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Abstract: This paper focuses on the operating behavior of journal bearings for industrial machinery
application during run-ups. For this purpose, a numerical simulation code that is based on
a two-dimensional extended and generalized Reynolds equation and a full three-dimensional energy
equation, was advanced by a theoretical model considering the effects of mixed friction and warming
of journal components during start-up. The mixed friction routine contained the elastic half-spaces
model proposed by Boussinesq, which considers the influence of rough surfaces by implementing
flow factors and calculates additional stiffness and dissipation in areas with solid interactions.
Furthermore, a transient term was added in the energy equation to consider the thermal inertia of
journal, and bearing to ensure a realistic heating during run-ups. Results of the prediction were
compared to experimental data taken from a special test rig built up for validation procedures.
Besides the conventional sensors for temperature, oil flow, and relative motion between shaft and
stator, a contact voltage measurement was installed to determine the intensity of mixed friction.
The evaluation of experimental data by Stribeck curves, based on a shaft torsion measurement,
indicated a significant influence of run-up time on frictional moment. The friction coefficient of the
rotor bearing system was strongly influenced by the run-up time. A short run-up time reduced the
frictional coefficient in the mixed lubrication regime while the opposite behavior was observed in the
hydrodynamic lubrication regime. The numerical code predicted these tendencies in good agreement
with experimental data, however, only if the transient energy model was applied.

Keywords: journal bearing; run-ups; mixed friction; transient energy equation;
experimental validation

1. Introduction

The Stribeck curve shows the development of the bearing friction coefficient µ, dependent on
rotational speed n and can be used to design a journal bearing as efficient as possible. It is still uncertain
to what extent a fast or slow run-up influences the Stribeck curve, and consequently, the operating
behavior. There are several publications containing transient thermoelastohydrodynamic studies for
journal bearings. Khonsari and Wang [1] proposed a simplified model with an uncoupled analysis
of the Reynolds and energy equations using adiabatic thermal boundary conditions. Paranjpe and
Han [2] used a full three-dimensional (3D) energy equation with hot oil mixing in the groove, and
defined a continuous heat flux at fluid-solid interfaces for a crankshaft bearing. A similar model was
modified by Kucinschi et al. [3] to describe the thermal expansion of journal and bearing. The authors
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calculated the temperature field in a journal bearing related to both rapid and slow start-ups using
a two-dimensional (2D) temperature distribution in the bearing. They validated their results with
experimental data, and identified significantly higher time periods until steady state conditions were
reached than reported in [1,2]. However, these papers do not include a theoretical mixed lubrication
model that is necessary to describe the whole Stribeck curve shown in Figure 1.
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Figure 1. Stribeck curve with different lubrication regimes.

Especially during the start-up processes oil film thickness is very small. If it falls below a critical
value hcr, surface roughness phenomena have to be considered. At first the surface asperities hinder
oil flow and thus affect the hydrodynamic pressure phyd build up. Since deterministic models of rough
surfaces require a very fine mesh resulting in high computational times, a flow factor extended-average
Reynolds equation was used to consider surface topography on macroscopic scale. There are numerous
investigations on the impact of surface pattern or textured surfaces that confirm a relevance of surface
roughness on the hydrodynamic behavior. For example, Akbarzadeh and Khonsari [4] compared the
influence of longitudinal, transversal, and isotropic surfaces of a pin-bushing assembly and determined
specific frictional characteristics of each surface. Adatepe et al. [5], measured Stribeck curves of
statically loaded micro-grooved journal bearings and identified a significant impact of the groove
orientation on their results. As a further important effect in a mixed lubrication regime, solid contact
pressure pc is built up between single micro contacts and exists simultaneously with the hydrodynamic
pressure phyd of the thin film. Precomputation of contact pressure as a function of relative distance
between the two surfaces can be performed in a separate calculation module based on the theory of the
elastic half-spaces according to Boussinesq [6], in cooperation with a linear-elastic ideal-plastic material
law. Most numerical models are based on the theory of Greenwood, Williamson, and Tripp [7,8] that is
limited to surfaces with a Gaussian height distribution of the asperities. However, most engineering
surfaces; like a turned surface after running-in or a microtextured surface, are non-Gaussian and
finally not covered. Furthermore, the model of Greenwood and Williamson [7] requires a numerical
integration of the Gaussian distribution that is commonly approximated by power laws as shown
by Hu [9] and Panayi and Schock [10], or polynomial functions as proposed by Teodorescu [11] to
reduce computational time. Additionally, standard deviation of asperity heights, radius of an asperity
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peak, as well as density of asperities are required for contact pressure calculation and summarized in
a so-called elastic factor. By now no generally accepted method exists to determine these asperity peak
properties [12]. Consequently, the elastic factor varies in different publications between 1× 10−4 and
5× 10−2, e.g., [9,13–15]. Additionally, Lu et al. [16], and Sander et al. [17] conducted investigations on
Stribeck curves for journal bearings and used the model from [7] in their predictions.

