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Abstract: New developments in additive manufacturing (AM) are enabling the use of 3D printed parts in
increasingly demanding applications, such as in mechanical power transmission systems, where excellent
build quality and tribological performance are required. The tribological properties of thermoplastic-based
AM technologies are well knowninject, whereas the performance of photopolymer-based AM technologies
is very rarely explored. This study aims to provide new insight into the tribological performance of 3D
printed parts produced using vat photopolymerization (VPP). Photocurable resins based on aliphatic
urethane acrylate oligomers were modified with different solid lubricants (polytetrafluoroethylene
(PTFE), graphite and molybdenum disulfide (MoS2)) and 3D printed using Digital Light Processing
(DLP). The mechanical and thermal properties were studied using the tensile tests, Charpy impact tests,
Shore D, and dynamic mechanical analysis (DMA). The tribological performance was studied using
a Pin-on-Disk tribometer. Among the lubricants, PTFE had the highest impact on the coefficient of
friction (µ) and the specific wear rate (ws). The hybrid lubricant system (PTFE/MoS2) resulted in excellent
tribological performance, where the µwas reduced by up to 52% and ws by up to 92%.

Keywords: additive manufacturing; vat photopolymerization; digital light processing; tribological
properties; pin-on-disk

1. Introduction

In many mechanical devices, power needs to be transmitted, preferably as efficiently as possible,
often over a wide range of conditions [1]. Furthermore, the wear behavior of these power transmission
systems has great importance since the device must operate for a certain amount of time, without
significant deterioration of performance [2]. The performance of the power transmission system is
dependent not only on design but also on the accuracy and surface finish of the individual components,
and the mechanical, thermal, and tribological properties of the materials [3–6]. The accuracy of a
tribological component (e.g., gear) is an essential factor that influences not only the precision of
the system but also the amount of load the system can withstand and its reliability. The gear trade
relies on different standards, such as Deutsches Institut für Normung (DIN) 3963 and American Gear
Manufacturers Association (AGMA) 2000-A88. Both standards classify gears in different quality levels
that can be placed into six major levels of accuracy [3,7]. Another important factor to consider is also the
material combination, which strongly depends on the application and operating boundary conditions.
Polymers are a very attractive group of the materials for tribological systems, where they are often
used in pairs with harder materials (metals and ceramics). Such systems provide a low coefficient of
friction (from 0.05–0.6) in unlubricated low-load applications [8]. While low and medium accuracy
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polymeric gears can be produced with injection molding (IM), which offers very high productivity,
gears of higher accuracy levels must be produced using less productive subtractive techniques [9].

Additive manufacturing (AM) is a technology that has recently experienced enormous growth and
promises to change the way things are manufactured [10–12]. In contrast to conventional subtractive
and formative manufacturing methodologies, where parts are produced by the selective removal of
material or by the application of pressure to a body of raw material, AM works by joining materials to
make parts from 3D model data, usually in layer upon layer fashion [13]. This enables AM to produce
parts with almost no limitations in their geometry, zero material waste, and with almost no need for
planning of manufacturing process [10,12]. AM has been shown to be a promising methodology for the
manufacturing of tribological components, where it enables fast and effortless production of complex
parts such as gears [14–16]. Since AM practically removes geometrical complexity restrictions, it enables
easy implementation of topology optimization to parts being produced [17]. For example, with AM,
it is possible to manufacture topologically optimized tribological components that exhibit reduced
noise, vibrations, and weight, while maintaining necessary structural stability [18]. Although AM
offers many advantages to conventional processes for the production of tribological components,
it also has its downsides, such as low levels of positioning and accuracy, a backlash of manufactured
gearboxes, and weakness of building materials [15]. Another major drawback of implementing AM
is a lack of knowledge on the tribological behavior of the produced parts. It has been shown that
the tribological properties of AM produced parts can be drastically different from parts produced by
conventional manufacturing technologies, such as IM [19,20].

To overcome these challenges, many efforts have been made to study and improve the tribological
properties of AM parts. Most studies on the AM of polymers focused on technologies that use
thermoplastic materials, such as Material Extrusion (ME) or Powder Bed Fusion (PBF), where tribological
properties can be improved with the addition of different functional additives, such as hard inorganic
fillers [21–24] and solid lubricants [25,26], or by optimizing the processing parameters [27,28].

Vat photopolymerization (VPP) is an AM process in which liquid photopolymer in a vat is
selectively cured by light-activated photopolymerization [13]. Stereolithography (SLA) is a VPP
technique that was introduced by Charles Hull in 1984 and is the first invented AM process [29].
Instead of building the parts by melting thermoplastic materials, such as ME or PBF, the VPP builds parts
by polymerizing basic building blocks (monomers and oligomers) into a crosslinked macromolecular
structure. The SLA solidifies the photopolymer by scanning the laser beam over the surface in a
point-wise fashion. More recently, alternative VPP techniques that utilize the mask projection approach,
where the large radiation beam is patterned by another device, such as a Digital Micromirror Device
(DMD) or Liquid Crystal Display (LCD) [12]. Although VPP is the oldest AM technique, with its
new developments that include super-fast AM by Continuous Liquid Interface Production (CLIP),
rapid volumetric fabrication using holographic patterning of light fields [30], and multi-material 4D
printing capability [31], it is certainly not outdated by any means.

