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Abstract: Friction-induced vibrations are a significant problem in various engineering applications,
while dynamic vibration absorbers are an economical and effective tool for suppressing various kinds
of vibrations. In this study, the archetypal mass-on-moving-belt model with an attached dynamic
vibration absorber was considered. By adopting an analytical procedure, the optimal tuning of the
absorber’s parameters was defined. Furthermore, the bifurcations occurring at the loss of stability were
analytically investigated; this analysis illustrated that a properly chosen nonlinearity in the absorber’s
stiffness permits controlling the supercritical or subcritical character of the bifurcation. However,
a numerical analysis of the system’s dynamics, despite confirming the analytical results, also illustrated
that the system’s global behavior is only slightly affected by the bifurcation character. Indeed, a dynamic
vibration absorber possessing a perfectly linear restoring force function seems to provide the optimal
performance; namely, it minimizes the velocity range for which stick–slip oscillations exists.

Keywords: friction-induced vibrations; mass-on-moving-belt; dynamic vibration absorber;
tuned mass damper; passive vibrations mitigation

1. Introduction

Friction-induced vibrations (FIVs) are a peculiar type of oscillations generated by the friction
acting between two bodies in relative motion. They consist of either the successions of stick and
slip phases between the two bodies [1], or of quasi-harmonic oscillations having an approximately
sinusoidal displacement–time relation [2,3]. Although for some specific applications these kinds
of vibrations are intentionally generated, such in the case of violin strings [4] and singing wine
glasses [5], typically they are seen as a detrimental phenomenon, as in the cases of brake squeal [6] or
earthquakes [7,8].

Several methods exist for suppressing FIVs. One possibility is to reduce the friction force at the
interface utilizing a lubricant. This method is efficient if friction is not required for the device to operate,
such as in the case of hinge squeaking; however, it cannot be adopted for brake squeal mitigation,
where high friction is strictly required. Most brake squeal suppression methods consist of increasing
the system damping, which is obtained with various techniques [6,9]. Experimental observations also
illustrated that isolating the natural frequencies of the brake system’s components at low frequencies
tends to reduce the occurrence of audible brake squeal [10]; however, in many cases, this strategy
is not effective [11]. For active methods for suppressing FIV, Cunefare and Graf [12] proposed
adopting a dither exciting the system at non-audible frequencies, which can suppress brake squeal.
Papangelo and Ciavarella [13] proposed to mitigate FIVs by normal load variation, for which they
provided a closed-form solution.
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The dynamic vibration absorber (DVA) is a practical tool for suppressing undesired vibrations
in several engineering applications. Its classical design [14] consists of a mass attached to the host
structure through a spring and a damper. By tuning its natural frequency in correspondence of the
frequency to be damped, it is able to dynamically interact with the host structure dissipating vibration
energy. It is successfully employed in several engineering fields for the suppression of various
kinds of vibrations, such as flutter instabilities [15,16], rolling motions in ships [17], helicopter rotor
oscillations [18] and machine tool vibrations [19,20]. Although DVAs are a mature technology,
which was first proposed more than one hundred years ago [17], to the authors’ knowledge, there are
only a few and relatively recent studies addressing its implementation to suppress FIVs. Popp and
Rudolph [21] numerically and experimentally analyzed the performance of a DVA for FIV suppression;
by utilizing a single-degree-of-freedom (DoF) primary system, they illustrated its beneficial effect.
Chatterjee [22] studied the stability properties of an undamped DVA attached to a two-DoF primary
system. Very recently, Niknam and Farhang [23] proposed a study similar to that of Chatterjee [22],
where they also provided some numerical simulations of the full system, missing in [22]. Despite the
promising results obtained in [21–23], a clear tuning strategy of the DVA’s parameters for maximizing
its performance is still missing. This paper aims to fill this gap by providing a precise tuning of the
absorber parameters for optimizing stability properties and studying the behavior of the host system
with the attached DVA while stability is lost.

The rest of the paper is organized as follows. In Section 2, the mechanical model, consisting of
the host mass-on-moving-belt system and the attached DVA, is introduced. In Section 3, the stability
analysis of the host system, without and with the DVA, is performed, providing explicit equations for
the optimal tuning of the absorber parameters. In Sections 4 and 5, the bifurcations occurring at the
loss of stability of the host system, without and with absorber, are analytically studied. Furthermore,
the effect of the addition of a cubic term in the absorber’s restoring force is analytically investigated;
analytical results are integrated by numerical simulation, illustrating the system’s behavior at high
amplitudes. In Section 6, conclusions about the benefits and limitations of the DVA are presented.

2. Mechanical Model

2.1. Primary System

The primary system considered in this study is the classical mass-on-moving-belt model, which is
an archetypal system for studying FIVs [1,4,21]. As shown in Figure 1, this single-DoF system consists
of a mass m1, a linear spring k1 and a linear damper c1. The mass of the system is in contact with the
belt, which moves at a constant driving speed v, while the friction coefficient µ(vrel) of the contact is a
function of the relative velocity vrel = v− ẋ1.
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Figure 1. (a) The host system without absorber; (b) free body diagram of the host system.