This paper focuses on transient temperature effects in the hydrodynamic and mixed lubrication
regimes. Therefore, the transient energy equation was evaluated to consider the thermal inertia of
the journal, bearing, and film. Additionally, the dissipation expression included boundary friction
in regions with solid interaction. In contrast to the contact model proposed by Greenwood and
Williamson [7], the model for load carried by asperities presented in this paper enabled pressure
predictions for arbitrary technical surfaces. Moreover, it considered elastic deformations of asperities
that were not in contact.

2. Theoretical Analysis

The physical basics of the theoretical bearing model include a two-dimensional (2D) extended and
generalized Reynolds equation, and a full (3D) energy equation for bearing, oil film, and journal.
The temperature in the journal was assumed to be uniform in circumferential direction due to
sufficiently high rotor speeds. For the solution of Reynolds and energy equations, a conservative finite
difference scheme (Finite Volume Method (FVM)) was used. The combined convection and diffusion
problem of the energy equation was stabilized by the hybrid scheme, which is in detail explained
in [18]. For the oil supply process an advanced mixing model was implemented that needs no mixing
factors and is completely energy conserving [19].

The basis of the entire bearing model used for the upcoming analyses was comprehensively described
in [19–21]. Therefore, the consecutive explanations were mainly reduced to the implemented mixed
lubrication model and its impact on the mechanical equilibrium as well as the modified energy equation.

2.1. Mixed Lubrication Model

During run-ups, journal bearings without jacking oil units have to pass the mixed lubrication
regime because of high loads at low rotor speeds. Consequently, a validated mixed lubrication model
was necessary to reliably calculate parameters such as friction coefficient, friction torque, or power loss.
In mixed lubrication regimes, the external force was compensated by the hydrodynamic pressure phyd
of the lubrication film, and the solid contact pressure pc of the asperities that were in contact. The total
pressure ptot was computed with:

ptot = phyd + pc (1)

2.1.1. Hydrodynamic Pressure

At very small film thickness values the asperities on surfaces can hinder or support the oil
flow depending on their orientation. Patir and Cheng [22,23] proposed an average Reynolds
equation containing the so called flow factors to consider the influence of surface roughness on
the hydrodynamic pressure.
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This concept enables simulation on a macroscopic scale and the calculation time can be extremely
reduced. A three dimensional viscosity distribution due to variable temperatures in all three directions
of the film was considered by the factors [24]:
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Additionally, the effects of local turbulent flow or Taylor vortices were included using the
coefficients Kx and Kz [25]. The mass conserving cavitation was described by an algorithm that
was based on the JFO theory and its numerical implementation according to Elrod [26] taking fluid
film rupture and reformation into account.

The dependence of flow factors on film thickness was analyzed in a separate module for a small
but representative sample of the bearing. Therefore, the surface topography was measured white light
interferometry and the flow factors were determined by calculating the ratio of mean flow through
a smooth and a rough miniature bearing for different boundary conditions. The pressure distribution,
and consequently, oil flow in the rough miniature bearings were obtained by solving Reynolds equation
with the local film thickness between the single microcontacts considering contact zones that hinder
the oil flow.

