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Abstract: The paper presents experimental and theoretical results for the planar squeeze flow of a
finite volume of viscoplastic material through a highly deformable porous layer. The central zone of
an annular disc made of a reticulated polyurethane foam with high porosity (ε > 0.97) was fully filled
with tooth paste. The porous disc placed between two flat, impermeable, parallel, and rigid discs was
subjected to compression and the normal force was recorded. After compression, the radial extension
of the squeezed fluid was measured. The visualisation of the compressed disc managed to provide
evidence of a tortuous flow inside the porous structure. An original analytical model is proposed for
the prediction of the front of the flow inside the porous layer and corresponding resistant normal
force. The model combines the Covey and Stanmore (1981) model for squeeze flow of a Bingham
fluid inside the central zone, with an original approach for flow through the reticulated foams, based
on the concept of “equivalent flow tubes” with variable tortuosity. This explorative investigation is
of interest for innovative shock absorbers. The model validity covers both low and high plasticity
numbers and was experimentally validated for low speed.
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1. Introduction

Damping effects may occur when an imbibed, extremely soft, porous material is compressed.
Load support is produced by the fluid flow resistance through communicating pores and the effect is
amplified by the decreasing permeability during compression. A similar mechanism can be found
inside human joints where the synovial fluid impregnates porous cartilages [1].

This squeeze mechanism of liquids imbibed in highly deformable porous layers (named
ex-poro-hydrodynamic lubrication—XPHD) was intensively studied by Pascovici and co-workers.
They developed several theoretical models based on Darcy law (neglecting viscous and inertia effects)
and made experiments for various types of contacts: Disc on plane [2], cylinder on plane [3], sphere
on plane [4], cylinder on cylinder [5]. The results have proved the generation of high lift forces,
greater than those typically obtained during pure fluid squeeze. Their models were developed for
Newtonian fluids, and based on three assumptions: (i) the porous material is highly deformable and
the forces generated by the elastic structure are negligible compared to the fluid pressure forces; (ii)
the permeability varies with porosity (which in turn is variable with the level of compression) and
permeability–porosity correlation is given by Kozeny–Carman law; and (iii) the porous structure does
not inflate during compression and correspondingly, the area normal to the direction of compression
remains constant. Applications were imagined for squeeze dampers [6,7] and shock absorbers [4].

Recent laboratory experiments made with damping cells consisting of porous discs imbibed
with Newtonian liquids have shown high capacity of force attenuation at impact [8]. However, if the
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porous is partially imbibed, the cells cannot be used in vertical position due to the irregular imbibition
provoked by gravitational forces.

Squeeze effects in ultra-soft materials (snow, pillow-filling polyester) imbibed with air have been
studied extensively by professor Weinbaum and his co-workers. Their theoretical and experimental
results revealed that the change in permeability as a function of compression is one of the key factors
for generating lift effects [9,10].

Squeeze flow between two circular discs, of which one is being porous, have been theoretically
studied by Bou-Said and co-workers. Their models were developed for both Newtonian [11]
and non-Newtonian (couple stress) [12] fluids and included viscous shear and inertia effects
(Darcy–Brinkmann–Forchheimmer model). Their results, focused on bio-lubrication applications, have
shown the reduced effect of inertia. However, the permeability was assumed constant during the
squeeze process.

The flow of non-Newtonian fluids through reticulated foams has been thoroughly investigated for
research domains such as resin injection, filtering systems, oil industry, etc. However, the fluid–porous
structure interaction during impact load still remains an emerging subject, due to its potential for
damping. Dawson [13,14] explored a new promising solution for energy dissipation by incorporating
shear thickening non-Newtonian liquids into reticulated foams.

For all applications based on non-Newtonian fluids, the imbibition of the porous materials remains
a technological challenge, especially for highly viscous fluids. The fluid can be forced to fill the porous
structure either by injection or by using vacuum pumps. A configuration that overcomes the imbibition
difficulties was proposed by Dawson and has been successfully used later by Vossen [15]. The porous
layer was provided with fluid filled zones surrounded by dry foam, the former playing the role of a
fluid reservoir.