Figure 1b illustrates the free body diagram (FBD) of the host system. The forces acting upon the
lumped mass m1 are the normal forces FN that cancel each other, the damping and spring forces Fc1 and
Fk1, respectively, and the friction force FR. (For the represented FBD, it is assumed that vrel ≥ 0.) Based
on Newton’s second law of motion and considering that FR = µ (vrel) FN, Fc1 = c1 ẋ1 and Fk1 = k1x1, we
obtain that the second order differential equation describing the motion of the 1 DoF system is

m1 ẍ1 + c1 ẋ1 + k1x1 = FR , (1)

with {
FR = µ (vrel) FN vrel 6= 0
|FR| ≤ µsFN vrel = 0 ,

(2)

where the overdot indicates derivation with respect to the time t. The system is in stick condition when
the relative velocity is zero (vrel = 0). In this case, the friction force is smaller or equal to µsFN, where µs

is the static friction. In sliding condition (vrel 6= 0), the direction of the friction force FR depends on the
sign of the relative velocity vrel, which is included in the mathematical formulation of µ (vrel). Additional
details about the friction coefficient utilized are provided in Section 2.3. Let us introduce the following
expressions

ζ1 =
c1

2
√

m1k1
; ωn1 =

√
k1

m1
; x0 =

FN

k1
; τ = ωn1t . (3)

By dividing Equation (1) by the mass m1, applying the expressions from Equation (3) and dividing it by
ω2

n1, we obtain

x′′1 + 2ζ1x′1 + x1 =
FR

k1
, (4)

Figure 1. (a) The host system without absorber; and (b) free body diagram of the host system.

Figure 1b illustrates the free body diagram (FBD) of the host system. The forces acting upon the
lumped mass m1 are the normal forces FN that cancel each other; the damping and spring forces Fc1

and Fk1, respectively; and the friction force FR. (For the represented FBD, it is assumed that vrel ≥ 0.)
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Based on Newton’s second law of motion and considering that FR = µ (vrel) FN, Fc1 = c1 ẋ1 and
Fk1 = k1x1, we obtain that the second order differential equation describing the motion of the one DoF
system is

m1 ẍ1 + c1 ẋ1 + k1x1 = FR , (1)

with {
FR = µ (vrel) FN vrel 6= 0
|FR| ≤ µsFN vrel = 0 ,

(2)

where the overdot indicates derivation with respect to the time t. The system is in stick condition
when the relative velocity is zero (vrel = 0). In this case, the friction force is smaller or equal to µsFN,
where µs is the static friction. In sliding condition (vrel 6= 0), the direction of the friction force FR

depends on the sign of the relative velocity vrel, which is included in the mathematical formulation
of µ (vrel). Additional details about the friction coefficient utilized are provided in Section 2.3. Let us
introduce the following expressions

ζ1 =
c1

2
√

m1k1
; ωn1 =

√
k1

m1
; x0 =

FN

k1
; τ = ωn1t . (3)

By dividing Equation (1) by the mass m1, applying the expressions from Equation (3) and dividing
it by ω2

n1, we obtain

x′′1 + 2ζ1x′1 + x1 =
FR

k1
, (4)

where prime ′ indicates derivation with respect to the dimensionless time τ. Then, introducing the
dimensionless displacement x̃1 = x1/x0, the system is eventually reduced to

x̃′′1 + 2ζ1 x̃′1 + x̃1 = F̃R , (5)

where F̃R = FR/FN.

2.2. Mechanical Model of the Host System with the Absorber

We now attach a DVA to the host system. The basis of the model is the same as the one mentioned
in the previous subsection. The only additional element is the absorber mass m2, which is attached to
the primary system through a spring and a linear damper. The schematic depiction of this two-DoF
system is provided in Figure 2.
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Figure 2. The host system with the attached DVA.

The absorber’s spring encompasses a linear and a cubic term. The differential equations describing the
dynamics of the system are

m1 ẍ1 + c1 ẋ1 + k1x1 + c2 (ẋ1 − ẋ2) + k2 (x1 − x2) + knl2 (x1 − x2)
3 = FR

m2 ẍ2 + c2 (ẋ2 − ẋ1) + k2 (x2 − x1) + knl2 (x2 − x1)
3 = 0 ,

(6)

where k2 and knl2 are the linear and cubic coefficients of the absorber stiffness, respectively, while c2 is
the linear coefficient of the absorber damping. Let us introduce the following expressions
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Figure 2. The host system with the attached DVA.

The absorber’s spring encompasses a linear term and a cubic term. The differential equations
describing the dynamics of the system are
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m1 ẍ1 + c1 ẋ1 + k1x1 + c2 (ẋ1 − ẋ2) + k2 (x1 − x2) + knl2 (x1 − x2)
3 = FR

m2 ẍ2 + c2 (ẋ2 − ẋ1) + k2 (x2 − x1) + knl2 (x2 − x1)
3 = 0 ,

(6)

where k2 and knl2 are the linear and cubic coefficients of the absorber stiffness, respectively, while c2 is
the linear coefficient of the absorber damping. Let us introduce the following expressions

ζ2 =
c2

2
√

m2k2
; ωn2 =

√
k2

m2
; ε =

m2

m1
; γ =

ωn2

ωn1
. (7)