2.1.2. Solid Contact Pressure

The basis of the solid contact model is the elastic half-spaces theory, introduced by Boussinesq [6],
which was coupled with a simplified linear-elastic ideal-plastic material law. Therefore, the magnitude
of the pressure was limited by the plastic flow pressure pc,lim of the softer material. Boussinesq
formulated a relation between the elastic deformation wel at a random position (x,y) and the contact
pressure pc.

wel(x, y) =
1

Ered

1
π

x pc(x′, y′)

(x − x′)2 + (y − y′)2 dx′dy′ (4)

For numeric implementation of the solid contact model, the concept of sum surfaces proposed
by McCool [27] was used and the combined rough surface with a reduced Young’s modulus Ered
interacted with a rigid smooth surface.

1
Ered

=
1
2

(
1 − ν2

1
E1

+
1 − ν2

2
E2

)
(5)

In the numerical algorithm, the combined surface was stepwise moved versus the rigid surface
and for each average gap height the pressure distribution was iteratively calculated, whereby a discrete
convolution and fast Fourier transform approach (DC-FFT) [28] was performed to increase the
computational speed.

The measured surface of bearing is represented in Figure 2, and has a RMS-roughness Rq = 2.83 µm.
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Figure 3 shows the calculated curve of flow factors and contact pressure over film thickness.
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2.2. Mechanical State of Equlibrium

The external load is required to be in balance with the fluid film and solid contact forces.
For this purpose the stiffness coefficients of the bearing were used as relaxation parameters in
a Newton–Raphson algorithm to modify the shaft position according to the current residual forces.
In a mixed lubrication regime, a parallel connection of the stiffness coefficients of fluid film chyd and
the asperities in contact cc was assumed.

ctot = chyd + cc (6)

The stiffness coefficients of the fluid film can be derived from a linear perturbation of the average
Reynolds equation [29], including a linearized dynamic volume flow balance. The stiffness coefficients
of the solid contact zone were obtained from the calculated relation between solid contact pressure
and film thickness. Since the stiffness coefficients of the solid contact zone were the gradient in a
force-displacement diagram, the function of normal force over film thickness was obtained from the
calculated solid contact pressure. Again, a small linear perturbation of the current operating point was
performed to determine all stiffness coefficients. Consequently, it was necessary that the used function
of solid contact pressure was continuously differentiable.

2.3. Thermal State of Equlibrium

To calculate the temperature distribution one combined system of equations for bearing, film,
and journal was solved. The energy equation of oil film contained a parameter for an effective heat
conductivity λeff to model turbulent flow by an eddy conductivity and a dissipation term Φ caused by
the internal fluid friction.

cρ
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∂T
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︸ ︷︷ ︸

specific heat conduction
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dissipation

(7)

Three dimensional heat conduction equation of the bearing was written in cylindrical coordinates.

cBρB
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∂t
= λB

(
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rz

∂
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1
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∂T2

B
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(8)

The heat conductivity equation of the journal was concordantly written in cylindrical coordinates,
although, it assumed an independence of temperature in circumferential direction due to sufficiently
high rotational speed.
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cJρJ
∂TJ

∂t
= λJ

(
1
rz

∂

∂rz

(
rz

∂TJ

∂rz

)
+

∂T2
J

∂z2

)
(9)

The time-dependent terms describe the heat quantity that is stored in the fluid and the bearing
components and consider the thermal inertia. The governing time-dependent Equations (2) and (7)–(9)
were solved by an implicit Euler time integration method. For the thermal bearing model, convective
heat transfer was defined on the radial and axial free surfaces of the bearing as well as on the axial free
surfaces of the shaft.

In the mixed lubrication regime, dissipation Φ was not only generated by inner friction in the
fluid but also in the solid contacts due to boundary friction. The determination of the exact distribution
of heat flows in the mixed lubrication regime was beyond the scope of a bearing model based on
macroscopic scale. Therefore, an analogous model was developed wherein the dissipated energy of
fluid

.
qR,hyd and boundary friction

.
qR,c had to be in balance with the conductive heat flows in journal

.
qJ, bearing

.
qB, and the convective heat flow of fluid

.
qF [29].