Chevalier et al. [16] report compelling studies concerning non-Newtonian fluid flows though
porous materials. An analogy is made between the fluid flow through pores and the one made through
a bundle of equivalent parallel conduits (tubes). The tortuosity of the fluid paths is taken into account
when estimating the diameter of such conduits. Several models based on similarity between the flow
in porous media and the flow in bundle of capillaries was proposed by Pearson and Tardy [17]. Their
numerical analysis was done for viscous flow of Newtonian and non-Newtonian fluids; however, there
is no information about the porosity of the analyzed media.

Some unpublished experimental results obtained on damping cells with a center reservoir filled
with a yield stress fluid (a solution inspired by [15]) revealed good stability of the paste inside the
reservoir, whatever its position. Using yield stress fluids, it is also expected to obtain greater forces at
the beginning of the compression, when the porosity and permeability are higher and the resistance to
flow of the Newtonian fluids is low.

This paper proposes a model for the squeeze process of a Bingham fluid from a fluid reservoir
through a surrounding annular disc of dry foam. An experimental model was setup using a reticulated
foam and paste, which is filled in center reservoir in order to evaluate the force generated during
compression. The proposed theoretical model allows the prediction of the pressure distribution in
radial direction and the total force for the simple case of constant squeeze speed.

2. Experimental Evidence

The experimental investigation was focused on measuring the force generated during constant
speed squeeze of a highly compressible porous layer impregnated with a paste. Annular discs with an
outer radius Re = 33 mm and inner radius R0 = 16.5 mm were cut from sheets of the same polyurethane
reticulated foam (EUROFOAM ROMANIA, Sibiu, Romania) of different cell sizes and thicknesses (see
Figure 1a).
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The compression tests were performed on a CETR-UMT-2 test rig (Bruker, Billerica, MA, USA). 
An upper moving disc of radius Re was driven with constant speed downwardly against the lower 
stationary disc (Figure 2). A rigid force sensor (accuracy 0.1 N) was attached to the upper moving 
disc. Concomitantly, the position of the upper disc was recorded with a very accurate displacement 
transducer (accuracy ±1 μm). Three squeeze speeds were used: 2, 4, and 8 mm/s. All tests were limited 
by the maximum force that could be measured by the sensor Fmax = 200 N. 

The squeezed fluid was placed initially only in the center reservoir of radius R0. Using a syringe 
with a micrometer screw, a very accurate volume of paste W0 = 3.4 cm3 was injected in the central 
reservoir of the disc as shown in Figure 2. 

 

Figure 1. (a) Porous ring, (b) magnified view of the porous matrix.

Microscope (SMZ-1000, Nikon, Tokyo, Japan) visualization reveals the internal structure of the
material, based on long filaments of polyurethane forming a 3D structure with the cross sections of the
pores close to a hexagonal shape (Figure 1b). For each type of foam, the variation of pore size is very
small and can be neglected. The initial porosity, ε0, for each type of foam was measured by gravimetric
method. Table 1 summarizes the symbols and the properties of interest for the tested samples.

Table 1. Properties of the used foams.

Disc No. Foam Symbol Commercial
Name

Pore Size
[mm] (1)

Initial Porosity,
ε0

Thickness h0
[mm]

1 F133 FILTREN® TM
25133

1.06–1.66 0.976 12

2 F280 FILTREN® TM
25280

2.2–3.4 0.982 12

3 F450 FILTREN® TM
25450

3.4–5.6 0.997 12

4 F133 FILTREN® TM
25133

1.06–1.66 0.976 4

(1) according to the product catalogue EUROFOAM ROMANIA.

The viscoplastic fluid is a toothpaste. Its rheological behavior was studied using a Brookfield
CAP 2000+ rheometer (BROOKFIELD, Middleboro, MA, USA), and the obtained results presented a
shear stress–strain rate characteristic close to the Bingham fluid model, with a yield stress threshold τ0

= 350 Pa and viscosity η = 0.33 Pa·s.
The compression tests were performed on a CETR-UMT-2 test rig (Bruker, Billerica, MA, USA).

