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Abstract: Railway systems play a pivotal role in modern transportation networks, contributing to
both efficiency and environmental sustainability. This study investigated the multifaceted aspects of
wear phenomena in railway engineering, focusing on their significant implications for environmental
costs and operational efficiency. Experimental trials were conducted using a high-performance bi-disc
apparatus, evaluating a range of materials, contact pressures, and lubrication conditions. Shakedown
maps were employed to assess ratcheting behaviour, while the wear rate was analysed as a function of
the fatigue index (FI). The results reveal the intricate interplay of contact pressure, slip ratio, material
properties, and lubrication in determining wear and ratcheting behaviour. Oxidative and mild wear
mechanisms were identified, and wear debris composition and morphology were characterised.
The outcomes from this research clarify the pivotal role that wear processes play within railway
systems and the far-reaching environmental repercussions they entail. This exploration contributes
to the ongoing optimisation of railway operations, offering valuable insights aimed at mitigating
unavoidable pollution sources and strengthening sustainability efforts. By delving into the intricate
dynamics of wear phenomena within wheel–rail material, this research paves the way for innovative
solutions that not only enhance operational efficiency but also minimise the ecological footprint of
railway transportation.
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1. Introduction

Railway engineering remains steadfast in its commitment to modernising operations,
with a primary focus on improving efficiency and championing environmental advantages.
In line with this mission, a 2019 estimate provided by the European Union revealed stagger-
ing collective costs linked to air pollution, climate change, and noise pollution stemming
from railway transportation, reaching an approximate sum of 7.8 billion euros [1]. Beyond
mere statistics, trains are implicated in the degradation of soil and water quality through a
multitude of mechanisms, including brake, wheel, and rail abrasion, fuel combustion, and
numerous other sources of pollution. Such multifaceted impacts underscore the pressing
need for continued innovation and sustainable practices within the railway industry as
it navigates the complexities of modern transportation while striving for a cleaner, more
eco-friendly future. Some of these effects may be mitigated; for example, a diesel-powered
train can be replaced by one powered by renewable resources. However, other sources of
pollution such as wear cannot be avoided. Therefore, understanding the wear processes ac-
countable for releasing metals into the environment is crucial in reducing this unavoidable
pollution source.

Over time, there has been extensive research conducted on wheel–rail wear. Several re-
searchers have conducted laboratory tests (small-scale) [2–11] and field experiments [12–19].
The former are usually preferred because of their cost-effectiveness and more accurate
investigation of the material responses at the expense of the dynamic responses (lateral
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forces). Furthermore, small-scale tests allow for replicating both clean and contaminated
contact (wet contact [20–25] or in the presence of solid contaminants [26–34]) and for better
controlling creepage.

Wear is affected by several phenomena, such as shear stress at the contact [35,36],
wheel material (hardness and microstructure) [10,37–46], lubricants and debris [47–49],
temperature [50–54], polygonization [55–59], and surface treatments [60–64]. In actual
wheels, polygonization is caused by wheel–rail coupled vibration, and material loss is
a result of the wheel–rail coupled vibration. Once the wheel tread is polygonised, a
reprofiling operation should be planned, reducing the wheel life [3,65]. In small-scale
tests (like bi-disc), as well as in wheels, potential stochastic out of roundness may be
ascribed to anomalous wear damage distribution on the surface due to the presence of
intermediate-bainitic structures in ferritic–pearlitic microstructure [66]. Conversely, wear
has a beneficial effect on the service life by eliminating surface cracks resulting from rolling
contact fatigue [3,65,67–69].

