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Abstract: Accurate prediction of cavitation is an important feature in hydrodynamic
bearing modeling. Especially for thermo-hydrodynamic modeling, it is crucial to use
a mass-conservative cavitation algorithm. This paper introduces a new mass-conserving
Reynolds cavitation algorithm, which provides fast convergence and easy implementation
in finite element models. The proposed algorithm is based on a variable transformation for
both the pressure and mass fraction, which is presented in the form of a complementary
condition. Stabilization in the streamline and crosswind direction is provided by artificial
diffusion. The model is completed by including a simple and efficient thermal model and is
validated using the numerical values of a reference plain journal bearing experiment under
steady-state conditions. In addition, a transient analysis is performed of a journal bearing
subjected to a harmonic load. It is shown that the proposed cavitation algorithm results
are in good agreement with the reference measurement results. Moreover, the algorithm
proves to be stable and requires only a small number of iterations to convergence in the
Reynolds-based finite element model.
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1. Introduction

Hydrodynamic bearings are machine elements used for separating moving components that have a
relative velocity. In these bearings, the relative sliding velocity of the surfaces that border the fluid film
causes a shear flow in the fluid. When this flow enters a converging volume, the pressure increases,
which explains the carrying capacity of the bearing. Accurate predictions of this carrying capacity are
crucial for an accurate design and, thus, for preventing any unwanted contact that can result in noise,
wear, excessive friction or even failure of the bearing [1].

The commonly-used mathematical description of the pressure distribution in a hydrodynamic bearing
is the classical Reynolds equation. Solutions of the Reynolds equation can contain negative pressures
for flow through diverging sections or for the normal motion of walls moving apart. Fluids, however,
can only hold a very limited amount of tensile stress before film rupture occurs [2]. This cavitation thus
needs to be included in the bearing modeling. Numerous methods have been proposed for this purpose,
as summarized in the review papers of Dowson and Braun [2,3].

In many of the early approaches, such as the Sommerfeld, the Gümbel "half-Sommerfeld" and the
Swift and Stieber Reynolds approach, conservation of mass throughout the fluid and cavitation domain
is not considered [3]. This shortcoming might sometimes only slightly affect the bearing reaction
forces; conservation of mass is, however, an important condition for models that should include thermal
modeling [4] or for models that treat surface texture, especially if accurate friction losses are to be
calculated [5,6].

A popular cavitation algorithm nowadays was proposed by Elrod [7], who developed a method in
which a switch function is used, automatically satisfying the boundary conditions at the cavitation
interfaces, and which is based on the mass-conservative boundary conditions formulated by Floberg,
Jakobson and Olsson [8]. Brewe [9,10] found excellent agreement with Jakobson’s experimental data
for dynamically loaded bearings using Elrod’s algorithm.

Cavitation algorithms based on a finite element formulation are compared in Bayada et al. [11]. Many
of these algorithms are presented in the form of a complimentary condition, i.e., in the cavitated regions,
the mass fraction distribution is unknown, and the pressure distribution is known, whereas in the full film
region, the pressure distribution is unknown, and the mass fraction distribution is known.

In the proposed algorithm in this paper, the same logic has been implemented, based on a variable
transformation where both the mass fraction f and the pressure p are replaced by known functions
of a new variable ξ. Thus, the modified Reynolds equation can be solved for this variable, and the
pressure and mass fraction distribution can be obtained from the inverse transformation functions. The
proposed mass-conserving cavitation algorithm is developed and used in a general purpose finite element
code [12], which allows for the formulation of problems as a set of strongly coupled non-linear partial
differential equations (PDEs). Moreover, it can be used in any finite element code that allows the
arbitrary definition of the PDE coefficients and the solution of non-linear systems of equations using
a simple fixed-point iteration.

In this paper, the cavitation algorithm is first applied on a 1D test problem, the infinitely long
journal bearing, in order to demonstrate the streamline stabilization technique. Subsequently, the 1D
stabilized model is expanded to a 2D finite journal bearing model in order to demonstrate the crosswind
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stabilization technique from which the complete stabilized 2D Reynolds equation is obtained. This
model is then expanded to include a classic adiabatic thermal model, i.e., assuming adiabatic boundary
conditions at the fluid-solid interfaces and assuming an effective temperature field across the film
thickness (see, for instance, Pinkus [13]). These simplifications reduce the 3D heat transport model
to a simple and efficient 2D model for the thin oil film. Subsequently, the 2D THD model is validated
by a numerical case study of a finite length journal bearing under steady load conditions [14]. Finally,
for the sake of completeness, a time transient analysis is performed using a dynamic load on the journal,
after which the results are discussed.

2. Development of a New Mass-Conserving Reynolds Cavitation Algorithm

The distribution of pressure p and mass fraction f in a 2D lubricating film with film thickness h can
be described using the Reynolds equation:
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where η, ρ and U are the viscosity, density and surface velocity, respectively. x- and y-directions are in
the direction of and perpendicular to the surface sliding velocity, respectively. It is assumed that only
the shaft has velocity U in the x-direction; all other surfaces are stationary. Moreover, all surfaces are
assumed to be rigid. As schematically depicted in Figure 1a, the attitude angle Xε can be calculated
as follows:

Xε = arctan

(
εȳ
εx̄

)
(2)

where ε is the eccentricity ratio (ε = e
h0

). x̄ and ȳ are the global coordinates with the origin in the center
of the bearing. Assuming perfect alignment of the journal and taking into account the attitude angle Xε,
the expression for the film thickness may be written as:

h = h0(1− εx̄ cos (x/R)− εȳ sin(x/R)) (3)

where h0 is the nominal radial clearance. For the sake of numerical robustness, the problem is scaled
using the following dimensionless variables:
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which results in the following dimensionless Reynolds equation:

∂

∂X

(
−H

3f ρ̃

12η̃

∂P

∂X
+
Hf ρ̃

2

)
+

∂

∂Y

(
−H

3f ρ̃

12η̃

∂P

∂Y

)
+
∂Hf ρ̃

∂t̃
= 0 (5)

where the normalized film thickness is given by:

H = 1− εx̄ cos(X)− εȳ sin(X) (6)
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Note that the circumferential and axial flows, qX and qY , respectively, are represented by the terms
between brackets

(
∂
∂X

(qX) and ∂
∂Y

(qY )
)

in Equation 5 and can thus simply be computed as follows:
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qY = −H
3f ρ̃

12η̃

∂P

∂Y
(7b)

In Figure 1a,b, the kinematics of the plain journal bearing and the computational fluid domain
with the imposed boundary conditions are presented, respectively. The supply groove is positioned at
X = −π,X = π, over the full width of the bearing. The specific boundary conditions (BCs) for the 1D
and 2D case will be defined in each section. In Figure 1, the X-and Y -directions are in the direction of
and perpendicular to the surface sliding velocity, respectively.
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Figure 1. Bearing configuration: (a) kinematics of the plain journal bearing (dimensions
are exaggerated) with eccentricity amplitude e; (b) fluid domain of the plain journal bearing
with applied boundary conditions BC.

For most practical applications where the hydrodynamic pressure will increase to values much higher
than the cavitation pressure, it may be assumed that the cavitation pressure is equal to zero. With this
simplification, the lubricating film can be divided into two parts:

• the full film region, where P is unknown (but larger than zero) and f is known (f = 1), and
• the cavitated region, where P is known (P = 0) and f is unknown (but between zero and one).

This logic has been captured by the proposed cavitation algorithm, based on a variable transformation
where both the mass fraction f and the pressure p are replaced by known functions of a new variable ξ:

P = (ξ ≥ 0)ξ (8a)

f = 1 + (ξ < 0)cfξ (8b)
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where (ξ < 0) and (ξ ≥ 0) are Boolean expressions, equal to one if true and zero if not true. This
transformation resembles Elrod’s algorithm [7], although the algorithm proposed here has some different
properties. Firstly, the Boolean functions are present both in the pressure and in the mass fraction
functions, instead of just in the pressure function. Furthermore, the pressure and mass fraction functions
are independent of each other. Thus, both functions can be optimally scaled for a stable numerical
solution, which is an advantage compared to Elrod’s transformation, i.e., the transformation constant cf
can be equal to any desired positive value. For Elrod’s transformation to be numerically stable, the bulk
modulus has to be 10- to 100-times smaller than the value considered by Elrod, which at least reduces
the physical meaning of the transformation [15,16]. Moreover, the accuracy of Elrod’s transformation is
not always optimal, as it will result in mass fractions slightly above one in full film regions.

2.1. 1D Stationary Situation: Streamline Numerical Stabilization

The characteristics of the proposed transformation will first be tested on a simple 1D problem:
the statically-loaded, infinitely long plain journal bearing. In the remainder of this section, it is
assumed that the supply groove is infinitely small in the circumferential direction. Furthermore, we
assume incompressible (ρ̃ = 1) lubricant properties. Considering this simplification and substituting
Equation (8a) and (8b) in Equation (5), the following 1D Reynolds equation is obtained:

∂

∂X

(
−H3f(ξ ≥ 0)

η̃

∂ξ

∂X
+ 6Hf

)
= 0 (9)

In the 1D-domain, the dimensionless pressure is set equal to one at the supply (X = −π,X = π)
(BC1: P = 1). It is worth mentioning that in this analysis, it is assumed that the derivative of the Boolean
expression is zero and not equal to the Dirac-delta function. It is difficult to solve Equation (9) using the
standard Galerkin finite element approach because in the cavitated region (ξ < 0), the equation is purely
convection dominated and, thus, will exhibit oscillations when solved using a standard Galerkin FEM.
This can be observed in Figure 2a, where the dependent variable ξ and the dimensionless flow (qX) have
been plotted against the dimensionless length. Plotting ξ provides direct insight into both the pressure
and mass fraction distribution.

In the literature [17–19], one may find many approaches to numerically stabilize the FEM solution
of the convection-dominated part in convection-diffusion equations. Some of these methods are the
streamline upwind Petrov-Galerkin method (SUPG), the SU method and the artificial diffusion method
(AD). The SUPG method adds an additional term to the test function to suppress the unwanted
oscillations, whereas the SU method only adds the additional term to the convection-dominated part
of the equation [19]. In the AD method, the diffusion part, of the convection-diffusion equation, is
slightly modified with an additional artificial diffusion term in the convection-dominated part of the film.

Other techniques in the literature that deal with the convection-dominated aspect include
semi-Lagrangian (or characteristic) methods [20,21]. The semi-Lagrangian technique has the advantage
that it does not require the tuning parameters associated with the AD-method. However, this method
requires substantial numerical effort and is not easily implemented in any general purpose software
package, as it requires fundamental rewriting of the finite element code. Advanced general purpose FEM
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software is commonly used in the industry, as the lubrication problems usually encountered involve a
multidisciplinary field, including thermal, structural, thermo-elastic and hydrodynamic simulations.