An upper moving disc of radius Re was driven with constant speed downwardly against the lower
stationary disc (Figure 2). A rigid force sensor (accuracy 0.1 N) was attached to the upper moving
disc. Concomitantly, the position of the upper disc was recorded with a very accurate displacement
transducer (accuracy ±1 µm). Three squeeze speeds were used: 2, 4, and 8 mm/s. All tests were limited
by the maximum force that could be measured by the sensor Fmax = 200 N.

The squeezed fluid was placed initially only in the center reservoir of radius R0. Using a syringe
with a micrometer screw, a very accurate volume of paste W0 = 3.4 cm3 was injected in the central
reservoir of the disc as shown in Figure 2.

For each case, three consecutive tests were performed, and the average values were used in the
subsequent analysis.
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Figure 2. Testing arrangement.

All the samples were tested successively in two configurations. Firstly, a simple compression test
of the dry sample (without fluid) was performed, then the material was relaxed for a couple of minutes,
the paste was injected in the reservoir, and a second compression test was performed.

The total compression force measured during compression with paste was generated by two
mechanisms: (i) Resistance to pure squeeze flow in the center reservoir and further resistance to flow
through pores in porous layer and (ii) the resistance to compression of the porous structure. These
effects cumulate and can be evaluated separately.

Figure 3 presents a typical variation with sample thickness of the compression force for a F133
foam disc of initial thickness h0 = 12 mm. One can remark the sharp, small increase at the very
beginning of compression (a force bump), produced by filaments buckling, typical for these materials.
Compared with the squeeze force for fluid-filled materials, the force generated during the compression
of the dry foam is very low; therefore, for theoretical approaches, it can be neglected for a limited
range of thickness, varying between 0 < h < 0.4h0. This interval corresponds to the compression levels
where fluid force has significant values. A similar behavior, but with slightly greater interval, can be
observed for a thinner foam (h0 = 4 mm) in Figure 4.
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Figure 4. Measured forces vs. film thickness (dry and fluid-filled) with initial thickness h0 = 4 mm.

Figure 5 presents the variation of the force for all three types of foams compressed with the same
constant speed, V = 4 mm/s. One can notice that the force decreases with the initial porosity of the
materials, with a maximum attained for the foam with the lowest porosity F133. A higher porosity is
equal to a lower resistance to flow, and consequently, to a lower load.
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The interest of the present experimental study was to evaluate the force generated during
compression only by the resistance to flow, which is called XPHD force. This force can be obtained by
extracting from the total measured force the contribution of the compressed dry foam. Figure 6 shows
the variation of the XPHD force with the layer thickness at different compression speeds, for the foam
with the lowest porosity. As expected, the force slightly increases with compression speed.
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The visual inspection of the specimens after being squeezed (see Figure 7) clearly reveals that
the flow occurs inside tortuous tubes. It can also be seen that the process is axisymmetric. For all the
experiments done, the front of the fluid stops before reaching the outer radius, Re, due to the limitation
of the maximum squeeze force of the test rig.Lubricants 2019, 7, 86 6 of 14 
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3. Analytical Model

The geometry of the theoretical model is presented in Figure 8. An annular disc layer of dry
porous material is squeezed between two rigid disks with perfectly flat and impermeable surfaces. The
rigid disks as well as the porous disk have the same radius Re. The porous disc has a centrally placed
reservoir of radius R0, filled with a Bingham fluid. The disks are perfectly parallel and concentric and
thus the model is assumed axisymmetric.

Initially (at t = 0), the volume ought to be compressed is divided in two parts: the cylindrical
central reservoir occupied entirely by Bingham fluid-zone 1, and the surrounding annular, dry porous
disc-zone 2.

During normal compression, the Bingham fluid is squeezed out from zone 1 through the
surrounding porous medium (zone 2). For t > 0, zone 2 becomes gradually imbibed with fluid from
the center to the outer boundary.

According to the classical assumptions of XPHD lubrication, the present model neglects the elastic
forces generated by the solid structure, and considers only the effects of the fluid flow.



Lubricants 2019, 7, 86 7 of 14

Lubricants 2019, 7, 86 6 of 14 

 

 
Figure 7. Image showing the radial flow tubes. 