.
qR,hyd +

.
qR,c =

.
qJ +

.
qB +

.
qF (10)

The dissipated energy of fluid
.
qR,hyd can be obtained with the shear stress in fluid τhyd and the

relative speed u.
.
qR,hyd = τhyd × u = η × .

γ× u (11)

The frictional heat flows of solid contact can be calculated with the contact pressure pc the friction
coefficient µ and the relative speed u.

.
qR,c = µ× pc × u (12)

Overall, in the numerical procedure, this additional dissipation
.
qR,c was defined as boundary

condition on the interface elements between fluid and bearing bodies with consideration of
a continuous heat flow. The total dissipation Φ in Equation (11) was the sum of fluid and boundary
dissipation and can be expressed with

Φ = η × .
γ + µ× pc (13)

The numerical implementation was controlled by the balance of forces, oil, and heat flow.
Thermal deformation was considered by a simple model that used the mean temperature of

journal and bearing, and calculates a global reduction of the radial clearance regarding the different
thermal expansion coefficients of the single components.

The described procedure of a transient simulation considering mixed lubrication is shown in
a simplified flow chart (Figure 4).
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3. Experimental Setup

In order to validate the theoretical results of the described model, a test rig was installed.

3.1. Test Bearing and Test Rig

Measurements were conducted with a cylindrical bearing with one oil lube pocket. The main
geometry is listed in Table 1.

Table 1. Test bearing and boundary conditions.

Bearing Case A Case B Schematic Drawing

Shaft diameter 100 mm

1 

 

 

Bearing outer diameter 130 mm
Relative radial clearance 1.6‰ 3.2‰

Bearing width 50 mm
Supply groove width 40 mm
Supply groove length 26 mm
Supply temperature 30 ◦C 45 ◦C

Supply pressure 2 bar
Speed range 0–4000 rpm

Load 4 kN 5–17.5 kN

The test section of the rig consisted of a rotating shaft supported by two grease lubricated rolling
bearings, and a test bearing located between the support bearings and aligned relatively to them to
apply mechanical loads. Static and dynamic loads up to 50 kN (10 MPa) can be applied by a hydraulic
shaker and an electrical engine enabled rotational speeds varying from 10 to 4000 rpm. The transient
temperatures were detected by 17 thermocouples located in the lateral center plane of journal bearing,
with 4.5 mm distance to sliding surface and distributed in circumferential direction according to
the schematic drawing in Table 1. Frictional torque was measured for the whole driven part of the
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test rig including the support bearings. Therefore, preliminary tests without a journal bearing were
performed to determine the frictional torque of the support bearings. It was assumed that frictional
moments preliminary depend on rotational speed and lubricant temperature. However, the relative
displacement between shaft and test bearing housing, supply pressure and temperature, as well as oil
flow rate were recorded and monitored to ensure constant test conditions. No sensors were applied on
the rotor side. The special feature of the test rig was a contact voltage measurement to determine the
intensity of mixed lubrication. For this purpose, the bearing was isolated from the outer container,
so that a voltage between journal and bearing could be measured in case of solid contact (Figure 5).
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The non-repeatability of the temperature sensors integrated into the measurement chain was
proven by ±1.5 K, and the uncertainties of torque measurement were ±0.13 Nm. The material data
of the brass bearing, the case-hardened steel journal, and the high grade steel container as well as
information on the lubricant are summarized in Table 2.

Table 2. Material data of the test rig components and lubricant.