Hence, the chosen stabilization technique here is the artificial diffusion method (AD), as it can easily
be implemented and only requires a slight modification to the coefficients in the general form PDE. In
this method, the diffusion part in the convection-diffusion equation is slightly modified with an additional
artificial diffusion term kAD in the convection-dominated part of the film:

∂

∂X

(
−
(
H3f(ξ ≥ 0)

η̃
+ (ξ < 0)kAD

)
∂ξ

∂X
+ 6Hf

)
= 0 (10)

Note that the solution obtained using this method should be examined carefully as a slightly modified
PDE is solved instead of the original one. Moreover, kAD should not be so large as to introduce excessive
damping, but should be minimal just to suppress the generated oscillations. Hence, an optimum value
for kAD needs to be chosen. The artificial diffusion coefficient kAD is chosen as follows:

kAD = α0 αAD he u (11)

where he is a typical element size in the streamline direction and α0 is a constant that depends on the
order of the elements that are used with α0 = 0.5 for linear elements and α0 = 0.25 for quadratic
elements [22]. In the present analysis, linear elements are used. u and k are respectively equivalent to
the velocity and diffusion coefficient in a typical convection-diffusion equation and can be calculated
as follows:

u = 6H(ξ < 0)cf (12a)

k = H3f(ξ ≥ 0) (12b)

αAD is an upwind function and can (after making an asymptotic approximation [22]) be computed
as follows:

αAD = min (PeAD/3, 1) (13)

where PeAD is the cell Peclet number (PeAD = uhe
2k

). Due to the Boolean expressions, PeAD becomes
zero in the full film region and infinite in the cavitated region. Consequently, the upwind function αAD

reduces to one in the cavitated region and zero in the full film region. Substituting Equation (11) into
Equation (10) results in the following Reynolds equation:
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−
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H3 (ξ ≥ 0)
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)
∂ξ

∂X
+ 6Hf

)
= 0 (14)

This equation is strongly non-linear due to the included Boolean expressions. After discretization
using finite elements, the system of non-linear equations is solved using a simple fixed-point iteration
where the Boolean expressions are evaluated by means of the solution of the previous iteration, which
then results in a linear system of equations.

The dependent variable ξ and flow qX are plotted in Figure 2b after solving Equation (14). The results
are compared with another streamline stabilization technique (SUPG) in Figure 2b from which it can be
concluded that the results obtained using AD and SUPG are in close agreement.
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(a) (b)

Figure 2. Dependent variable ξ and flow qX against the dimensionless length of the fluid
domain, without (left) and with numerical stabilization. η̃ = 1, cf = 1 and ε = 0.4. (a)
FEM solution of the 1D Reynolds equation without stabilization, showing oscillations in the
convection-dominated cavitated region; (b) comparison of the artificial diffusion (AD) and
streamline upwind Petrov-Galerkin (SUPG) stabilization methods, showing similar results
of the pressure and mass fraction. The discontinuity of the flow is not yet minimized here.

Some discontinuity of flow at the reformation boundary remains, however, which should be
continuous from the physical perspective. Minimization of this discontinuity can be obtained by
choosing an optimum value for the transformation constant cf . An attempt to resolve this challenge
is by equating the flows at this boundary and working out using numerical differences; or:

qXcav. = qXfull.
⇐⇒ (15a)

(6Hf(ξ))cav. =

(
−H3

η̃

∂P

∂X
+ 6H

)
full.

(15b)

where qX,cav and qX,full stand for the flow in the cavitated and full film region, respectively. Substituting
the proposed transformation (Equation (8a) and (8b)) into Equation (15b) and working out in terms of
numerical differences gives:

6Hr (1 + cfξr) =
−H3

r

η̃

ξr+1 − ξr
he

+ 6Hr (16a)

cf =
H2
r

(
1− ξr+1

ξr

)
6η̃he

(16b)

where Hr and ξr are the film thickness and solution at this interface point. The partial derivative is
approximated using the numerical difference between the values of point r and downstream neighboring
point r + 1. In the cavitated region, the pressure is less than zero (ξr < 0), whereas in the full film
region, the pressure is equal to or larger than zero (ξr+1 ≥ 0). According to this, a critical transformation
constant (c∗f ) may be introduced, which complies with the following expression:

cf ≥ c∗f =
H2
r

6η̃he
(17)
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For values cf close to c∗f , the discontinuity at the reformation boundary was minimal, and faster
convergence was achieved; see Figure 3a. As can be observed, c∗f depends on the local height at
the reformation interface, which is initially unknown. However, after performing some numerical
experiments, it was observed that in most cases, Hr is found to be very close to the maximum film
height of the oil film. Hence, the maximum film height was used in the calculation of cf .

With the dependence of c∗f on Hr, Equation (14) can now be simplified by suggesting cf = H2

3η̃he
.

∂

∂X

(
−H

3

12η̃

∂ξ

∂X
+
Hf

2

)
= 0 (18)

Note the absence of any Boolean functions in the pressure term. This optimized transformation results
in fast convergence, as it is slightly less non-linear and, thus, more stable. In Figure 3b, the mass
fraction, film thickness, flow and pressure are plotted after solving Equation (18). It is clear that the flow
discontinuity is minimal now. Note that due to this chosen value of cf = H2

3η̃he
, which is dependent on the

local element size he, the flow discontinuity is effectively minimized by locally refining the mesh size
near the reformation boundary.

(a) (b)

Figure 3. Distribution of mass fraction, film thickness, flow and pressure for η̃ = 1 and
ε = 0.4. (a) Flow in the area near the reformation boundary using values close to the optimal
transformation constant c∗f . Note that the maximum film height was used for the calculation
of c∗f . (b) Solution of the 1D Reynolds equation (Equation (18)) using cf = H2

3η̃he
, showing

only minimum flow discontinuity.