3. Analytical Model 
The geometry of the theoretical model is presented in Figure 8. An annular disc layer of dry 

porous material is squeezed between two rigid disks with perfectly flat and impermeable surfaces. 
The rigid disks as well as the porous disk have the same radius Re. The porous disc has a centrally 
placed reservoir of radius R0, filled with a Bingham fluid. The disks are perfectly parallel and 
concentric and thus the model is assumed axisymmetric. 

Initially (at t = 0), the volume ought to be compressed is divided in two parts: the cylindrical 
central reservoir occupied entirely by Bingham fluid-zone 1, and the surrounding annular, dry 
porous disc-zone 2. 

 
Figure 8. The geometry of the model. 

During normal compression, the Bingham fluid is squeezed out from zone 1 through the 
surrounding porous medium (zone 2). For t > 0, zone 2 becomes gradually imbibed with fluid from 
the center to the outer boundary. 

According to the classical assumptions of XPHD lubrication, the present model neglects the 
elastic forces generated by the solid structure, and considers only the effects of the fluid flow. 

dry foam 

imbibed 
foam 

fluid reservoir 

flow tubes 

R0 

R 

Re 

W0 W2 W1 

V 

h 

d 

Lc 

h0 

R0 

R 

Re r 

pb 

pmax 

Dry foam 
annular disc 

Rigid moving disc 
r 

p 

2 

1 

0 

Figure 8. The geometry of the model.

3.1. Flow Model for Zone 1

For Bingham fluid squeeze flow in zone 1, the model proposed by Covey and Stanmore [18]
can be used. Introducing the modified plasticity number, S0 =

R0 V η

h2
0 τ0

Covey and Stanmore proposed

an analytical formulation for load carrying capacity for constant speed squeeze with zero pressure
boundary condition. The model was validated using experiments for Bingham and Herschel–Bulkley
fluids, using a parallel-plate plastometer. Two different analytical solutions were proposed for two
domains of operating conditions: S0 < 0.05 and S0 > 10, respectively.

Based on our experimental data, the variation of modified plasticity number is between S0 = 2 ×
10−4–8 × 10−3. As a consequence, the squeeze force, for zone 1, can be calculated with the solution for
S0 < 0.05:

F1 = πR2
0 pb +

2π
3

τ0R3
0

h
+

4π
7

h0τ0R3
0

h2

√
2S0 (1)

where the first term in the right hand side counts for the supplementary load produced by the non-zero
pressure at the reservoir boundary, p0.

3.2. Flow Model for Zone 2

The flow inside a porous matrix can be characterized by the well-known Bingham number:

Bn =
τ0 d
η um

(2)

where um is the fluid velocity, averaged across the height of the porous disk, and the pore diameter, d,
is used for the characteristic size.

Obviously, um varies in time and space and vanishes at the front of the flow. It has a maximum
value at the inner radius of the porous disk, R0, which can be calculated function of the compression
speed V, as shown in the Appendix A.

In the case of our experiments made at low speeds, the Bingham number exceeds 100, which
allows us to consider the flow completely viscoplastic [19].
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As shown in Figure 7, the experiments revealed the formation of flow tubes inside the porous
foam due to fluid squeezing. Using the concept of “equivalent flow tubes” [16,20], an analogy can
be made between the Poiseuille flow of a Bingham fluid through porous materials, at high Bingham
number, and the flow through straight parallel tubes. All tubes are radially aligned, and the Bingham
fluid flow is similar with an extrusion process of a paste through the pores of a sieve when the plug is
equal with the flow tube diameter. The pressure drop inside radial tubes can be determined using the
classical equation for viscoplastic flows in tubes:

dp
dr

= −
τ0

ρ
(3)

where the hydraulic radius ρ is used to extend the generality of Equation (3) to any shape of the
tube cross-section.

Equation (3) is valid only for small velocities, which is the case of our experiments. At higher
velocities, the shear stress of the tube walls will be greater due to additional viscous effects.

Moreover, modeling the axisymmetric flow with the flow through a bundle of straight flow tubes
seems to be objectionable because it cannot provide evidence of fluid slow down due to increased cross
sectional area, as one moves from the center; hence, we expect the model to overestimate the pressure
distribution. However, as the front of the flow moves toward the outer boundary, the disk thickness
reduces due to compression. This compensates the increase of the diameter of the cross sectional area.