Property Lubricant Bearing Journal Container

Material ISOVG 32 CuSn7Zn4Pb7 42CrMo4 42CrMo4
Density 853 kg/m3 8830 kg/m3 7720 kg/m3 7720 kg/m3

Specific heat capacity 2090 J/(kg·K)−1 380 J/(kg·K)−1 470 J/(kg·K)−1 470 J/(kg·K)−1

Heat conductivity 0.134 W/(m·K) 68 W/(m·K) 42.6 W/(m·K) 42.6 W/(m·K)
Thermal expansion coefficient - 18 × 10−6 K−1 11 × 10−6 K−1 11 × 10−6 K−1

Elasticity modulus - 101 GPa 210 GPa 210 GPa

3.2. Test Conditions

For the investigation, two different test runs were considered. In a first step, stationary data under
hydrodynamic conditions were established for validation of corresponding predictions. Secondly,
run-ups from 100 to 4000 rpm, under a static load of 4 kN (0.8 MPa), were studied for different
durations in a range from 15 s towards a quasi-static starting in about 3.5 h with identical operating
conditions apart from that. In both cases the rotor speed profile was linear. The lubricant that was
supplied to the test bearing was preconditioned around 30 ◦C and was monitored together with
the grease temperature in support bearing, which was approximately 50 ◦C during the entire test
procedure. A constant oil supply pressure of 2 barg was set for all experimental investigations.
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4. Results

4.1. Validation for Operation in Hydrodynamic Lubrication Regime

Experiments were conducted at rotor speed of 4000 rpm, and specific loads between 0.5 and
3.5 MPa. Under these operating conditions the contact voltage was 0 V, and the bearing was reliably
operating in the hydrodynamic lubrication regime (Figure 1). Temperature measurements were used
to validate the theoretical model for this application. All predicted three dimensional temperature
distributions were evaluated on the radius corresponding to the location of temperature probes and
their axial position in the bearing. For the subsequent prediction, a heat convection coefficient of
50 W/(m2K) was assumed for all free surfaces of the bearing model. Furthermore, the ambient
temperature was equal to the room temperature of approximately 20 ◦C in case of the bearing and
housing, and 40 ◦C for the rotating shaft. Figure 6 presents a comparison of experimental and numerical
results for the bearing for a specific load of pq = 0.8 MPa. Basically, measurement and simulation
showed good agreement. Whereas the magnitude of the single thermocouples could be predicted with
good accuracy, the whole curve had shifted slightly in circumferential direction. More comprehensive
validation data with a higher span of specific mechanical load were measured for bearing B. Figure 7
includes measured and predicted results for bearing B operating at pq = 3.5 MPa. Deviations were
observed at the maximum temperature as well as in the range behind the temperature maximum in
rotating direction.
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The maximum temperatures at the sensor positions in Figure 8 tend to deflect with increasing
loads while they match very well for lower ones.Lubricants 2018, 6, x FOR PEER REVIEW  10 of 16 
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Figure 8. Maximum sensor temperatures—bearing B, operating point: n = 4000 rpm, Ten = 45 ◦C.

In general, good agreement was reached within the investigated operating range. However, there
were some uncertainties that had to be considered. Local deformation of the sliding surface was
neglected, though, it might be of impact as Young’s modulus of the brass bearing was comparably low
and its thickness of 15 mm was high. Additionally, the thermal coefficient of linear expansion was
higher than the one of the steel housing and, therefore, deviations had to be expected especially with
increasing loads as shown in Figure 8. Furthermore, misalignment in different space directions cannot
be completely excluded as less proximity probes and load cells were applied.

Further validations of the code for steady-state operating conditions in the hydrodynamic
lubrication regime including comparisons of local pressures, film thickness, and temperatures for
different types of journal bearings can be found in [19–21,30,31].

4.2. Effects of Transient Run-Ups

Due to slight damage of the rolling element support bearings, frictional moments varied
undetermined for tests with bearing B. Consequently, no reliable run-up investigations on friction
could be performed for this variant and, therefore, all consecutively presented results were related to
bearing A, which were conducted before the issue on the support bearings occurred. In a first step,
a slow start-up, characterized by a small acceleration from 100 rpm to nominal speed was executed.
In the predictions, all initial body temperatures were set equal to the lubricant supply temperature.
The development of four temperatures over time is shown in Figure 9.