This 1D cavitation algorithm has been verified for the full range of shaft eccentricity values and for
a large range of mesh densities, for low to high numbers of degrees of freedom Ndof. Figure 4a gives
a representation of the required number of iterations Niter. and Ndof, in order to obtain relative errors
of 10−4 − 10−5, as a function of ε. As can be observed, the maximum number of iterations required
is seven, which contributes as evidence for fast convergence. Typically, the computation time is within a
few seconds on a quad core desktop computer.

It should be noted that if one only considers the pressure and/or the mass fraction profiles, it may
seem that the solution is smooth enough. The streamline flow qX , however, may exhibit oscillations due
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to the existence of steep pressure gradients, in particular at higher values for ε. Of course, this means
that the mesh size has to be chosen smaller. This problem is clearly exposed in Figure 4b.

Figure 4c,d shows that the results obtained using our AD-stabilized cavitation algorithm are identical
to "exact" results calculated by SUPG-stabilization, even for relatively high values of ε. This comparison
shows the numerical robustness of the cavitation algorithm for high ε values.

(a) (b)

(c) (d)

Figure 4. Verification and/or representation of the numerical stability of the cavitation model
for the full range of shaft eccentricities. η̃ = 1. (a) Ndof and Niter. are associated with
ε in order to obtain an optimum combination of accuracy and computational expense for
the 1D model; (b) the influence of Ndof on the streamline flow distribution for ε = 0.95.
Note the oscillations in the solutions for a lower value of Ndof. (c) Comparison between
pressure distributions obtained using the AD method with the SUPG method for relatively
high eccentricity ratios. The results strictly follow each other. (d) Comparison between mass
fraction distributions obtained using the AD method with the SUPG method. Even for high
ε, minimal discontinuity is observed near the reformation boundary. Furthermore, excellent
agreement exists between the results obtained using both methods.
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To further validate our algorithm, the cavitation algorithm was used in several case studies for
which there are reliable benchmark solutions in the literature. Giacopini et al. [23] developed a
mass-conserving cavitation algorithm based on the concept of complementarity and successfully verified
their model using several case studies with (semi)-analytical and numerical formulations. In the present
paper, the proposed cavitation model will be adapted to three different case studies in order to test its
numerical properties and finally verify the results with those of Giacopini et al. [23].

The first situation represents a simple journal bearing with an infinite width (see Figure 5a). The
dimensions and relevant operating conditions are given in Figure 5. As can be observed, the film rupture
and reformation boundary are accurately calculated. Excellent agreement is found between the predicted
and reference pressure profiles.

The second situation is somewhat different, as the film thickness profile has a divergent-convergent
shape (see Figure 5b). As can be extracted from Figure 5b, the film cavitates in the diverging region.
Again, there is excellent accordance among both the predicted and reference results. Note that the
diverging-converging shape of the film thickness can also be considered to be an idealization for
situations involving surface texture.

(a) (b)

Figure 5. Comparisons between predictions of the presented method with Giacopini
et al. [23] for an infinite width sinusoidal bearing. Operating conditions for the present
case are [23]: h0 = 0.02 mm, 2πR = 125 mm, η = 0.015 Pa·s, U = 4 m/s and Boundary
Condition 1 (BC1): p = 1 MPa. (a) Comparison of the predicted pressure distributions with
Giacopini et al. [23] for ε = 0.25. There is excellent agreement between the results. (b)
Comparison of the predicted pressure distributions with Giacopini et al. [23] for ε = −0.25.
Again, excellent accordance between the results is observed.

Hence, the last situation is that of a non-convergent/parallel bearing with a single microtexture pocket
near the inlet (see Figure 6a). The reference dimensions and operating conditions are given in Figure 6.
For this case, Olver et al. [24] derived an analytical solution, which pointed out the existence of a region
in which the film cavitates. Comparisons of the predicted pressure profile with those of the reference
authors are provided in Figure 6b in which the agreement is excellent. Figure 6c compares the predicted
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fractional film content distribution with the reference results in which fair accordance is obtained. Note
that the fractional film content in the work of Giacopini et al. [23] is modeled using compressibility
and is thus modeled as the non-dimensional density, which is why we have used a different notation for
the fractional film content for the results of the reference authors. However, in the cavitated region, the
pressure is constant, and thus, ρ/ρ0 stands for the fractional film thickness.
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𝑎 

𝑑 

𝑐 

𝑏 

𝑥 𝑧 
ℎmin 

ℎm𝑎𝑥 

𝑝a 𝑝a 

(a) (b)

(c)

Figure 6. Bearing configuration and comparisons between predictions of the presented
method with past literature. Operating conditions for the present case are [23,24]:
b = 2 mm, c = 3 mm, d = 15 mm, hmax = 0.01 mm, hmin = 0.001 mm, η = 0.01 Pa·s,
U = 1 m/s and pa = 0.1 MPa. (a) Schematic of a non-convergent/parallel bearing with a
single microtexture pocket near the inlet. One surface is moving with velocity U , while the
opposing surface is kept stationary. (b) Comparison of the predicted pressure distribution
with Giacopini et al. [23] and the analytical solution of Olver et al. [24]. The results closely
follow each other. (c) Comparison of the predicted fractional film content distribution with
Giacopini et al. [23]. There is fair accordance between the results.
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2.2. 2D Stationary Situation: Crosswind Numerical Stabilization

In the previous section, the 1D cavitation algorithm was shown to be stable and robust and, moreover,
produces results identical to the results found in the literature. Therefore, the algorithm will now be
extended to a 2D cavitation algorithm. The extension of the stabilized 1D Reynolds equation (Equation
(18)) to a 2D finite length journal bearing reads:

∂

∂X
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−H3

12η̃

∂ξ

∂X
+
Hf

2

)
+

∂
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(
−H3 (ξ ≥ 0)

12η̃

∂ξ
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)
= 0 (19)

For this case, the supply is over the full bearing length (BC1: P = 1), and the pressure on the edges
of the bearing is set equal to zero (BC2: P = 0). Furthermore, a relatively coarse grid is used to show
the numerical stability of the stabilization techniques used.