By diving Equation (6) by m1, applying the expressions from (7) and (3), dividing by ω2
n1 and

utilizing the dimensionless time τ and dimensionless displacements x̃1 and x̃2 = x2/x0, we obtain

x̃′′1 + 2ζ1 x̃′1 + x̃1 + 2εζ2γ
(
x̃′1 − x̃′2

)
+ εγ2 (x̃1 − x̃2) + εκnl2 (x̃1 − x̃2)

3 = F̃R

εx̃′′2 + 2εζ2γ
(
x̃′2 − x̃′1

)
+ εγ2 (x̃2 − x̃1) + εκnl2 (x̃2 − x̃1)

3 = 0 ,
(8)

where κnl2 = knl2x2
0/ (k1ε). A variable change is performed, where x̃3 = x̃1 − x̃2 (relative displacement

of m2), hence Equation (8) transforms into

x̃′′1 + 2ζ1 x̃′1 + x̃1 + 2εζ2γx̃′3 + εγ2 x̃3 + εκnl2 x̃3
3 = F̃R

ε
((

x̃′′1 − x̃′′3
)
− 2ζ2γx̃′3 − γ2 x̃3 − κnl2 x̃3

3

)
= 0 .

(9)

2.3. Friction Force

The applied friction law is described by an exponential decaying function, as done for instance
in [1], i.e.,

µ(vrel) =


µd + (µs − µd) e

−
|vrel|

ṽ0


 sgn (vrel) , (10)

where the relative velocity is vrel = v− x̃′1. The values assumed by µ for a range of relative velocities
for µs = 1, µd = 0.5 and v0 = 0.5 are represented in Figure 3. The values for the friction law adopted
in the present study are the same utilized in [1]. Nevertheless, as illustrated below, the optimization of
the absorber parameters does not strictly depend on the considered friction law.
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Figure 3. The weakening friction law with µs = 1, µd = 0.5, v0 = 0.5.
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3. Linear Stability Analysis

We now aim at analyzing the system’s behavior for small perturbations around the equilibrium.
Thus, we linearize it around its trivial solution and we study the stability of this trivial solution.
The analysis is performed for both the systems, with and without DVA, in order to assess the beneficial
effects of the DVA.

3.1. Linear Stability of the Host System without the DVA

We first linearize Equation (5) around its equilibrium point x1e = µ(vrel = v), obtaining

z′′1 − 2ψz′1 + z1 = 0 , (11)

where z1 = x1e + x̃1 and 2ψ = ∂µ/∂z′1
∣∣
z′1=0 − 2ζ1. Considering the friction law adopted, we have that

∂µ

∂z′1

∣∣∣
z′1=0

=
µs − µd

v0
e−

v
v0 , (12)

(valid for v > 0), which is the slope of the friction force coefficient at the belt velocity v.
Equation (11) corresponds to a linear oscillator, whose trivial solution is asymptotically stable if

and only if ψ < 0. According to the friction law utilized, and considering that ψ is a monotonically
decreasing function of v, the trivial solution is stable for

v > vh,cr = v0 ln
(

µs − µd
2v0ζ1

)
. (13)

This result is well-known and better discussed, for instance, in [1]. The practical consequences
are that, if the belt moves at a speed lower than vh,cr, the equilibrium of the system is unstable and
stick–slip oscillations occur. More details about these stick–slip oscillations are provided below.

3.2. Linear Stability of the Host System with DVA

To study the stability of the system with the DVA, we linearize Equation (9) around the equilibrium
x̃1 = x1e and x̃3 = 0. By reformulating Equation (9) in explicit form with respect to x̃′′1 and x̃′′3 and by
utilizing the variables and parameters introduced in the previous subsection, we obtain




z′1
z′2
z′3
z′4


 =




0 0 1 0
0 0 0 1
−1 −γ2ε 2ψ −2εζ2γ

−1 −γ2(ε + 1) 2ψ −2(ε + 1)γζ2







z1

z2

z3

z4


 = Az , (14)

where z1 = x1e + x̃1, z2 = x3, z3 = z′1 and z4 = z′2.
We analyze the characteristic exponents of the system to determine the stability. The characteristic

polynomial is
p(λ) = det (A− λI) = 0 . (15)

The characteristic polynomial is in the form of

p(λ) = a0λ4 + a1λ3 + a2λ2 + a3λ + a4 = 0 (a0 > 0) . (16)

The stability is determined based on the Liénard–Chipart conditions (LCC) [24]. For the polynomial
p(λ) to have all roots with negative real parts, it is necessary and sufficient that the coefficients of
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the polynomial are all positive (ai > 0, i = 1, . . . , 4) and that the determinant inequalities ∆1 > 0 and
∆3 > 0 (Hurwitz determinantal inequalities) are verified, which in our case means

a0 = 1 > 0 , (17)

a1 = 2 (γ (1 + ε) ζ2 − ψ) > 0⇐⇒ ψ < (1 + ε) γζ2 , (18)

a2 = 1 + γ (γ (1 + ε)− 4ζ2ψ) > 0⇐⇒ ψ <
1 + γ2 (1 + ε)

4γζ2
, (19)

a3 = 2γ (ζ2 − γψ) > 0⇐⇒ ψ <
ζ2

γ
, (20)

a4 = γ2 > 0 , (21)

∆1 = a1 = 2γ (1 + ε) ζ2 − 2ψ > 0 (Already present in (18)) , (22)

∆3 = a1a2a3 − a0a2
3 − a2

1a4 = −4γ
(

γ4(ε + 1)2ζ2ψ − γ3ψ2
(

4(ε + 1)ζ2
2 + ε

)

+ 2γ2ζ2ψ
(

2(ε + 1)ζ2
2 + 2ψ2 − 1

)
−γζ2

2

(
ε + 4ψ2

)
+ ζ2ψ

)
> 0 . (23)

3.2.1. Analytical Optimal Solution

Considering the stability analysis performed in the previous section, we aim at finding the
parameter values of the absorber which maximize the stable region. The linear system in Equation (14)
has the same mathematical form as the one studied in [25]. Thus, we can follow the same steps in
order to optimize the absorber.