Generally, the calculated temperature evolution was in good agreement with the measured
temperatures. Small deviations were explainable with fluctuations in experimental conditions such
as lubricant supply and ambient temperatures, rotating speed, load or misalignment. Predicted
temperatures in the low speed range were notably higher then measured ones. The increase of
temperature was a result of the additional dissipation that occured in the contact area during mixed
lubrication. The measurements did not show the same behavior, because the electrical motor was not
able to ensure a constant rotation at low rotating speed. Thus, the calculation started at 10 rpm whereas
the experiments were run at a minimum speed of 200 rpm. For future experiments an additional gear
will be arranged to ensure a robust and reproducible operation at low speeds.
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Figure 9. Development of temperature at different circumferential locations (slow start-up), stationary
operating point: F = 4 kN, n = 4000 rpm, Ten = 30 ◦C.

As expected, the final temperatures of slow and rapid start-up presented in Figure 10 were nearly
identical for both the simulation and experiment. The theoretical and experimental results were similar
in the case of rapid start-up. The duration until a stationary temperature profile was reached varied.
These differences in temperature were mainly caused by the test bearing housing, that slowed down
the heating process because of its thermal inertia.
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Figure 10. Development of temperature at different circumferential locations (fast run-up), stationary
operating point: F = 4 kN, n = 4000 rpm, Ten = 30 ◦C.

Finally, the experimental Stribeck curves were determined. In advance, the test rig was driven
without journal bearing to obtain the friction moment of the two support bearings Msb. During all
experiments the temperatures in the two rolling bearings were monitored. In case of the rapid run-ups,
the inertia moments Min of all accelerated components had to be subtracted from the measured ones.
The mass inertia for most components could be determined from CAD-models and checked with the
measured torsion moment over time (Figure 11).
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Figure 11. Development of torsional moments during fast run-up, stationary operating point: F = 4 kN,
n = 4000 rpm, Ten = 30 ◦C.

It was challenging for the test rig to ensure a constant rotation at low speeds. Consequently,
at the current operating conditions, the integral PID controller adjusted the speed effects overshoots of
torsional moment because of its I-component. These fluctuations between 0 and 2 s had to be filtered,
before the friction coefficient was calculated. The average computed inertia moment was 18.31 Nm and
was therefore of the same scale as the torsional moments in Figure 11. In the first twenty seconds of
the experiment, the torsional moment in rolling bearings increased linearly with speed and remained
nearly constant afterwards.

The investigated friction coefficient µwas calculated with the ratio of friction force FR and normal
force FN.

µ =
FR

FN
=

Mtot − Msb − Min

FN·0.5·dJ
(14)

The filtered Stribeck curve for the fast start-up is presented in Figure 12.
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The simulated and measured results were in good agreement. The deviations in the mixed
lubrication regime were caused by the electrical engine and the fluctuation of rotational speed.
The contact voltage indicated a transition from mixed lubrication to hydrodynamic lubrication at
300 rpm when the contact voltage rapidly decreased. It still lasted until 1000 rpm until the contact
voltage became zero. The curve of ideal contact voltage separated the mixed and hydrodynamic
lubrication regimes. One cause was the time delay of the capacitor in the contact voltage measurement.
Furthermore, a misalignment between journal and bearing during a fast acceleration can effect small
voltage magnitudes. The use of a transmission in the test rig setup and a slower start-up time enabled
better experimental results in mixed lubrication regime. The measured and simulated Stribeck curves
for the slow run-up are plotted in Figure 13.
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Figure 13. Stribeck curve of slow run-up, stationary operating point: F = 4 kN, n = 4000 rpm, Ten = 30 ◦C.

In this case, theoretical and experimental results were nearly identical, because the changes
in speed were slower and the controller had more time to react. By evaluating the contact voltage
a transition speed of about 220 rpm was determined, according to the ideal contact voltage in Figure 11.
Although this rotation speed was more realistic than for the fast run-up, it was appreciably higher than
the simulation results (Table 3). This circumstance was also explainable with the uneven rotation of
shaft that hampered a formed lubrication film in the load zone. Moreover, during slow run-up, the
fluid and the components had enough time to heat up, viscosity decreases, and consequently, a lower
friction coefficient was calculated.

Table 3. Summary of Stribeck curves.