When Equation (19) is solved without further stabilization, the distribution of the mass fraction is not
smooth, and spikes occur at the edges of the bearing, as can be seen in Figure 7a. This means that only
applying streamline stabilization is not sufficient. Numerical stabilization is required in the crosswind
direction (Y -direction), as well as in order to smooth the solution of the flow in the cavitated region. In
Hughes et al. [19], Codina [22] and Tezduyar and Park [25], for instance, methods have been studied to
choose the crosswind artificial diffusion coefficient. In this study, the diffusion term in the Y -component
of the Reynolds equation is modified by adding an artificial diffusion term kAD,Y :
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)
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In this study, the crosswind diffusion coefficient is chosen similar to kAD, but scaled relative to the
angle between the flow solution gradient and flow direction. The crosswind artificial diffusion coefficient
kAD,Y is chosen as follows:

kAD,Y = k∗AD,Y kAD (21a)
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(21b)

where δ is a very small number (order of magnitude 1e-10) to prevent numerical problems in areas
where the gradients ∂ξ

∂X
and ∂ξ

∂Y
are zero. Substituting this value for kAD,Y in Equation (20) results in the

stationary cavitated-modified Reynolds equation for a 2D lubricating film:
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)
= 0 (22)

A convergence analysis was performed from which it was concluded that an optimum combination of
accuracy and the number of elements is obtained at Ndof = 4100 (approximately 8050 linear elements).
Relative errors of approximately 10−4 − 10−5 are usually found within 10–15 iterations. Typically, the
computation time is within 10 s on a quad core desktop computer.
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(a)

(b)

Figure 7. Mass fraction contours with and without crosswind numerical stabilization for
η̃ = 1 and ε = 0.6. (a) Only streamline stabilization, i.e., kAD,Y = 0 showing spikes in the
Y -direction near the edges; (b) non-linear crosswind stabilization suppresses the spikes.

Solving Equation (22) using a typical PDE routine gives a reasonable solution, as the overshoot for
the mass fraction distribution is almost suppressed and the sharp transition at the edge of the bearing is
retained; see Figure 7b. Several other non-linear crosswind numerical stabilization techniques have also
been tested, but the one represented by Equation (21) has been shown to be most stable and the fastest
to converge.

The artificial diffusion term for the crosswind stabilization slightly changes the original Reynolds
PDE. In order to see if the results after this modification are still accurate, our cavitation algorithm
was compared with those from Yu et al. [26] for a fully submerged bearing. Yu transformed
Elrod’s universal differential equation into a boundary integral equation by means of boundary element
theory and compared their results with those obtained using a finite difference approach in which they
found excellent accordance. Typical Dirichlet conditions (P = 0) are imposed on all edges of the
computational domain. The pressure and mass fraction distributions are compared in Figure 8a,b,
respectively, from which it is clear that the results closely follow each other. As mentioned earlier, the
fractional film content in the full film region of the reference results is modeled using compressibility,
which is the reason why the non-dimensional density slightly increases in that region.

Based on this comparison, it can safely be stated that the artificial diffusion terms have little influence
on the overall solution accuracy, and thus, the AD-method may be used.
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(a) (b)

Figure 8. Steady-state validation of the proposed 2D cavitation model with Yu et al. [26]
for η̃ = 1 and ε = 0.6. The graphs are plotted at an axial location of Y = 0.2 for
the sake of comparison. (a) Comparison of pressure distributions; (b) comparison of mass
fraction distributions.

2.3. 2D Transient Situation: Equations of Motion

For a time-dependent problem, the squeeze term (∂(fH)

∂t̃
) needs to be added to Equation (22). The

stabilized 2D cavitated-Reynolds equation then becomes:

∂qX
∂X

+
∂qY
∂Y

+ (f + 2cf (ξ < 0) ξ)
∂H

∂t̃
+Hcf (ξ < 0)

∂ξ

∂t̃
= 0 (23)

with the dimensionless circumferential and axial flows, respectively:

qX =
−H3

12η̃

∂ξ

∂X
+
Hf

2
(24a)

qY =
−H3

12η̃

(
(ξ ≥ 0) + (ξ < 0)k∗AD,Y

) ∂ξ
∂Y

(24b)

An inverse bearing model is used here: it is assumed that the applied load W a and load angle XW are
known, and the corresponding eccentricity ε and attitude angle Xε have to be calculated. Note that the
load vectors are dependent on the pressure and therefore on the eccentricity and attitude angle.