By definition, the hydraulic radius is the ratio between the tube cross-section area α and wetted
perimeter β:

ρ =
α

β
(4)

For the geometric configuration of the high porosity structure (ε0 > 0.95) (Figure 1), we assume
that the filaments of the pores are subjected mainly to bending when compressed. This phenomenon is
described in reference [15] and is explained by structural instability. Therefore, during the compression
of the porous material, the tube perimeter can be considered constant (β = πd).

On the other hand, during compression, the porosity is assumed to be proportional with the tube
cross sectional area:

α

ε
=
α0

ε0
(5)

where α0 = πd2/4 is the cross-sectional area of a flow tube. This assumption is in accordance with the
Delesse [21] conclusions.

According to assumption (iii)—see Introduction—solid fraction conservation yields:

h(1− ε) = h0(1− ε0) (6)

Combining Equations (5) and (6) one obtains:

α =
α0

ε0 h
[h− h0(1− ε0)] (7)

Finally, combining Equation (3) with Equations (4) and (7) results:

dp
dr

= −
4τ0 ε0 h

d[h− h0(1− ε0)]
(8)

Due to the “Principle of least work”, the fluid from the central reservoir flows through the porous
material, following the shortest path inside the radial tubes. The flow tubes are formed from connected
pores and, therefore, it is obvious that they are not straight. Figure 7 confirms the previous affirmation.
Based on this observation, a correction must be made in order to take into consideration the flow in a



Lubricants 2019, 7, 86 9 of 14

sinuous tube. This could be done by using the tube tortuosity T, defined by Guyon [22] based on a
similitude with electric conductivity, as seen below:

T =

(
Lc

R−R0

)2

(9)

where Lc represents the length of the sinuous tube.
A similar approach was proposed by Scheidegger [20] for the correction of the relation between

permeability and porosity with influence on the pressure drop inside porous materials. His correction
affects the characteristic size of the porous media, by dividing the equivalent capillary tube diameter
to tortuosity. In conclusion, tortuosity is one of the key parameters describing the geometry and the
flow characteristics of porous media. Hence, using the same reasoning, a correction was introduced in
Equation (8), by dividing the tube diameter d to the tortuosity T:

dp
dr

= −
4τ0 ε0 T h

d[h− h0(1− ε0)]
(10)

It is very difficult to evaluate tortuosity for random porous structures, since it depends on the
pore size and arrangement, the type of fluid used and its viscosity, the flow velocity, etc. The difficulty
is much greater if the porous media changes its sizes. However, it is evident that the compression of
the porous material modifies the form of the tubes, and the tortuosity increases when layer thickness
becomes smaller. There are many theoretical [23] and experimental [24] studies that found a linear
variation of tortuosity with porosity ε. Using solid fraction assumption, from linear variation of
tortuosity with porosity can be found that the product between tortuosity and material thickness
remains constant during compression:

T h = T0 h0 (11)

Viewed under microscope, the arrangement of pores inside the foam is similar to a honeycomb
wall structure with hexagonal cells, but other filament-based structures can also be found. This proves
that the material is non-homogeneous regarding pore size and distribution and it is difficult to estimate
tortuosity. For the present work, the initial tortuosity was assumed T0 = 1.33. This value agrees
with similar data obtained by experimental means [25] and numerical simulation for different porous
media [26].

Introducing Equation (11) in Equation (10) and integrating with the atmospheric boundary
condition (p = 0 at r = R), we obtain the pressure distribution inside the porous layer:

p =
4τ0 ε0 T0 h0

d[h− h0(1− ε0)]
(R− r) (12)

Fluid pressure continuity at the inner radius of the annular disc, R0, allows one to calculate the
pressure pb of the fluid at the interface between zone 1 and 2, using Equation (12):

p =
4τ0 ε0 T0 h0

d[h− h0 (1− ε0)]
(R−R0) (13)

Finally, the force generated in zone 2 is obtained by the integration of pressure on the annular
ring, between R and R0:

F2 = 2π

R∫
R0

prdr =
4πτ0ε0T0h0

3d[h− h0(1− ε0)]
(R−R0)

2(R + 2R0) (14)
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or, in dimensionless form:

F2 =
F2 h0

τ0 R3
0

=
4π
3

ε0 k
H − (1− ε0)

(
R− 1

)2(
R + 2

)
(15)

where k = h0T0/d is a size factor dependent on material characteristics, and H = h/h0 is dimensionless
layer thickness.