Numerous research efforts have focused on mapping and modelling wear behaviour.
For example, Bolton and Clayton [70] proposed an approach based on the dissipated

energy responsible for wear, defined as Tγ/A, where T, γ, and A are the traction force,
creepage, and contact area, respectively. This parameter was plotted against the wear rate,
calculated as the mass loss in µg divided by rolling distance in meters and the contact area in
mm2. This approach identified three wear regimes: mild, severe, and catastrophic [70–76].
The wheel tread and railhead are subjected to mild wear, while the wheel flange and rail
gauge corner typically fall within the severe and catastrophic regimes. In the mild wear
regime (low Tγ/A), oxidative wear occurs, and abrasive score marks are visible because of
the braking of the oxidative layer. At high Tγ/A, the wear mechanisms are activated by a
ratcheting process followed by a shear fracture that generates metallic flake-like particles.
Oxidative wear is characterised by a predominant quantity of iron oxides among the debris;
as one transitions from the oxidative regime to the mild regime and finally to the severe and
catastrophic regimes, the percentage of oxide decreases in favour of iron particles [70,77–79].
Figure 1 [70] explains the wear mechanisms according to the Tγ/A approach.
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Figure 1. Wear mechanisms according to the Tγ/A approach.

Lim and Ashby [80] and Lewis and Olofsson [71] also proposed mapping sliding wear
mechanisms using Archard’s equation [81]:

KW =
VH
FL

(1)

where KW is the wear coefficient, V is the wear volume, F is the normal load, H is the
material hardness, and L is the sliding distance. The variable KW is then plotted against the
sliding speed and contact pressure, resulting in a 3D graph indicating the wear transition.
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Rolling contact fatigue (RCF), in addition to wear damage, poses a threat to both
the wheel and rail integrity. RCF occurs due to cyclic loading of the material, leading
to the formation of cracks that have the potential to propagate and eventually result in
component fractures. These fatigue cracks can originate either on the surface or in the sub-
surface. Surface cracks emerge when the level of plastic deformation surpasses the critical
strain, potentially leading to propagation facilitated by hydro-pressurisation and contact
loading [3,65,82–84]. Although relatively rare, sub-surface cracks present significant risks,
as they are invisible to the naked eye at their onset; defects such as oxides or sulphides in
the sub-surface can facilitate crack initiation [65,85–89]. Despite being traditionally studied
as separate phenomena, RCF and wear are closely interconnected. Reduced wear may
facilitate the progression of cracks to the point of RCF failure, while if rolling contact fatigue
cracks are interrupted, wear is more likely to prevail.

In the literature, shakedown maps were introduced to predict the fatigue response
to cyclic loading [90–93]. An example of a shakedown map is illustrated in Figure 2 [90].
These maps plot the friction coefficient against the contact pressure normalised by the shear
yield strength of the material. The four responses are elastic, elastic shakedown, plastic
shakedown, and ratcheting. From a mathematical point of view, the fatigue index (FI)
defines whether the material experiences ratcheting (FI > 0), calculated as follows:

FI = µ − k
P

(2)

where µ is the friction coefficient, k is the cyclic shear yield strength, and P is the applied
contact pressure.
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Figure 2. Example of a shakedown map for cylindrical contact.

Vicente et al. [94] were the first to utilise the fatigue index (FI) to establish a correlation
between wear damage and rolling contact fatigue in twin-disc tests conducted under vari-
ous conditions, including different specimen thicknesses, normal pressures, and creepage.
Their study revealed an exponential relationship between wear rate and the fatigue index.
Zani and Petrogalli [95] explored the correlation between FI, wear rate, and shear yield
strength. They conducted bi-disc rolling contact tests at a nominal Hertzian contact pressure
equal to 1100 MPa, varying parameters such as steel type (European and American) and
disc extraction location; furthermore, they investigated three kinds of contact conditions:
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clean, with sand particles, and lubricated with water mixed with glycol. They found that
sand contaminants and water lubrication led to a reduction in FI, although the wear rate
significantly increased when solid particles were present between the discs. In clean contact
conditions, the wear rate decreased with increasing hardness and yield strength. Similarly,
Zani and Petrogalli [95] focused on the wear mechanisms according to the contaminants
(adhesive or abrasive wear); however, no details about the wear regimes were provided.