First, we look at the curves where the coefficients and the Hurwitz determinants are zeros;
these are the boundaries where certain roots change. At certain boundaries, the stable/unstable
transition takes place. Following the steps discussed in [25], we can define specific points on these
curves, which helps us find the optimal parameters. Figure 4 shows the stability regions for different
values of ζ2; the boundary curves of the LCC are also depicted. The gray shaded region is the stable
region; we can observe that the stability boundary is not at a constant value of ψ as it is the case for
the host system without the DVA; instead, it is a function of γ, with a pronounced peak for γ ≈ 1.
This is an expected feature, considering that the DVA usually needs to be tuned at a frequency close
to the natural frequency of the primary system [14]. For different values of ζ2, the maximum value
of ψ also changes, thus we need to find the optimal combination of (ζ2, γ) such that the value of ψ

generating instabilities is maximized. For the optimization, the mass ratio ε is assumed constant;
however, the results of the analysis show that larger values of ε increase the stable region.
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√

ε/ (1 + ε) = 0.109109; and (c) ζ2 = 0.13.

As we can see in Figure 4a, the intersection of the curves a1 = ∆1 = 0 and a3 = 0 defines a
point that we denote with C. Its coordinates in the (ψ, γ) plane are C=

(
ζ2
√

1 + ε, 1/
√

1 + ε
)
. For low

values of ζ2, Point C marks the maximal value of ψ providing stability, which we call ψ∗. Increasing the
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value of ζ2, Figure 4c illustrates that Point C does not identify any more ψ∗ and that the stability
boundary is defined by Equation ∆3 = 0. Nevertheless, also for large damping ζ2, the value of γ which
maximizes ψ∗ is very close to the γ coordinate of Point C. Therefore, we define Point P as the point of
the curve ∆3 = 0 having the same γ coordinate as C. Substituting the γ coordinate of C, γ = 1/

√
1 + ε,

into ∆3 = 0, we obtain Point P =
(
ε/
(
4ζ2
√

1 + ε
)

, 1/
√

1 + ε
)
.

Since Points C and (approximately) P alternatively mark ψ∗, depending on the value of
the absorber damping ζ2, by choosing ζ2 such that P and C coincide, we can maximize ψ∗.
Imposing equality between the ψ coordinates of C and P, we attain

ζ2
√

1 + ε =
ε(

4
√

1 + εζ2
) , (24)

therefore, ψ∗ is maximized for

γ = γopt =
1√

1 + ε
and ζ2 = ζ2opt =

1
2

√
ε

1 + ε
, (25)

and the corresponding maximal value of ψ∗ is

ψmax =

√
ε

2
. (26)

Accordingly, if γ = γopt and ζ2 = ζ2opt, the system is stable if 2ψ <
√

ε, or, in other words, if

µs − µd
v0

e−
v

v0 − 2ζ1 <
√

ε . (27)

Considering that ψ is a monotonically decreasing function of v, the equilibrium of the system is
stable if

v > vcr = v0 log

(
µs − µd

v0
(√

ε + 2ζ1
)
)

. (28)

The stability chart corresponding to this case is illustrated in Figure 4b. We remark that the
optimal tuning proposed here does not strictly depend on the friction law considered, which could be
modeled with alternative functions without varying γopt and ζ2opt. This represent a clear advantage in
the case of real engineering applications.

3.2.2. Numerical Validation

The optimization procedure utilized in the previous section is based on a heuristic approach,
which does not prove that γopt and ζ2opt provide the maximal possible value of ψ∗. Therefore,
its validity should be verified numerically. The numerical analysis is performed by directly computing
eigenvalues of matrix A on a grid of the (ζ2, γ, ψ) space for a fixed ε value (ε = 0.05) and identifying
the couple of values ζ2, γ which provides the maximal ψ∗. After several trials, the analysis is finally
performed on the grid described in Table 1.

Table 1. Parameter grid for the optimum search.

Parameter min max Step

ζ2 0.1 0.11 10−5

γ 0.97589 0.97591 10−6

ψ 0.1124 0.1126 10−5

This analysis provided the optimal values for ζ2 and γ, which are indicated in Table 2 and directly
compared with the optimal values obtained analytically.
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Table 2. Comparison of numerical and analytical results.

