are relationships between the position
to be solved and the four known positions surrounding it. Subsequently, the unknown
position is determined through two consecutive interpolation steps. Figure 4 illustrates the
principle diagram of the BIM, while Equation (7) represents the interpolation equation.

F = ax + by + cxy + d (7)

The coefficient a controls the coordinate x. The abscissa x of the equilibrium position can
be corrected by adjusting a. The coefficient b controls the coordinate y. The ordinate y
of the equilibrium position can be corrected by adjusting b. The coefficient c controls
the cross-term between the coordinates x and y and describes the interaction relationship



Lubricants 2024, 12, 85 6 of 14

between the horizontal and vertical coordinates. It can adjust the iteration direction. The
coefficient d is a constant term used to adjust the overall offset of the function.
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The interpolation conditions are as follows:

Fx(x1, y1) = Fx1, Fy(x1, y1) = Fy1
Fx(x2, y1) = Fx2, Fy(x2, y1) = Fy2
Fx(x2, y2) = Fx3, Fy(x2, y2) = Fy3
Fx(x1, y2) = Fx4, Fy(x1, y2) = Fy4

To determine the equilibrium position and account for the impact of rotor position
changes on the horizontal and vertical air film forces, the interpolation equation can be
simplified to Equation (8) by using the interpolation conditions, where Fxload and Fyload
represent the magnitude of the external load applied in the respective horizontal and
vertical directions.

Fxload = Fx1(1 − u)(1 − v) + Fx2u(1 − v) + Fx3uv + Fx4(1 − u)v
Fyload = Fy1(1 − u)(1 − v) + Fy2u(1 − v) + Fy3uv + Fy4(1 − u)v

(8)

where
u =

x − x1

x2 − x1
, v =

y − y1

y2 − y1

During the iterative calculation process, it is necessary to determine the modified
coordinate value based on the magnitudes of the influence factors a and b. If a > b, the
abscissa x is corrected; otherwise, the ordinate y is corrected. Adjusting the coordinates
based on the influence factors helps prevent incorrect iteration direction and improves
computational efficiency. By combining Equations (7) and (8), the influence factors a and b
are obtained.

a =
y2(Fy2 − Fy1) + y1(Fy4 − Fy3)

(x2 − x1)(y2 − y1)
, b =

x1(Fy2 − Fy1) + x2(Fy4 − Fy3)

(x2 − x1)(y2 − y1)

2.3. Calculation Process of the BIM

Figure 5 illustrates the flowchart of the BIM used to calculate the equilibrium position
of the bearing. The bearing capacity is determined through the Reynolds equation. The
database is used to temporarily store and transfer data between the journal position ob-
tained through the BIM and the bearing capacity calculated through the Reynolds equation.
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The iterative process is as follows:

(1) Given convergence criteria (resultant force
∣∣FX

∣∣< 10−3 N,
∣∣FY

∣∣< 10−3 N, 0.001 N
force can be ignored).

(2) According to Figure 4, four points (x1, y1), (x2, y1), (x2, y2), (x1, y2) in the bearing
range are selected, and u, v are calculated.

(3) The air film forces (Fx1, Fy1), (Fx2, Fy2), (Fx3, Fy3), (Fx4, Fy4) at the corresponding
positions were calculated by the Reynolds equation.

(4) Through Equation (8), coordinate points (x, y) are obtained after two consecutive
interpolation calculations.

(5) The air film forces (Fx, Fy) at the position of the fourth step are obtained by the
Reynolds equation and compared with the convergence condition. If it is satisfied, the
iteration is terminated. If it is not satisfied, proceed to step 6.

(6) Determine the size of the impact factors a and b and determine the coordinate value
that has the greatest influence on the air film force. If a > b, modify x; otherwise,
modify y. Repeat steps 2 to 5 after updating the data.