This study delved deeper into the relationship between wear and rolling contact
fatigue (RCF) in the contact between railway rails and wheels. It paid special attention
to how different types of wear are influenced by factors like slip ratio, lubrication, and
contact pressure. Additionally, the research analysed the characteristics of the wear debris,
including its type, distribution, and composition. By focusing on these aspects, the study
aimed to provide a comprehensive understanding of how wear interacts with RCF in
railway systems, ultimately contributing valuable insights to enhance railway maintenance
and performance.

2. Experimental Details

This research showcased findings derived from experimental tests conducted utilising
the advanced bi-disc apparatus situated at the University of Brescia. Figure 3 illustrates the
setup of the apparatus. The system was outfitted with two mandrels, one of which was
positioned on linear air slides, operated independently by two alternating current (AC)
33 kW motors capable of reaching speeds of 1200 rpm. A servo-hydraulic actuator was
utilised to generate the contact load and manage the approach motion, with a capacity of
75 kN. Speed, torque, and normal load were recorded at a sampling frequency of 5 Hz
using a dedicated National Instruments data acquisition system.

Lubricants 2024, 12, x FOR PEER REVIEW 4 of 17 
 

 

fatigue index. Zani and Petrogalli [95] explored the correlation between FI, wear rate, and 
shear yield strength. They conducted bi-disc rolling contact tests at a nominal Hertzian 
contact pressure equal to 1100 MPa, varying parameters such as steel type (European and 
American) and disc extraction location; furthermore, they investigated three kinds of con-
tact conditions: clean, with sand particles, and lubricated with water mixed with glycol. 
They found that sand contaminants and water lubrication led to a reduction in FI, alt-
hough the wear rate significantly increased when solid particles were present between the 
discs. In clean contact conditions, the wear rate decreased with increasing hardness and 
yield strength. Similarly, Zani and Petrogalli [95] focused on the wear mechanisms ac-
cording to the contaminants (adhesive or abrasive wear); however, no details about the 
wear regimes were provided.  

This study delved deeper into the relationship between wear and rolling contact fa-
tigue (RCF) in the contact between railway rails and wheels. It paid special attention to 
how different types of wear are influenced by factors like slip ratio, lubrication, and con-
tact pressure. Additionally, the research analysed the characteristics of the wear debris, 
including its type, distribution, and composition. By focusing on these aspects, the study 
aimed to provide a comprehensive understanding of how wear interacts with RCF in rail-
way systems, ultimately contributing valuable insights to enhance railway maintenance 
and performance. 

2. Experimental Details 
This research showcased findings derived from experimental tests conducted utilis-

ing the advanced bi-disc apparatus situated at the University of Brescia. Figure 3 illus-
trates the setup of the apparatus. The system was outfitted with two mandrels, one of 
which was positioned on linear air slides, operated independently by two alternating cur-
rent (AC) 33 kW motors capable of reaching speeds of 1200 rpm. A servo-hydraulic actu-
ator was utilised to generate the contact load and manage the approach motion, with a 
capacity of 75 kN. Speed, torque, and normal load were recorded at a sampling frequency 
of 5 Hz using a dedicated National Instruments data acquisition system. 

 
Figure 3. Twin-disc testing machine. 

The cylindrical test specimens were machined from the wheel-tread and the railhead 
surfaces. The cylindrical test samples were extracted as close as possible to the contact 
surfaces to ensure mechanical properties were as independent as possible from mechani-
cal property gradients induced by heat treatments. These wheel and rail discs had a di-
ameter of 60 mm with a thickness of 15 mm. Since the specimens were cylindrical, the 
contact track width corresponded to the specimen thickness.  

The wheel and rail disc specimens, made of pearlitic steels, were produced by the 
Italian company Lucchini RS. The considered wheel steels were AAR CLASS B, AAR 
CLASS C, SANDLOS® H, EN RT7, EN ER8, and SUPERLOS®. The first four steels comply 
with American Standards AAR M107/M208 [96], and the SANDLOS® steels are a specific 

Figure 3. Twin-disc testing machine.