Parameter Numerical Analytical Relative Error [%]

ζ2 0.10977 0.109109 0.605867 [%]
γ 0.975899 0.975900 0.000109945 [%]
ψ 0.11247 0.111803 0.596226 [%]

vcr 1.36678 1.36883 0.364409 [%]

Although numerical and analytical optimal parameters do not coincide, their difference is minimal
and negligible for most engineering applications. In particular, the optimal γ value is practically
the same in both cases. The critical velocity, computed utilizing the parameter values indicated in
Table 3, has a difference of less than 0.4% in the two cases. We remark that the difference between
numerical and analytical computation is not related to the inaccuracy of stability estimation through
the LCC, which exactly predicts an equilibrium’s stability, but to the heuristic approach utilized for
the optimization.

Table 3. Numerical input data.

µs µd v0 ε ζ1

1 0.5 0.5 0.05 0.05

Figure 5, illustrating the curve ∆3 = 0 for various values of ζ2, enables us to understand the
reason for the difference between the results obtained with the numerical and analytical approach.
The blue line in the figure corresponds to the analytical optimization, while the green line to the
numerical one. The yellow and red curves refer to values of ζ2 slightly higher and lower than the
optimal ones, respectively. The inaccuracy of the analytical procedure is due to the fact that the peak
of the ∆3 = 0 curve does not exactly lie on Point P (which has a fixed γ value and it is not represented
in the figure). However, considering the minimal difference found and the practical compactness of
Equations (24) and (25), these will be utilized in the continuation of the paper.

γ = 0.9759

ζ2 = 0.109109
ζ2 = 0.10977
ζ2 = 0.1101
ζ2 = 0.10865

0.1110 0.1115 0.1120 0.1125 0.1130 0.1135

0.9757

0.9758

0.9759

0.9760

0.9761

ψ

γ

Figure 5. Vanishing loop of the ∆3 = 0 curve. The blue line was obtained utilizing the optimal damping
as defined by the analytical procedure ζ2 = ζ2opt, the green line corresponds to the optimal solution
obtained by the numerical procedure and the yellow and red lines are obtained for ζ2 values slightly
larger and smaller, respectively, than ζ2opt.
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3.3. Evaluation of the Absorber’s Performance

We now aim at evaluating the performance of the DVA by performing various comparison
between the system with and without DVA. As mentioned above, the critical velocities for both
cases are

vh,cr = v0 ln
(

µs − µd
2v0ζ1

)
, (29)

vcr = v0 ln

(
µs − µd

v0
(√

ε + 2ζ1
)
)

. (30)

Considering the characteristics of a logarithm function, we can state that, if the argument
becomes 1, the logarithm function yields 0. Thus, there is a certain parameter set for which the critical
velocity becomes 0 (inherent stability). We define ζ1,cr as the critical primary damping parameter,
for which the critical velocity becomes 0. To obtain ζ1,cr, we solve the arguments of the logarithm
functions for 1; these yield

µs − µd
2v0ζ1h,cr

= 1 −→ ζ1h,cr =
µs − µd

2v0
, (31)

µs − µd

v0
(√

ε + 2ζ1,cr
) = 1 −→ ζ1,cr =

µs − µd − v0
√

ε

2v0
. (32)

Utilizing values in Table 3, the numerical values for the critical primary damping are

ζ1h,cr = 0.5 , (33)

ζ1,cr = 0.388197 . (34)

This shows that the application of an optimally tuned DVA with a mass of only 5% of the host
system mass enables to reduce the critical primary damping of 22%.

Considering, instead, the critical velocity as a base of comparison, we define the improvement
factor ϕ such that

ϕ :=
ṽh,cr − ṽcr

ṽh,cr
× 100% . (35)

The critical velocities for both cases and the improvement factor are plotted against the varying
ζ1 in Figure 6, utilizing the parameter values in Table 3. We can observe that the difference in critical
velocity is more significant for smaller values of ζ1, i.e., for a slightly damped host system. We also
notice that, if the host system is completely undamped, then the critical velocity is undefined, meaning
that the equilibrium is always unstable. For any value of the host system damping ζ1, the improvement
factor is almost always above 50%.

Let us also observe what happens if we vary the value of the mass ratio ε. Similar to before,
the critical velocities for both systems and the improvement factor curve are illustrated in Figure 7.
The parameter values are those indicated in Table 3. The critical velocity of the host system is
constant because it does not depend on ε; however, for the system with the DVA, the critical velocity
monotonously decreases with ε. Utilizing the parameter values in Table 3, the critical velocities for both
the host system and the system with DVA are vh,cr = 1.151 and vcr = 0.5641, hence the improvement
provided by the DVA is of ϕ = 51%.
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Figure 7. Comparison of host system with and without DVA with varying ε: (a) critical velocities;
and (b) improvement curve.

4. Bifurcation Analysis of the Host System without the DVA

The analysis performed in Section 3 refers to the system linearized around its equilibrium.
Therefore, it is able to describe its dynamics only in the vicinity of the equilibrium, while phenomena
occurring when the stability is lost are overlooked. Additionally, it provides no information about the
stable equilibrium’s robustness if the system is subject to non-small perturbations. To investigate the
system behavior at the loss of stability and correctly evaluate the DVA performance, we reintroduce the
nonlinear terms and analytically perform a bifurcation analysis of the system without and with DVA.