In case an external force (W a) is acting on the shaft, this force and the load carrying force of the
lubricating film combine, and the resulting equations of motion become:[

Wx̄

Wȳ

]
+

[
W a
x̄

W a
ȳ

]
= M

[
ε̈x̄

ε̈ȳ

]
(25)
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where M represents the reduced mass of the system. M , Wx̄,Wȳ and XW are given by:

M =
mh3

0ω
2

η0UR3
(26a)

Wx̄ =

∫
Ω

−P cos (X) dΩ (26b)

Wȳ =

∫
Ω

−P sin (X) dΩ (26c)

XW = arctan

(
Wȳ

Wx̄

)
(26d)

Equations (25) and (26) are simultaneously solved using a modified Newton-Raphson iteration
scheme from which the correct load angle and eccentricity are obtained.

3. Expansion to a Thermo-Hydrodynamic Model

In the previous section, a novel and fast mass-conserving Reynolds cavitation algorithm was
developed, from which the mass fraction and the pressure distribution throughout the fluid film domain
can be calculated. In general, modeling a plain journal bearing using the assumption of an isoviscous
fluid leads to unrealistic results [4]. Hence, in this section, a simple and efficient thermal model is
developed from which the viscosity distribution can be obtained. Furthermore, in the previous section, it
was assumed that the supply groove was infinitely small in the circumferential direction. In this section,
the shape of the supply groove and its influence on the temperature and pressure distribution is taken
into account.

In addition to the variables of Equation (4), the following dimensionless variables are introduced:

k̃ =
k

UCpRρ0

T̃ =
h2

0ρ0Cp
Rη0U

(T − Ts) φ̃ =
φh0

U2R2η0

Q̃ =
Q

RUh0

(27)

3.1. Fluid Rheology

In this model, the viscosity is a function of temperature T̃ based on the following
exponential expression:

η̃ = e−β̃T̃ (28)

where β̃ stands for the dimensionless temperature viscosity coefficient. The shear rate and pressure
dependencies of viscosity are not taken into account in this analysis, but could straightforwardly be
taken into account in the methods presented in this section.

3.2. Energy Equation and Oil Supply

The heat transport calculations are based on the assumption of adiabatic conditions, i.e., heat transport
to and from the bearing housing and the shaft are neglected. This follows from the assumption that
convective heat transport is dominant, i.e., the lubricant leaving the bearing carries away the major part
of heat generated in the film. Furthermore, the use of an effective temperature across the film thickness is
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made. This reduces the 3D energy model to a simple and efficient 2D model. From these simplifications,
the adiabatic energy equation reads [27]:[

∂

∂X

(
qX T̃ − k̃Hf

∂T̃

∂X

)
+

∂

∂Y

(
qY T̃ − k̃H (ξ ≥ 0)

∂T̃

∂Y

)
+Hf

∂T̃

∂t̃

]
= ψ̃ −

∑
qmT̃ (29)

where qX and qY are the bulk flow velocities in the X and Y -directions, respectively, obtained from
Equations (24a) and (24b). The viscous dissipation term ψ̃ and friction losses φ̃ can be calculated
as follows:

ψ̃ =
H3

12η̃

[(
∂P

∂X

)2

+

(
∂P

∂Y

)2
]

+
η̃f

H
(30a)

φ̃ =

∫
Ω

ψ̃ dΩ (30b)

where Ω stands for the bearing surface area. The second term on the RHS of Equation (29) denotes the
inflow (heat flux) of oil from the supply groove(s) to the bearing. The calculation of this term follows
later on in this section.

Equation (29) assumes that finger-type cavitation occurs, which means that the flow in the cavitation
area consists of fluid streamers separated by pockets of gas. This means that in the cavitated region,
heat conduction in the Y -direction can safely be ignored, as heat conduction through gas is far less than
through oil. Hence, the Boolean expression in front of the heat conduction term is in the Y -direction.
Heat generation in the cavitated regions is assumed to be solely generated due to shear losses in
the streamers. Furthermore, the heat capacity k and heat conduction coefficient Cp are assumed to
be constant throughout the calculations, as their temperature and pressure dependency is much less
compared to that of the viscosity.

Similar to the Reynolds equation, the thermal Equation (29) is strongly convection dominated and,
hence, also requires numerical stabilization. To this end, we have implemented the SUPG method in
order to stabilize the solution of Equation (29) in the cavitated region.

The temperature distribution in the supply grooves is calculated based on perfect mixing conditions
(see, for instance, van Ostayen and van Beek [27]). The oil inflow from the supply grooves to the fluid
film is calculated, taking into account the shape of the groove, by:

qm = (Q̃m > 0)Q̃m
Hf∫

Ωm
Hf dΩ

(31)

where Ωm stands for the surface area of the groove. In some cases, the hydrodynamically-generated
pressure in the supply groove is larger than the supply pressure. In those situations, hot oil is forced
back into the system (Q̃m < 0), and the Boolean function in Equation (31) is equal to zero, as no
heat transport takes place. Weak Dirichlet pressure boundary conditions (P = Ps) are imposed on the
edges of the supply grooves. The volumetric flow in the groove can then be obtained by integrating the
Lagrange-multiplier associated with the pressure, over the edges of the supply groove:

Q̃m =

∫
Πm

ξlmds (32)
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where ξlm represents the Lagrange-multiplier associated with the pressure P . The assumption has been
made that the oil inflow from the supply grooves to the fluid film is distributed across the grooves relative
to the local groove depth according to the following relation [27]:

Hf = Hf,max

(
1−

(
2(x− xm)

dm

)2
)(

1−
(

2y

dm

)2
)

(33)

3.3. Boundary Conditions

At X = −π and X = π (BC1), periodicity is imposed to ensure flow continuity. On the edges of
the supply groove, a typical Dirichlet boundary condition has been imposed with supply pressure Ps. On
the edges of the bearing (BC2), non-submerged boundary conditions are imposed, and the temperature
gradient normal to the edges is assumed to be zero. The term “non-submerged” mathematically implies
that in the full film areas, the pressure on the edges is set to zero (ξ = 0), as there is outflow of lubricant,
whereas in the cavitated/inflow regions, zero flow is enforced (no boundary condition is set, 0 = 0). The
non-submerged boundary condition can thus realistically be simulated using the following constraint:

(ξ ≥ 0) (nY qY > 0) ξ = 0 (34)

where nY is the normal vector of the edges.