A similar dimensionless form can be obtained for the squeeze force component in zone 1
(Equation (1)):

F1 =
4πε0k

H − (1− ε0)

(
R− 1

)
+

2π
3H

+
4π

7 H2

√
2S0 (16)

Because the squeezed fluid remains in the porous layer (there is no flow outside the porous disc
Figure 7), from fluid volume conservation (W = W1 + W2) one can obtain:

π h0 R2
0 = πhR2

0 + πεh
(
R2
−R2

0

)
(17)

After simplification, using Equation (6), and dimensionless notations, one can correlate the radius
of the front of the flow with the dimensionless layer thickness:

R
2
=

ε0

H − 1 + ε0
(18)

Finally, adding the two force components, using Equation (18) and rearranging, we obtain:

F =
4π
3

kR
2
(
R

3
− 1

)
+

2π
3H

+
4π
√

2S0

7 H2 (19)

Or in terms of dimensionless film thickness:

F =
4π
3

k
ε0

H − 1 + ε0

( ε0

H − 1 + ε0

) 3
2

− 1

+ 2π
3H

+
4π
√

2S0

7 H2 (20)

The parametric analysis of the lift force shows that for low values of S0 the force increases with
the size factor k (Figure 9).
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4. Model Validation

A comparison between predicted the force with Equation (20) and the force measured with the
foam sheet F280 and F450 with initial thickness h0 = 12 mm, is presented in Figure 10.
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The compression speed is low and the modified plasticity number ranges between S0 = 2 × 10−4–8
× 10−3. The domain of variation for the Bingham number is Bn = 172–1380. The comparison shows
good correlation with experiments. A similar comparison is shown in Figure 11 where the results
for the thin F133 specimen compressed at two different speeds are represented. Tests were made for
different speeds, and one can see that the theoretical curves are almost superposed for the compression
speeds of 2 and 8 mm/s, respectively. This can be explained by the fact that the proposed model is
explorative and gives a simple solution to a very difficult problem i.e., Bingham flow through complex
porous structure of foam. The flow model inside the porous material neglects the contribution of the
fluid phase of the Bingham media. Because the Bingham flow is reduced to a plug flow, the analytical
model is less sensitive to fluid velocity and this explains why the theoretical curves in Figure 11 are
almost superposed.
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5. Conclusions

A closed-form analytical solution was found for the planar squeeze process of a finite volume
of viscoplastic material, placed inside a central reservoir, through a soft porous layer subjected
to compression under constant speed. An original concept of equivalent flow tubes was used to
characterize the Bingham flow inside the porous structure. The concept of tortuosity was also used to
take into consideration the sinuous shape of the flow tubes.
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The proposed model was validated by comparing the theoretically predicted values of load
carrying capacity with the experimental data in the case of low squeeze speed. The comparison shows
a good predictability of the force evolution in time.

These preliminary experiments proved the possibility to use yield stress fluids in damping cells,
to replace Newtonian liquids. However, the possibility to use yield stress fluids in reusable dampers
is questionable due to the difficulty of re-imbibition, which is not the case when Newtonian fluids
are used.

An extended model appears necessary to consider the Bingham flow for higher squeeze speed.
Also, more experiments for higher squeeze speeds (around 1 m/s and beyond) are needed to define
model limits of applicability.

Author Contributions: Conceptualization, M.D.P.; methodology, M.D.P.; software, P.T.; validation, P.T., M.D.P.,
and T.C.; investigation, P.T. and M.D.P.; resources, P.T., M.D.P., and T.C.; data curation, T.P.; writing—original draft
preparation, P.T. and T.C.; writing—review and editing, P.T. and T.C.; visualization, P.T. and T.C.; supervision,
M.D.P.; project administration, M.D.P. and T.C.; funding acquisition, T.C.

Funding: This work has been supported by Partnerships in Priority Areas Program-PN II implemented with the
support of Romanian Ministry of Education-UEFISCDI, project number 287/2014 (http://www.omtr.pub.ro/cesit/
granturi/PROTHEIS/index.html).