Considering the system in Equation (5), we first center the system around its equilibrium point
x1e by introducing the variable z1 = x1e + x̃1, and then we expand it in Taylor series up to the third
order, obtaining

[
z′1
z′3

]
=

[
0 1

−1 µd−µs
v0

e−
v

v0 − 2ζ1

] [
z1

z3

]
+


 0

−
(

µd−µs

2v2
0

e−
v

v0

)
z2

3 −
(

µd−µs

6v3
0

e−
v

v0

)
z3

3


 = Ahzh + bh . (36)

For v ≈ vh,cr, matrix Ah has complex conjugate eigenvalues λ1,2h = α1h ± iω1h and eigenvectors
s1 = s̄2, which are reduced to

λ1h = i, λ2h = −i, s1 =

[
−i
1

]
, s2 =

[
i
1

]
(37)

for v = vh,cr.
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We then define the transformation matrix

Th =
[
Re (s2) Im (s2)

] ∣∣∣
v=vh,cr

, (38)

we apply the transformation z = Thyh and we pre-multiply Equation (36) by T−1
h , leading to

y′h = T−1
h AhThyh + T−1

h bh = Whyh + b̃h , (39)

where

Wh =

[
α1h(v) −1

1 α1h(v)

]
and b̃h =


−

(
µd−µs

2v2
0

e−
v

v0

)
y2

2 −
(

µd−µs
6v3

0
e−

v
v0

)
y3

2

0


 . (40)

For v = vh,cr, α1h = 0, α1h is kept as a generic function of v, since α1h is the critical term causing
the instability. The system in Equation (39) is in the so-called Jordan normal form.

By performing several transformations, namely transformation in complex form, near-identity
transformation and transformation in polar coordinates, the bifurcation can be characterized through
its normal form

r′ = α1h(v)r + δhr3 , (41)

where

δh =
e−

v
v0 (µs − µd)

16v3
0

. (42)

Details of this standard procedure can be found in [26]. Non-zero real equilibrium solutions of
Equation (41) correspond to periodic motion of the system in Equation (5). Linearizing α1h(v) around
v = vh,cr, we obtain

r′ = r
(

α∗1h
(
v− vh,cr

)
+ δhr2

)
, where α∗1h =

dα1h
dv

∣∣∣
v=vh,cr

= −e−
v

v0
µs − µd

2v2
0

, (43)

which has solutions

r = rh0 = 0 and r = r∗h =

√
−α∗1h

(
v− vh,cr

)

δh
= 2

√
2v0

(
v− vh,cr

)
. (44)

The trivial solution rh0 exists for any value v and it is stable for v > vh,cr. Differently, r∗h is real
only if the argument of the square root in Equation (44) is non-negative, which occurs for v > vh,cr.
Since µs > µd, in all relevant cases δ is positive (see Equation (42)), which, as clearly explained in [26],
means that the bifurcation is subcritical. This implies that r∗h corresponds to unstable solutions of
Equation (41). This result is in accordance with [1].

A practical consequence of the subcritical character of the bifurcation is that the system,
even within the stable region of the equilibrium (v > vh,cr), can experience large oscillations. If the
system, while in equilibrium, is subject to a sufficiently large perturbation, which makes it cross the
unstable periodic solution in the phase space, it will leave its basin of attraction and it will reach
another attractor, which in this case consists of stick–slip oscillations.

The bifurcation diagram in Figure 8a clearly illustrates this scenario. The dashed line indicates a
branch of unstable periodic solutions generated at the bifurcation (this branch was obtained through
time reverse numerical simulations). The solid line, instead, marks the branch of stick–slip oscillation.
The thin solid red line represents the branch of unstable periodic solutions obtained from the analytical
computation. We remark on the excellent agreement of the analytically computed solution with
the numerical one at low amplitudes. For v ∈ [1.15, 1.83], the system presents two stable solutions,
the trivial one and a stick–slip periodic solution, and an unstable periodic solution, as illustrated in
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Figure 8b for v = 1.3. Depending on the initial conditions, the system will either converge towards the
trivial solution (red curve in Figure 8c) or will undergo stick–slip oscillations (blue curve in Figure 8c).
Numerical solutions were computed utilizing the switch model proposed in [4].
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Figure 8. (a) bifurcation diagram for the host system without DVA; the thin red line marks analytical
solutions, black lines numerical ones, numerical unstable solutions are marked by the dashed line. (b)
steady state solutions of the system for v = 1.3; solid line: stable solution, dashed line: unstable solution.
(c) time series of the system leading to the steady state solutions represented in (b) with initial conditions
zh = [1.367, 0]T (blue line) and zh = [1.36, 0]T (red line). Other parameter values are as in Table 3.
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z′1
z′2
z′3
z′4



=




0 0 1 0
0 0 0 1
−1 −γ2ε 2ψ −2εζ2γ

−1 −γ2(ε + 1) 2ψ −2(ε + 1)γζ2





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z1
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z4


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
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0
0
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3(µd−µs)e
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0

− εknl2z3
2
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0
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
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In the vicinity of the loss of stability, A has two couples of complex conjugate eigenvalues λ1,2 = α1 ±
iω1 and λ3,4 = α2 ± iω2. In order to decouple the linear part of the system we define the transformation
matrix

T =
[
Re (s1) Im (s1) Re (s3) Im (s3)

]
, (46)

where s1 and s3 are two of the eigenvectors of A, and we apply the transformation z = Ty, obtaining

ẏ = T−1 Ay + T−1b = Wy + b̃ , (47)

Figure 8. (a) Bifurcation diagram for the host system without DVA; the thin red line marks analytical
solutions, black lines numerical ones and dashed lines the numerical unstable solutions. (b) Steady
state solutions of the system for v = 1.3; solid line is the stable solution and dashed line is the unstable
solution. (c) Time series of the system leading to the steady state solutions represented in (b) with
initial conditions zh = [1.367, 0]T (blue line) and zh = [1.36, 0]T (red line). Other parameter values are
as in Table 3.