The cylindrical test specimens were machined from the wheel-tread and the railhead
surfaces. The cylindrical test samples were extracted as close as possible to the contact
surfaces to ensure mechanical properties were as independent as possible from mechanical
property gradients induced by heat treatments. These wheel and rail discs had a diameter
of 60 mm with a thickness of 15 mm. Since the specimens were cylindrical, the contact track
width corresponded to the specimen thickness.

The wheel and rail disc specimens, made of pearlitic steels, were produced by the
Italian company Lucchini RS. The considered wheel steels were AAR CLASS B, AAR
CLASS C, SANDLOS® H, EN RT7, EN ER8, and SUPERLOS®. The first four steels comply
with American Standards AAR M107/M208 [96], and the SANDLOS® steels are a specific
group engineered explicitly for use in sandy environments [97]. The others refer to the
European Standards EN 13262 [98], and SUPERLOS® is an upgrade of the traditional EN
ER8 and EN ER9 steels [99]. The rail discs abide by Standard EN 13674-1 [100]. Table 1
delineates the mechanical properties of the investigated materials, accompanied by the
bibliographic references from which the test outcomes have been sourced.
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Table 1. Wheel and rail steels mechanical properties.

Component Specimen Ref.
Monotonic
Yield Stress

[MPa]

Cyclic
Yield Stress

[MPa]
HB

Wheel

R7T [3] 420 350 247
ER8 [22,23,26] 590–600 470 283

SUPERLOS® [22,23] 640 523 275
AAR CLASS B [23] 660 580 313
AAR CLASS C [26] 750 640 355
SANDLOS®H [26] 800 720 354

Rail
350 HT [26]

470 390 300–350900A [3,22,23]

The applied contact pressures were 700, 900, 1100, and 1300 MPa. All the tests were
carried out at a constant creep ranging from 0% (pure rolling) to 3%. The rotational speeds
were set so that the average disc speed was 500 rpm. The experiments were carried out in
clean (C) and contaminated conditions (W), spraying water jet with 10% glycol to prevent
corrosion. Table 2 summarises the applied operating conditions.

Table 2. Testing conditions.

Wheel Specimen Pressure [MPa] Slip Ratio [%]

R7T

700 0.06 (C), 0 (W)
900 0 (C, W), 0.03 (C), 0.06 (C, W)

1100 0 (C, W), 0.03 (C), 0.06 (W)
1300 0.01 (C)

ER8
900 0 (C), 1 (C), 3 (C)

1100 0 (C), 0.24 (W), 1 (C, W), 3 (C)
1300 0 (C), 1 (C), 3 (C)

SUPERLOS® 1100 0.24 (W), 1 (C, W)

CLASS B
900 0 (C), 1 (C), 3 (C)

1100 0 (C), 0.24 (W), 1 (C, W)
1300 0 (C), 1 (C)

CLASS C 900 0.5 (C), 1 (C), 3 (C)

SANDLOS® H
900 1 (C), 3 (C)

1100 1 (C), 3 (C)
1300 0 (C), 1 (C), 3 (C)

The specimens were ultrasonically cleaned and weighed at the beginning of the test
using a precision balance with 0.001 g of resolution. The wear rate was first calculated as
the difference between the initial specimen mass and the mass at the end of the test divided
by the running distance and the contact area (g/m/mm2), according to Archard’s law. After
the test, the contact surfaces were acquired using a DMS300 stereomicroscope equipped
with a Leica digital camera (Wetzlar, Germany) and LAS 4.13 analyser software. Wear
debris was analysed using a TNX powder diffractometer (Riva del Garda, Italy) following
the UNI EN 13925-2-2006 [101] standard to identify the chemical composition, using a
JEOL-6010 PLUS/LA (Tokyo, Japan) scanning electron microscope (SEM) to classify size
and distribution.