3. Results and Discussion
3.1. Comparison of Different Methods

Figure 6 illustrates the iterative convergence process of the BIM, the secant method, and
the search method for solving the bearing equilibrium position under the same parameters.
It can be observed from Figure 6 that the equilibrium positions obtained by the three
methods are almost coincident. The main reason is that different calculation methods have
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different convergence. The convergence condition of the secant method is F < 1 × 10−2 N,
the search method is F < 5 × 10−2 N, and the BIM is F < 1 × 10−3 N. The BIM exhibits
the highest calculation accuracy. When compared with the secant method, the BIM has
errors of 0.03% and 0.02% in the horizontal and vertical coordinates of the equilibrium
position, respectively. When compared with the search method, the BIM has errors of
0.15% and 0.06% in the horizontal and vertical coordinates of the equilibrium position,
respectively. The maximum error is 0.15%, while the minimum error is 0.02%. Table 2
provides a comparison of the results obtained using the three methods. The BIM requires
4 iterations, the secant method requires 22 iterations, and the search method requires
15 iterations. The BIM exhibits superior calculation efficiency compared with the other
methods. In the initial iteration calculation, the convergence curve experiences substantial
variations due to the significant initial distance from the equilibrium point. The convergence
speed gradually slows down after approaching the equilibrium point. The secant method
exhibits poor convergence performance near the equilibrium position due to the high
density of points, resulting in reduced calculation efficiency.
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Table 2. Comparison of calculation results. (‘▲’ represents the calculation baseline for relative error).

Solution Method Condition of Convergence Iteration Step Equilibrium Position Relative Error

Secant method 1 × 10−2 22
X = 0.17369 ▲ \

Y = −0.20219 ▲ \

Search method 5 × 10−2 15
X = 0.17342 \ ▲

Y = −0.20228 \ ▲

BIM 1 × 10−3 4
X = 0.17364 0.03% 0.15%

Y = −0.20215 0.02% 0.06%

3.2. Calculation of Equilibrium Position Based on the BIM

The equilibrium position in this study is primarily influenced by the air film pressure,
which is closely associated with the supply pressure and rotor speed. Figure 7a illustrates
the variations in the equilibrium position as the supply pressure and rotational speed. As
shown in Figure 7a, the equilibrium position gradually moves towards the center of the
bearing with increasing rotational speed and supply pressure. This rule is consistent with
the results of reference [8].
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Taking a speed of 5000 r/min and a supply pressure of 0.5 MPa as an example, the
variation in the equilibrium position is shown in Figure 7b when the horizontal force Fx
and the vertical force Fy ranging from −1200 N to 1200 N with an increment of 100 N are
applied to the rotor. When subjected to external loads, the eccentricity ε gradually increases,
and the equilibrium position of the axis will first move away from the load direction. As
the absolute value of the external load increases, the equilibrium position progressively
aligns with the direction of the external load, while the extent of the change decreases.

3.3. Calculation of Stiffness of Equilibrium Position Based on the BIM

The stiffness of aerostatic bearing is solved by the difference method. After obtaining
the equilibrium position, a horizontal disturbance +∆x is applied at the equilibrium posi-
tion, and the air film forces Fx1 and Fy1 are solved under the new geometric relationship.
Similarly, the disturbance −∆x is taken, and Fx2, Fy2 can be obtained. Then, the stiffness
values are then obtained as Kxx and Kyx.

Kxx =
Fx1 − Fx2

2∆x
(9)

Kyx =
Fy1 − Fy2

2∆x
(10)

Similarly, the stiffness values Kxy, Kyy can be obtained by adding disturbance +∆y
and −∆y in the vertical direction.

Kxy =
Fx3 − Fx4

2∆y
(11)

Kyy =
Fy3 − Fy4

2∆y
(12)

Figure 8 illustrates that the direct stiffness and the absolute values of cross stiffness
at the equilibrium position gradually rise with increasing rotational speed and supply
pressure. Moreover, stiffness values are more responsive to changes in rotational speed.
This phenomenon can be attributed to the growing dynamic pressure effect of the bearing
as the rotational speed increases, leading to an overall increase in stiffness. The main
stiffness Kxx is approximately equal to Kyy, and the cross stiffness Kxy is approximately
inversely proportional to Kyx. This rule is consistent with the conclusion of reference [16].
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The increase in both rotational speed and supply pressure leads to an increase in air
film stiffness. The change in rotational speed has a greater influence on stiffness compared
to supply pressure. This also explains that the influence of rotational speed on the change
in the equilibrium position in Figure 7a is greater than that of supply pressure. With the
increase in both speed and supply pressure, the equilibrium position shifts towards the
center of the bearing.