4. Results

The developed model in the previous sections is solved using a general purpose finite element analysis
software [12]. Notice the strong non-linear coupling between Equations (2), (6) and (26), where W and
XW are a function of P and, therefore, a function of ε and Xε. Moreover, the variable viscosity (η̃)

couples the Reynolds equation with the energy equation.
Summarizing, the set of equations and constraints (load balances, the Reynolds and energy equation

with its respective boundary conditions) is solved using this finite element formulation, where the
resulting system of non-linear equations is solved using a monolithic approach, where all of the
dependent variables

(
ξ, T̃ , ε,Xε

)
are collected in one vector of unknowns and simultaneously solved

using a modified Newton-Raphson iteration scheme coupled with a time stepping algorithm. For a
detailed description of the used time stepping algorithm and integration scheme, see [12].

4.1. Validation of the 2D THD Steady State Model

Ferron et al. [14] performed experiments on a single axial grooved bearing and obtained satisfactory
accordance between simulations and measurements. Their measurements are regularly used as a
benchmark for verification of THD models (for example [28–30]). In order to validate the proposed
model, the bearing geometry and operating conditions used by Ferron et al. [14] are used for a numerical
study (see Table 1). In the present work, the assumption of adiabatic bounding surfaces has been made
after consideration of the operating conditions under which the experiments were performed.
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Table 1. Geometric details of the plain journal bearing and properties of the lubricant for the
reference calculations [14].

Parameter Symbol Value

Shaft diameter d 100e-3 (m)
Axial length bearing L 80e-3 (m)

Clearance C 145e-6 (m)
Groove depth (assumed) Hf,max 2e-3 (m)

Density ρ 860(kg/m3)

(Inlet) viscosity η0 0.0277 (Pa·s)
Heat capacity Cp 2000 (J/kg·K)

Heat conduction coefficient k 0.13 (W/(m·K))
Temperature-viscosity index β 3.3e-2 (1/K)

Supply pressure ps 0.7e5 (Pa)
Supply temperature Ts 40 (◦C)

Groove angle - 18◦

A convergence analysis was performed for the reference operating conditions, from which it was
concluded that an optimum combination of accuracy and the number of elements is obtained at
Ndof = 4100 (approximately 8050 linear elements), and hence, this mesh distribution is used further
throughout the analysis. Relative errors of approximately 10−4 − 10−5 are usually found within 15–25
iterations. Typically, the computation time is 20–25 s on a quad core desktop computer.

It is worth mentioning that in the paper of Ferron et al., the viscosity-pressure dependence was
not taken into account, although this dependence may compensate in part for the viscosity reduction
due to the temperature rise. The pressure viscosity coefficient for a typical mineral oil is in the
range of 10−8 Pa−1. Thus, it is safe to ignore the viscosity-pressure dependence (as compared to the
viscosity-temperature dependence) considering the order of magnitude of the pressures in Figure 9b.

In Figure 9a, the dependent variable ξ is plotted, in which the hydrodynamic pressure peak can clearly
be observed. It can also be observed from Figure 9a that due to the imposed non-submerged boundary
condition at the edges of the bearing (see Equation (34)), ξ = 0 in the full film region, and no flow is
enforced in the cavitated region.

The theoretical predictions are compared with the measurements of Ferron et al., in Figure 9b,c.
Concerning the pressure profiles, excellent agreement is found. Note the jump in the pressure profile at
both ends of the interval as a consequence of the imposed pressure constraint Ps at these ends (the supply
groove has a finite width, which is defined by the groove angle (see Table 1)). There are, however, some
discrepancies between the predicted and measured temperature profiles. As can be seen, the magnitude
of the predicted maximum temperature is in accordance with the measured maximum temperature. The
location of the maximum temperature is not accurately predicted, though. A probable explanation
follows from the treatment of heat transport in the cavitated region. In this model, the assumption
was made that the cavitated area consists of fluid streamers (finger-type cavitation). However, the actual
behavior of fluid in the cavitated region may be different. Moreover, the oil inflow profile, which was
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assumed, Equation (33), might be inaccurate. It is known that the inflow of oil can have significant
influence on the calculated temperature field and, hence, should be investigated in more detail.

(a)

(b) (c)

Figure 9. Distributions of dependent variable ξ, pressure and temperature wa
x̄ = 4 kN,

ωs = 2 krpm. (a) Height expression and contour plot for the dependent variable ξ; (b)
comparison of the theoretical and experimental [14] circumferential mid-plane (Y = 0)

pressure profile; (c) comparison of the theoretical and experimental [14] circumferential
mid-plane (Y = 0) temperature profile.

In Figure 10a, the eccentricity ratio is plotted against the varied applied load: fair agreement is found
between the measurements and the predictions. Satisfactory agreement is also found between the outflow
of the lubricant as a function of the eccentricity ratio; see Figure 10b. A similar statement can be made
about the maximum pressures as a function of the eccentricity ratio at different rotation speeds; see
Figure 10c,d.