5. Bifurcation Analysis of the Host System with the DVA

To evaluate the DVA performance when stability is lost, we analyze the bifurcation behavior
of the system with an attached DVA. The analysis is performed assuming that γ and ζ2 are tuned
approximately according to Equation (25). An analysis of the eigenvalues of matrix A illustrates that
at the loss of stability, if γ and ζ2 are tuned approximately according to Equation (25), a couple of
complex conjugate eigenvalues leaves the left-hand side of the complex plane, meaning that their real
parts become positive. This scenario corresponds to the occurrence of a Hopf bifurcation. We also
notice that, if ζ2 ≤ ζ2opt and γ = γopt, not one, but two couples of complex conjugate eigenvalues
leave the left-hand side of the complex plane. Referring to the stability chart in Figure 4a, the entire
unstable region matrix A has only one couple of eigenvalues with positive real part, except in the
loop delimited by Points C and P, where all four eigenvalues have positive real part. This scenario
corresponds to a Hopf–Hopf (or double Hopf) bifurcation. In the following, the case of a single Hopf
bifurcation is analyzed.

The first step of the analysis consists of transforming the system in Equation (9) into first-order
form, similar to Equation (14), but including nonlinear terms up to the third order, which leads to




z′1
z′2
z′3
z′4



=




0 0 1 0
0 0 0 1
−1 −γ2ε 2ψ −2εζ2γ

−1 −γ2(ε + 1) 2ψ −2(ε + 1)γζ2







z1

z2

z3

z4



+




0
0

− z2
3(µd−µs)e

− v
v0 (3v0+z3)

6v3
0

− εknl2z3
2

− z2
3(µd−µs)e

− v
v0 (3v0+z3)

6v3
0

− (ε + 1) εknl2z3
2




= Az + b .

(45)

In the vicinity of the loss of stability, A has two couples of complex conjugate eigenvalues
λ1,2 = α1 ± iω1 and λ3,4 = α2 ± iω2. To decouple the linear part of the system, we define the
transformation matrix

T =
[
Re (s1) Im (s1) Re (s3) Im (s3)

]
, (46)

where s1 and s3 are two of the eigenvectors of A, and we apply the transformation z = Ty, obtaining

ẏ = T−1 Ay + T−1b = Wy + b̃ , (47)
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where

W =




α1 ω1 0 0
−ω1 α1 0 0

0 0 α2 ω2

0 0 −ω2 α2


 . (48)

For the sake of brevity, the explicit formulation of b̃ is omitted here.
In the case of a single Hopf bifurcation, only α1 becomes positive at the loss of stability, while α2

remains negative. Therefore, only the first two equations of Equation (47) are linearly related to the
bifurcation, while y3 and y4 have minor local effect at the bifurcation. Next, we aim at reducing
the dynamics of the system to the so-called center manifold, which is a two-dimensional surface
tangent at the bifurcation point to the subspace spanned by the two eigenvectors s1 and s2 related
to the bifurcation. To do so, we approximate y3 and y4 by y3 = η320y2

1 + η311y1y2 + η302y2
2 and

y4 = η420y2
1 + η411y1y2 + η402y2

2, reducing the system to

y1 = α1y1 + ω1y2 + ∑
j+k=2,3

ajkyj
1yk

2 + h.o.t.

y2 = −ω1y1 + α1y2 + ∑
j+k=2,3

bjkyj
1yk

2 + h.o.t. ,
(49)

where j and k are non-negative integers (more details on this procedure can be found in [26]) and h.o.t.
stands for higher order terms.

The system in Equation (49) has the same form as Equation (39); therefore, exactly the same steps
can be performed to reduce the system to its normal form, that is

r′ = α1(v)r + δr3 , (50)

where [26]

δ =
1
8

(
1

ω1
((a20 + a02) (−a11 + b20 − b02) + (b20 + b02) (a20 − a02 + b11)) + (3a30 + a12 + b21 + 3b03)

)
. (51)

Imposing ε = 0.05, γ = γopt and ζ2 = 1.05 ζ2opt, we obtain

δ = 0.00474 + 0.68 knl2 . (52)

Proceeding as done for the host system without DVA, we have that the non-trivial solutions of
Equation (50) is given by

r = r∗ =

√
−α∗1 (v− vcr)