Figure 9a,b illustrate the variations in stiffness at the equilibrium position caused by
the external loads Fx and Fy. The direct stiffness increases as the absolute value of the
external load increases, while the variation in cross stiffness depends on the direction of
the applied load. If the absolute value of the external load Fx increases gradually, the
corresponding Kxy increases, while the absolute value of Kyx decreases. If the absolute
value of the external load Fy increases gradually, the corresponding Kxy decreases, while
the absolute value of Kyx increases. This can also explain the trend observed in Figure 7b
regarding the influence of external loads on the change in equilibrium position.
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4. Experiments and Comparison
4.1. Introduction of Experimental Platform

Figure 10 shows the experiment setup used to measure the equilibrium position,
comprising the air supply system, the tested motorized spindle, and the TESA TT80
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inductance micrometer. The air supply system is constructed by an air compressor (1), filter
(3), globe value (4), solenoid throttle value (5), flowmeter (6), and pressure gauge (7). The
inductance micrometer (accuracy 10 nm, range ±5 µm) is constructed with an inductive
probe (9) and a digital display unit (11). The rotor diameter is measured with the Mitutoyo
MDE-75MX (resolution 0.001 mm, allowable error 2 µm), while the bearing diameter
is measured with the Mitutoyo CG-D100 (resolution 0.001 mm, allowable error 3 µm).
Table 3 gives three sets of measured data, with a mean air film thickness of 12.2 µm. The
experimental platform is designed with the mean air film thickness of 10 µm. Although the
measured value is 12 µm, accounting for the influence of manufacturing and measurement
errors, 10 µm is still used for calculation and comparison.
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Figure 10. Equilibrium position measurement experimental platform. (a) Schematic diagram.
(b) Physical diagram. (1) air compressor, (2) air tank, (3) filter, (4) globe value, (5) solenoid throttle
value, (6) flowmeter, (7) pressure gauge, (8) air inlet, (9) inductive probe, (10) motorized spindle,
(11) digital display unit, (12) marble platform.
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Table 3. Mean air film thickness.

Journal Diameter
(mm)

Bearing Diameter
(mm)

Mean Air Film Thickness
(µm)

1 49.997 50.021 12
2 49.998 50.023 12.5
3 49.996 50.020 12

Average \ \ 12.2

4.2. Experiment Process

The measured motorized spindle (10) is fixed in the marble platform (12) and con-
nected to the air supply system via the air inlet (8). During the measurement of the
equilibrium position, the spindle speed is set to 0 r/min, and the initial supply pressure is
set to 0 MPa. The inductance probe is positioned at the vertical baseline of the motorized
spindle and calibrated to zero. The supply pressure is gradually adjusted from 0.2 to
0.6 MPa, and data are collected at intervals of 0.5 MPa. The collected data are processed
and displayed using a digital display unit. A set of data is measured every 60◦ of rotor
rotation, resulting in a total of six sets of data, from which the average value is calculated.
The experimental data obtained are presented in Figure 11.
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4.3. Discussion of Experimental Results

It can be seen from Figure 11 that the calculated data and the experimental data exhibit
similar trends, although the calculated results are generally higher than the experimental
data. The minimum error is 12.9%, and the maximum error is 15.4%. The reasons for the
difference between the experimental data and the simulated data are as follows: there are
errors in the machining and assembly of the spindle in the experiment, the calculation model
is simplified, and ideal conditions are used in the simulation. Therefore, the simulation
calculation yields an excessive bearing capacity, resulting in a rotor position that exceeds
the experimental value.

5. Conclusions

(1) The BIM effectively solves the problem of iteration divergence caused by inappropriate
initial value selection. Compared with the calculation results of the secant method and
search method, the maximum error of the equilibrium position is 0.15%, the required
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iterative steps are only 1/4 of those of other methods, and the BIM convergence
is better.

(2) When the direction of external load on the rotor is unchanged and the amplitude
continues to increase, the eccentricity increases nonlinearly. The equilibrium position
initially moves away from the direction of the load and later moves closer to it.
The main stiffness of the bearing increases with the increase in the external load,
independent of the direction of the external load. When the horizontal external load
increases gradually, the absolute value of the cross stiffness Kyx decreases, while the
Kxy increases. Conversely, when the vertical external load gradually increases, the
absolute value of the cross stiffness Kyx increases, while the Kxy decreases.

(3) Without external load, the change in the equilibrium position and its stiffness with ro-
tational speed and supply pressure is consistent with the conclusions of the references.
And the reliability of the BIM is proved by the comparative analysis of the experiment
and calculation, and the maximum error between them is 15.4%.
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