In Figures 10e,f, the maximum temperatures are plotted against the eccentricity ratio at different
rotational speeds. As can be noticed, there are some discrepancies between the predictions and theory of
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the maximum temperatures. This might be due to the aforementioned assumptions of the cavitation type
and the oil inlet profile. In addition, changes in clearance of the bearing due to thermal growth could also
have caused discrepancies, which are not taken into account in our model. In general, it can be stated
that satisfactory agreement between the measurements and the predictions is found.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Comparison of the modeling results with the measurements of Ferron et al. [14].
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4.2. Transient 2D THD Results

Although the reference results of Ferron [14] only contain steady-state results, a time transient
analysis is performed here for the sake of completeness. The transient analysis is performed by means
of applying a synchronous harmonic load on the journal, to demonstrate the performance of the journal
bearing model under dynamic loading. The applied load in its respective x̄- and ȳ-directions can be
written as: [

W a
x̄

W a
ȳ

]
=

[
|W a| cos

(
t̃
)

|W a| sin
(
t̃
) ] (35)

In Figure 11a, the shaft orbit resulting from the transient analysis is plotted. It is observed in
Figure 11a,b that after, the initial transient effects, both pressure p and film thickness h, reach a limit
cycle and continue to move in that cycle. Moreover, the solution for the maximum pressure and
temperature in the limit cycle is in the vicinity of the steady-state solution (see Figures 11b and 12).
An interesting result that is provided is the behavior of the maximum temperature Tmax with time, which
is that it reaches equilibrium with the surroundings and, hence, approximates a steady value after a
certain period of time. The typical computational time for the time-dependent calculation is 2–4 minutes
per revolution on a typical quad core desktop computer.

Careful study of Figure 11a reveals that it is clear that the shape of the profile (ε,Xε, t̃) is not a perfect
circle, which means that the eccentricity (ε) has a maximum and a minimum (in this case, near an altitude
angle (Xε) of 180◦). This was found to be due to the hydrostatic pressure of the oil inlet channel. As can
be observed in Figure 11b, a peak pressure occurs every time the hydrodynamic peak pressure coincides
with the start and end of the oil inlet channel, explaining the double pressure peaks each revolution.
During this passage, also the supply flow decreases, which logically implies that less cold lubricant is
introduced into the film (see Equation (31)) and, hence, results in a slight increase in temperature, which,
after the passage of the oil inlet channel, decreases again to its former value (Figure 12).

(a) (b)

Figure 11. Time-transient analysis for the reference bearing for wa = 4 kN (dynamic
loading) and ωs 2 krpm. (a) Shaft orbit; revolution of journal center locus with time.
(b) Maximum pressure (pmax), minimum film thickness (hmin) and supply/outflow of
lubricant (Qsupply).
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Figure 12. Maximum temperature (Tmax) evaluated at the mid-plane (Y = 0) and
mechanical losses due to shearing. Time-transient analysis. wa = 4 kN (dynamic loading)
andωs 2 krpm.

5. Conclusions

In this paper, a simple and efficient thermo-hydrodynamic (THD) model has been developed and
applied to a plain journal bearing. To this end, a new mass/conserving Reynolds cavitation algorithm has
been developed for finite element analysis. The proposed pressure and mass fraction transformation, in
combination with anisotropic artificial diffusion, provides a fast, stable and robust approach to solve full
film lubrication problems. The complete THD model simultaneously solves the fundamental equations
(Reynolds and energy equation) combined with a set of load balance equations and has proven to give
results in accordance with published measurements for steady-state cases. To be more specific, design
parameters, such as the eccentricity ratio, the maximum temperature and pressure, are satisfactorily
similar to the measurement results. However, some discrepancies were found in matching of theoretical
and predicted circumferential temperature profiles. A probable explanation was given by the treatment
of heat transport in the cavitated region, the inflow profile assumed and the thermal growth of the
components. Hence, these should be investigated in more detail. Finally, a transient analysis of the
shaft under harmonic loading was performed, which revealed distinct knowledge about the dynamic and
transient thermal behavior of the bearing.
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Nomenclature

x̄, ȳ global coordinates

cf , c
∗
f mass transformation constant, critical constant (-)

Cp heat capacity (J/kgK)
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cp Elrod’s pressure transformation constant (-)

e journal eccentricity (m)

f mass fraction (-)

h, h0, H film height ((m), reference (-))

he element size

k, k̃ thermal conductivity ((W/mK), (-))

kAD artificial diffusion coefficient (-)

L, L̃ axial length ((m), (-))

m,M mass of shaft ((kg), (-))

p, P pressure ((Pa), (-))

PeAD cell Peclet number (-)

Q, Q̃ lubricant flow ((m3/s), (-))

R radius (m)

T, T̃ temperature ((K), (-))

t, t̃ time ((s), (-))

U surface sliding velocity (m/s)

w,W load carrying capacity ((N), (-))

x, y,X, Y coordinate along resp. perpendicular to the sliding direction ((m), (-))

Xε, XW attitude, load angle (rad)

αAD upwind function (-)

β, β̃ viscosity-temperature coefficient ((K−1), (-))

δ constant (crosswind stabilization) (-)

η,η0, η̃ viscosity ((Pa·s), reference (-))

surface area (-)

ω rotational speed (rad/s)

φ, φ̃ heat/energy flow ((W), (-))

ψ, ψ̃ viscous heat dissipation ((W/m2), (-))

ρ, ρ0, ρ̃ density ((kg/m3), reference (-))

ε journal eccentricity (-)

ξ transformed pressure/width fraction (-)
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