δ
, (53)

where α∗1 = dα1/dv|v = vcr. We notice that δ is positive if the DVA is linear (knl2 = 0), which means
that also in this case the bifurcation is subcritical, and it generates unstable periodic solutions.
Analyzing other values of ζ2 and ε, we verified that the subcritical characteristic persists for a
relatively large parameter value range. The corresponding bifurcation diagram is illustrated in
Figure 9a. Comparing Figures 9a and 8a, we notice that, although the linear DVA does not change
the characteristic of the bifurcation, the advantages in terms of vibrations suppression persist also in
the nonlinear range. In fact, for the considered parameter values, in the host system without DVA,
stick–slip oscillations exist for v ∈ (0, 1.83], while, with the addition of the absorber, they are limited
to the range v ∈ (0, 0.768].
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Figure 9. Bifurcation diagrams for the host system with the DVA for parameter values are as in Table 3,
γ = γopt and ζ2 = ζ2opt. (a) knl2 = 0, (b) knl2 = −0.01, (c) knl2 = 0.01. Solid lines: stable solutions, dashed
lines: unstable solutions, thin red lines: analytical solutions.
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Figure 9. Bifurcation diagrams for the host system with the DVA for parameter values as in Table 3,
γ = γopt and ζ2 = ζ2opt: (a) knl2 = 0, (b) knl2 = −0.01; and (c) knl2 = 0.01. Solid lines are stable
solutions, dashed lines are unstable solutions and thin red lines are analytical solutions.

Equation (52) suggests that, if knl2 < −0.00697, δ becomes negative, making therefore the
bifurcation supercritical. This scenario is confirmed by the bifurcation diagram depicted in Figure 9b,
for knl2 = −0.01. Although at first sight it seems that the bifurcation is subcritical, the inset illustrates
that the bifurcation is indeed supercritical; however, the branch of periodic solutions bends rapidly
to the right in correspondence of a fold bifurcation, making the overall scenario similar to the case
of knl2 = 0. The figure confirms the correctness of the analytical computation; nevertheless, it also
points out that the performed local analysis is unable to capture the global behavior of the system,
which is not qualitatively affected by the variation of the nonlinear characteristic of the DVA’s spring.
Furthermore, we notice that the addition of the softening nonlinear spring enlarges the bistable range,
making stick–slip oscillations exist up to v < 0.86, instead of 0.768 as in the case of knl2 = 0.

Figure 9c illustrates the bifurcation diagram obtained for a hardening absorber’s spring
(knl2 = 0.01). In this case, the range of existence of stick–slip oscillations is further enlarged, persisting
up to v < 1.035. We also remark that increasing the value of knl2 above 0.01 or decreasing it below
−0.01 provided only worse performance than those illustrated in Figure 9. This result suggests that
any low order nonlinearity of the absorber’s stiffness is detrimental concerning the DVA effectiveness.
This finding is somehow surprising, considering that in similar applications the addition of a properly
tuned nonlinear term in the DVA’s stiffness provided some advantages [20,25,27].

Regarding Figure 9b, we notice that the branch of stick–slip oscillations presents two folds for
v ≈ 0.48. However, an analysis of the system’s steady state solutions before and after the folds did not
reveal any particular detail relevant from an engineering point of view; therefore, the phenomenon
was not analyzed in further detail. We also remark that, in Figure 9b,c, the branches of stable and
unstable solutions do not encounter each other at a well defined point, as happens in Figure 8a,
for instance. This is probably related to the fact that the branches of unstable solutions in Figure 9
were obtained adopting the shooting method (employing MatCont [28], a MATLAB-based toolbox for
numerical continuation) of the system smoothed assuming that vrel is always positive. This assumption
makes the considered system unable to exhibit stick–slip oscillations, but keeps it equivalent to the
original system for v > z3. In contrast, the stable branches were obtained from direct numerical
simulations of the full system. Therefore, inaccuracies of the smoothed system in the proximity of the
onset of stick–slip motions are possible.

As mentioned at the beginning of this section, for ζ2 < ζ2opt and γ = γopt, the system undergoes
a Hopf–Hopf bifurcation. However, acknowledging the fact that the bifurcation analysis seems to be
an inefficient tool for investigating the post-bifurcation behavior of the system, which is dominated
by large amplitude oscillations, and considering that the analysis of such a bifurcation requires a
significant analytical effort, the detailed investigation of this case is omitted in this study.

6. Conclusions

In this study, the problem of suppressing FIVs through a DVA was addressed. Possibly the
simplest system exhibiting FIVs was considered, i.e., the mass-on-moving-belt system, to which a
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classical DVA was attached. The optimal tuning of the absorber parameters was defined through an
analytical procedure, which enabled us to reduce the critical velocity by approximately 50%, with an
additional mass of only 5% of the primary system’s mass.

The post-bifurcation behavior analysis illustrated that, although a linear DVA is unable to change
the bifurcation character at the loss of stability, it can still significantly reduce the extent of the bistable
region. Globally, the area of existence of stick–slip oscillations is reduced by 58%, with a DVA mass
of only 5%. The bifurcation analysis proved that it is possible to change the bifurcation character if a
small softening term is included in the absorber. However, this has only a local beneficial effect, while,
globally, it enlarges the region of existence of stick–slip motions. The performance also worsens if an
additional hardening term is introduced, suggesting that the spring characteristic should be maintained
as linear as possible. Large order nonlinearities, such as non-smoothness, might have beneficial effects;
nevertheless, their analysis was not addressed in this study, and it is left for future developments.
Other possible future developments of the present study include the analysis of the Hopf–Hopf
bifurcation occurring at the loss of stability for ζ2 < ζ2opt and the analysis of the performance of the
DVA if the primary system has two DoF, encompassing, therefore, coupling instabilities as well [22].
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