Conflicts of Interest: The authors declare no conflict of interest.

List of Notations

Latin Alphabet Notations
Bn Bingham number, Bn = τ0d/ηum

d average diameter of flow tube/pore
F total force
F dimensionless force, F = Fh0/τ0R3

0
h porous layer thickness
H dimensionless layer thickness, H = h/h0

lc length of elementary flow path
k size factor, k = T0h0/d
p pressure
pb pressure at the boundary of the reservoir
r radial coordinate
R radius of the front of the flow
Re outer radius of the annular disc
R dimensionless relative radius of the front of the flow, R = R/R0

S plasticity number, S = RVη/h2τ0
T tortuosity, T = [Lc/(R−R0)]

2

um fluid average velocity
V squeeze speed
W volume of fluid
Greek Alphabet Notations
α flow tube cross section area
β tube cross section perimeter
ε porosity
η dynamic viscosity
ρ hydraulic radius
τ0 threshold/yield stress
Subscripts
0 initial (corresponding to undeformed layer)
1 corresponding to zone 1
2 corresponding to zone 2

http://www.omtr.pub.ro/cesit/granturi/PROTHEIS/index.html
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Appendix A

If we consider that, at the beginning of the compression, the fluid from the reservoir is squeezed out through
n identical, equally spaced tubes of diameter d, the mass conservation equation gives:

πR2
0V = n

πd2

4
um (A1)

On the other hand, the number of the equivalent tubes yields from a simple geometric condition:

n
πd2

4
= 2πR0h0ε0 (A2)

Finally, combining Equations (A1) and (A2) we obtain

um|r =R0 =
R0

2h0ε0
V (A3)

References

1. Pascovici, M.D.; Cicone, T. Squeeze-film of unconformal, compliant and layered contacts. Tribol. Int. 2003,
36, 791–799. [CrossRef]

2. Pascovici, M.D.; Russu, C.; Cicone, T. Squeeze film of conformal, layered, compliant and porous contacts.
Acta Teh. Napoc. Ser. Appl. Math. Mech. 2004, 47, 425–430.

3. Radu, M.; Cicone, T. Squeeze effects of an infinitely long, rigid cylinder on a highly compressible porous
layer imbibed with liquid. UPB Sci. Bull. Ser. D 2014, 76, 91–102.

4. Pascovici, M.D.; Popescu, C.S.; Marian, V. Impact of a rigid sphere on a highly compressible porous layer
imbibed with a Newtonian liquid. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2010, 224, 789–795. [CrossRef]

5. Radu, M.; Cicone, T. Experimental determination of the damping capacity of highly compressible porous
materials imbibed with water. J. Balkan Tribol. Assoc. 2014, 22, 390–400.

6. Pascovici, M.D.; Cicone, T.; Marian, V. Squeeze process under impact, in highly compressible porous layers
imbibed with liquids. Tribol. Int. 2009, 42, 1433–1438. [CrossRef]

7. Melciu, C.; Cicone, T.; Pascovici, M.D. Saturated porous layers squeezed between parallel disks in enclosed
cells. IOP Conf. Ser. Mater. Sci. Eng. 2017, 174, 012031. [CrossRef]

8. Cicone, T.; Pascovici, M.D.; Melciu, C.; Turtoi, P. Optimal porosity for impact squeeze of soft layers imbibed
with liquids. Tribol. Int. 2019, 138, 140–149. [CrossRef]

9. Wu, Q.; Andreopoulos, Y.; Xanthos, S.; Weinbaum, S. Dynamic compression of highly compressible porous
media with application to snow compaction. J. Fluid Mech. 2005, 542, 281–304. [CrossRef]

10. Crawford, R.; Nathan, R.; Wang, L.; Wu, Q. Experimental study on the lift generation inside a random
synthetic porous layer under rapid compaction. Exp. Therm. Fluid Sci. 2012, 36, 205–216. [CrossRef]

11. Nabhani, M.; Khlifi, M.; Bou-Said, B. A general model for porous medium flow in squeezing film situations.
Lubr. Sci. 2010, 22, 27–52. [CrossRef]