3. Results and Discussion

Figure 4 portrays the shakedown maps for cylindrical contact and the experimental
conditions (coefficient of friction and load factor k

P ) in clean contact (Figure 4a,b) for
European and American steels, respectively, and in lubricated contact (Figure 4c). The
numerical values represented correspond to the percentages of the slip ratio. Fixing the
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contact pressure and increasing the slip ratio generally causes the friction coefficient to rise,
moving the operation point to a ratcheting area both in clean and lubricated contact. In clean
contact, the American steels generally exhibit lower load factors than the European steels
when tested under the same contact pressure. This is ascribed to the higher shear yield
strength of American steels, translating into an increased likelihood of less-resistant steels
being subjected to ratcheting (since the ratcheting area widens with the strength reduction).
As the shakedown is increasingly overcome, more plastic deformation accumulates until
failure occurs.
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Figure 4. Shakedown map for cylindrical contact showing the operating conditions: (a) European
wheels in clean condition, (b) American wheels in clean condition, and (c) European and American
wheels in water condition.

Additional information given by the shakedown maps is the position of the maximum
shear stress. When the coefficient of friction increases beyond a threshold of about 0.3, the
maximum stress arises at the surface contact. In clean contact (R7T excluded), we conclude
that, with a slip ratio higher than 1%, the surface layers of the samples undergo maximum
stress and ratcheting. In contrast, for the water condition, the coefficient of friction was
generally lower than 0.3; therefore, the maximum stress is in the sub-surface. In these
circumstances, steel cleaned from defects, including those not visible to the naked eye, is
essential. However, the lubricated tests were run with constant application of water. A
different response would result if the same tests were conducted with the previous clean
contact cycles to initiate cracking [102,103].

Figure 5 shows a map defined to predict the wear rate once the FI is known. Wherever
the values of the wear rate were not available in the cited works, they were calculated
according to Equation (1). We can distinguish clean contact from lubricated contact if
we exclude the pure rolling condition. First, we notice that FI values in wet contact are
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generally lower than in clean conditions, except for the pure rolling tests, which show
similar FIs regardless of the lubrication. The lower FI in the lubricated tests can be ascribed
to the lower friction coefficient. The wear rate increases with the slip ratio. In detail, in clean
conditions, the wear rate increased by about four orders of magnitude, passing from the
pure rolling to a slip ratio equal to 3%, while in the lubricated test, the wear rate increased
by two orders of magnitude from a slip ratio of 0% to 1% [103].
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The scattering in the FI values at a constant slip ratio does not seem to depend on
the contact pressure, but it can be attributed to loose machine tolerances for the discs and
differences in specimen roughness values and material properties.

Figure 6 shows similar results, focusing on the type of wheel steel. The wear trend in
clean contact exhibits no clear differences. All the rail–wheel specimens were produced in
the 2010s, apart from R7T, which dates to the previous decade. This difference is noticeable
since the R7T steel tested at 900 MPa and a slip ratio of 0.06% yielded a FI comparable to
that of the ER8 specimens tested at 1300 MPa and a slip ratio ≥ 1%. Moreover, had R7T
been tested at 1300 MPa and slip ratios higher than 1%, its wear rate might have been
higher than ER8. Figure 5 also shows that wear rates gradually decreased as new and
improved materials were introduced. Indeed, the equivalent R7T produced by the same
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company in the following years had higher mechanical properties, which would have led
to lower FIs.
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wheel material.

If we compare American and European steels tested in clean conditions, excluding a
few cases, the American steels show lower FIs and slightly lower wear rates, likely because
their hardness values are comparable to those of rail materials.

The FIs were generally less than zero in the lubricated tests, even with a 1% slip ratio
and 1100 MPa of contact pressure. The only exception was CLASS B. Once again, R7T
tested at lower contact pressures and slip ratios overlapped with the more recent steels
tested at more critical conditions.