Rapid Run-Up Slow Run-Up

Simulation Experiment Simulation Experiment

Transition speed 103 rpm ~300 rpm 94 rpm ~220 rpm
Final friction coefficient 0.024 0.028 0.016 0.018

Speed of minimum friction coefficient 95 rpm 205 rpm 90 rpm 173 rpm
Minimum friction coefficient 0.0021 0.0015 0.0024 0.0036

Measurement and prediction concordantly showed higher transition speeds for the fast run-up,
however, at different speed levels. The thermal inertia influences causing this effect could hardly be
assigned to single components, but were rather a response of the entire system and all interactions.
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5. Conclusions

In the first step, the bearing code was validated with test data for the hydrodynamic lubrication
regime. The experimental investigations carried out, confirmed predictions in terms of temperature
evolution of the fluid film. A transient energy equation and a mixed lubrication model further extended
the calculation software. The inertia of temperature distribution in the bearing mainly caused by
storage effects of the solid bodies was investigated for different run-up speeds. While the results
nearly matched quasi-static ones for slow run-ups, significant delays of heating up were observed for
fast start-up procedures. In practical applications, this effect should be of high relevance especially
for turbomachinery applications, as not only temperatures but also clearances change in comparison
to quasi-static predictions. Therefore, the dynamic properties of the bearing change and vibrational
levels as well as eigenfrequencies were modified. An additional result, which is not presented in
detail here, was that predictions of heat flow within run-up strongly depend on the boundaries of
the model. Consequently, uncertainties were present within predictions as the rotor was reduced
to a shaft limited at the lateral bearing ends and a simple hollow cylinder model of the complex
bearing housing. Stribeck curves presented for different start-up times showed that the code was
able to predict characteristics of transition between mixed lubrication and hydrodynamic lubrication
regimes in good agreement with measurement data. However, absolute values showed differences
that indicated the necessity of further improvements not only of the theoretical model but also of the
experimental procedure. For future studies, the test rig has to be upgraded by using a gear in the
drivetrain to produce more reliable results in mixed lubrication regime. This is a basis to investigate
additional wear phenomena during transient operating conditions in detail.
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Nomenclature

c Specific heat capacity (J/(kg K))
cc Stiffness of asperities in contact (N/mm)
chyd Stiffness of fluid film (N/mm)
ctot Aggregate stiffness (N/mm)
dJ Diameter of journal (mm)
h Film thickness (µm)
hcr Critical film thickness (µm)
Ered Combined Young’s modulus (GPa)
F External load (kN)
F0 Correction Factor (m/(Pa s)
F1, Correction Factor (m2/(Pa s)
F2 Viscosity Correction Factor (m3/(Pa s)
FR Friction force (N)
FN Normal force (N)
Kx, Kz Turbulence correction factors
Msb Torsional moment of support bearings (Nm)
Min Inertia moment of drivetrain (Nm)
Mtot Measured moment of drivetrain (Nm)
n Rotational speed (rpm)
ncr Critical rotational speed (rpm)
pc Solid contact pressure (bar)
phyd Hydrodynamic pressure (bar)
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ptot Aggregate Pressure (bar)
.
qB Conductive heat flow in bearing (W/m2)
.
qF Convective heat flow in fluid (W/m2)
.
qJ Conductive heat flow in journal (W/m2)
.
qR,c Dissipated energy of boundary friction (W/m2)
.
qR,hyd Dissipated energy of fluid (W/m2)
Rq Root mean square roughness (µm)
t Time (s)
T Temperature (◦C)
Ten Entrance temperature (◦C)
u Relative velocity (m/s)
wel Elastic deformation (µm)
.
γ Shear strain (1/s)
η Dynamic viscosity (Pa·s)
λ Heat conductivity (W/(m K))
µ Friction Coefficient
ν Poisson ratio
ρ Density (kg/m3)
τhyd Shear stress in fluid (Pa)
Φ Dissipation (W/m3)
φ

p
x Pressure flow factor x-direction
φ

p
z Pressure flow factor z-direction
φs

x Shear flow factor x-direction
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