12. Gbehe, O.S.T.; Khlifi, M.; Nabhani, M.; Bou-Said, B. Investigation of couple stress effects on poroelastic
squeeze film of parallel plates. Lubr. Sci. 2017, 29, 93–113. [CrossRef]

13. Dowson, M.A.; McKinley, G.H.; Gibson, L.J. The Dynamic Compressive Response of Open-Cell Foam
Impregnated with a Non-Newtonian Fluid. J. Appl. Mech. 2009, 76, 061011. [CrossRef]

14. Dawson, M.A. Modeling the Dynamic Response of Low-Density, Reticulated, Elastomeric Foam Impregnated
with Newtonian and Non-Newtonian Fluids. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA, 2008.

15. Vossen, B.G. Modeling the Application of Fluid Filled Foam in Motorcycle Helmets; Scientific Report; Eindhoven
University of Technology: Eindhoven, The Netherlands, 2010.

16. Chevalier, T.; Chevalier, C.; Clain, X.; Dupla, J.C.; Canou, J.; Rodts, S.; Coussot, P. Darcy’s law for yield stress
fluid flowing through a porous medium. J. Non-Newton. Fluid Mech. 2013, 195, 57–66. [CrossRef]

17. Pearson, J.R.A.; Tardy, P.M.J. Models for flow of non-Newtonian and complex fluids through porous media.
J. Non-Newton. Fluid Mech. 2002, 102, 447–473. [CrossRef]

http://dx.doi.org/10.1016/S0301-679X(03)00095-1
http://dx.doi.org/10.1243/13506501JET775
http://dx.doi.org/10.1016/j.triboint.2009.05.006
http://dx.doi.org/10.1088/1757-899X/174/1/012031
http://dx.doi.org/10.1016/j.triboint.2019.02.018
http://dx.doi.org/10.1017/S0022112005006294
http://dx.doi.org/10.1016/j.expthermflusci.2011.09.014
http://dx.doi.org/10.1002/ls.104
http://dx.doi.org/10.1002/ls.1359
http://dx.doi.org/10.1115/1.3130825
http://dx.doi.org/10.1016/j.jnnfm.2012.12.005
http://dx.doi.org/10.1016/S0377-0257(01)00191-4


Lubricants 2019, 7, 86 14 of 14

18. Covey, G.H.; Stanmore, B.R. Use of the parallel-plate plastomer for the characterization of viscous fluids
with a yield stress. J. Non-Newton. Fluid Mech. 1981, 8, 249–260. [CrossRef]

19. Mitsoulis, E. Flows of viscoplastic materials: Models and computations. Rheol. Rev. 2007, 64, 135–178.
20. Scheidegger, A.E. The Physics of Flow through Porous Media, 3rd ed.; University of Toronto Press: Toronto, ON,

Canada, 1974.
21. Delesse, M.A. Procede Mecanique Pour Determiner la Composition des Roches; Librarie de la Societe Geologique

de France: Paris, France, 1866.
22. Guyon, E.; Huliu, J.P.; Petit, L. Hydrodinamique Physique; EDP Sciences/CNRS Editions: Paris, France, 2001.
23. Sun, Z.; Tang, X.; Cheng, G. Numerical simulation for tortuosity of porous media. Microporous Mesoporous

Mater. 2013, 173, 37–42. [CrossRef]
24. Salem, H.; Chilingarian, G. Influence of porosity and directional of flow on Tortuosity in unconsolidated

porous media. Energy Sources 2000, 22, 207–213.
25. Montillet, A.; Comiti, J.; Legrand, J. Determination of structural parameters of metallic foams from

permeametry measurements. J. Mater. Sci. 1992, 27, 4460–4464. [CrossRef]
26. Ortega, J.M. A porous media model for blood flow within reticulated foam. Chem. Eng. Sci. 2013, 99, 59–66.

[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0377-0257(81)80024-9
http://dx.doi.org/10.1016/j.micromeso.2013.01.035
http://dx.doi.org/10.1007/BF00541579
http://dx.doi.org/10.1016/j.ces.2013.05.025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Evidence 
	Analytical Model 
	Flow Model for Zone 1 
	Flow Model for Zone 2 

	Model Validation 
	Conclusions 
	
	References