The wear rate was also examined based on the Tγ/A parameter (Figure 7). We found
that the tested samples experienced either oxidative or mild wear, typically identified
as a Mode I regime [70,72]. Samples tested in clean conditions and with pure rolling or
slip ratios lower than 1% suffered from oxidative wear regardless of the contact pressure.
Increasing the slip ratio led to the transition from oxidative to mild wear. When oxidative
wear occurred, the wear rate was lower than 1 µg/m/mm2, while it varied between 1 and
10 µg/m/mm2 in the case of the mild regime.

The X-ray diffraction (XRD) spectra in Figure 8 illustrate that the main compositions
of the wear debris tested in clean conditions at 1% are oxide (Fe2O3, hematite) and iron at
36% and 64%, respectively; on the other hand, the debris tested at 3% mainly consists of
iron. The presence of oxide in the analysed samples at 1% indicates that oxidative and mild
wear mechanisms were triggered. Wear debris samples are shown in the SEM micrographs
in Figure 9. The debris at 1% shows large, smooth, thin metallic flakes produced by mild-
oxidative wear. The flakes were usually up to 100 µm in size; the debris of the samples
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tested at 3% retained the flake morphology but was less regular and showed a greater
range of particle sizes.
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Figure 8. X-ray diffraction (XRD) spectra of wear debris collected from wheel and rail specimens
under clean conditions.

To study the impact of the applied contact pressure and the slip ratio, Figure 10 shows
the wear surface morphology under the dry condition for ER8, CLASS B, and SANDLOS®H
wheel rollers. For the ER8 steel tested at 1%, the worn surface is characterised by ripples
and metallic flakes whose dimensions reduced when the contact pressure increased; in
contrast, the number of flakes increased with the contact pressure. SANDLOS®H and
CLASS B experienced similar mechanisms.
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However, in CLASS B, this mechanism was less pronounced; indeed, its wear be-
haviour was less affected by the load, as shown in Figure 4. On the other hand, when the
slip ratio increased to 3%, the flake dimensions did not vary regardless of the type of steel,
but the surface was smoother, as also witnessed by Bolton et al. [43].

As regards the lubricated contact, Figure 11 shows the tracks of ER8 and CLASS B
tested at 1100 MPa and 1%. ER8 exhibited the detachment of material fragments, while
CLASS B showed plastic deformation of the material in the direction of the load. This result
confirms the position of these material points on the map in Figure 4c, showing that CLASS
B underwent ratcheting while ER8 remained in shakedown.
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4. Conclusions

This comprehensive study extensively explored and analysed the wear behaviour of
various railway wheel pearlitic steels, examining their responses under a diverse array
of contact pressures and lubrication conditions. Through this investigation, the research
shed light on the intricate interplay between slip ratio, material properties, and wear rates,
providing valuable insights for further understanding and optimisation. The following
conclusions can be inferred:

• Clean contact conditions resulted in higher coefficients of friction and maximum stress
at the surface, while lubricated contact conditions showed lower coefficients of friction
and maximum stress in the subsurface.

• Wear rates increased with increasing slip ratio, with a significant increase observed in
clean contact conditions compared to lubricated conditions.

• Introducing new and improved materials led to lower wear rates, indicating the
importance of material selection in minimising wear in wheel–rail systems.

• Wear mechanisms were identified as oxidative and mild wear, with the presence of
oxide and iron in wear debris in the former case and only the presence of iron in the
latter, highlighting the role of lubrication and surface cleanliness in wear prevention.

These conclusions offer insights into the optimisation of wheel–rail system perfor-
mance. Beyond their immediate applications, they hold profound significance for the
advancement of predictive capabilities and the refinement of analytical models. By in-
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forming material selection and lubrication strategies to minimise wear rates and enhance
durability, these findings not only impact current railway engineering practices but also
lay the groundwork for more accurate predictive models. The implications extend far
beyond the laboratory, as they directly influence the calibration and validation of analytical
models across diverse real-world applications. As such, this research plays a pivotal role in
advancing the state of the art in predictive maintenance and reliability engineering, driving
innovation and efficiency in railway systems.
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