The main advantage of VPP lies in its ability to produce features with a very high resolution and
excellent surface finish [12]. The resolution of the classical one-photon VPP process is limited by the
law of optical diffraction (d = 1.22 × λ × f/D). For a typical Digital Light Processing (DLP) setup using a
wavelength (λ) of 400 nm, a focal length (f ) of 400 nm, and a circular aperture diameter (D) of 30 mm,
the resolution is 6.5 µm [15], while micro-SLA can offer resolutions down to 0.4 µm [32]. Two-photon
VPP processes can achieve even higher resolutions (bellow 50 nm) [33]. Furthermore, the properties
of the materials can be elegantly tailored to the specific application by changing the chemistry of the
resin [34,35] or by adding functional additives [36–38].

Despite the seemingly high potential of VPP technologies for the production of tribological
components, there is very little known about the tribological properties of manufactured parts. The first
studies investigated the tribological behavior of injection molding blocks produced using SLA in
contact with various thermoplastic materials for the purpose of optimizing adhesion during the
injection molding [39]. Berger et al. manufactured different tribological components using SLA and
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studied the accuracy and precision of parts manufactured using SLA, Fused Filament Fabrication
(FFF), and Fused Deposition Modelling (FDM) 3D printers [14,15]. It was found that parts produced
using SLA 3D exhibited significantly lower processing uncertainty and higher accuracy that parts
produced using FFF and FDM. Berger also tested gears produced using SLA, FDM, and Arburg Plastic
Freeforming (APF) process and found that gear produced using SL did not show any wear, nor did it
break, whereas gears produced using FDM and APF failed during the test [15]. Furthermore, we also
reported good tribological performance of DLP 3D printed components in linear actuator for automatic
doors [40].

Dunnigan et al. modified photocurable resins for SLA with waste polyester and polyamide
6 powder and evaluated the tribological performance of 3D printed parts. With the increasing
concentration of polyester and polyamide powder in the photocurable resin, both µ and ws were
significantly decreased [41].

A common strategy for improving the tribological performance of polymeric materials is to
compound them with solid lubricants, such as polytetrafluoroethylene (PTFE), graphite and MoS2,
to obtain the composites, which usually exhibit significantly decreased µ and ws, but at the cost of
decreased mechanical performance [42–46]. While such strategies were successfully applied to different
thermoplastic and thermoset materials, they were not yet applied for the modification of photocurable
acrylates used for VPP AM.

This study aimed to develop photocurable resins with the improved tribological performance for
the manufacturing of tribological components using VPP. Photocurable resins were modified with
solid lubricants that are commonly used for improving the tribological performance of polymeric
materials. In the first part of the study, the 3D printing behavior of modified resins was empirically
studied to determine the boundary conditions for further tests. Then, photocurable resins containing
different solid lubricants were prepared, 3D printed and evaluated for their performance in comparison
to unmodified resins. It was hypothesized that the combination of solid lubricants might provide a
synergetic effect in terms of improving tribological performance. Therefore, hybrid lubricant systems
containing multiple lubricants were also evaluated.

2. Materials and Methods

2.1. Materials

High molecular weight aliphatic urethane acrylate oligomer (CN964A85) and isobornyl acrylate
(SR506D) were kindly provided by Arkema Sartomer (Colombes, France). Photoinitiator (Irgacure
819) was a product of Glorious Chemical (Huaian, China). Light absorber (Sudan I) was a product
of Acros Organics (Carlsbad, CA, USA). Polytetrafluoroethylene (PTFE) powder (Fluon 1710) was
kindly provided by AGC Chemicals (Japan). The PTFE particle size D50 was 5.8 µm, and D90 was
16 µm. Synthetic graphite (Imery KS6) was kindly provided by Imerys Graphite & Carbon (Bironico,
Switzerland). The graphite particle size D50 was 3.4 µm and D90 6.5 µm. MoS2 (Molysulfide Superfine)
was kindly provided by Climax Molybdenum (Ann Arbor, MI, USA). MoS2 particle size D50 was
0.9–1.6 µm, and D90 was 7 µm.

2.2. Formulation of the Resins

This study aimed to prepare photocurable resins with good tribological properties while retaining
good processability properties required for 3D printing. Incorporation of fillers into the resins, such as
solid lubricants used in this study, significantly affects the processing by influencing the curing and
flow behavior of the resin. When light passes beneath the surface of the resin, it is attenuated by
absorption from dyes, pigments, and photoinitiators. Absorption depends on the concentration and
extinction coefficients of absorbing species. Light is also attenuated by scattering from particles,
which depends on the filler volume fraction, particle size, and refractive index difference between
the filler and the liquid. In order for polymerization to occur, a sufficient quantity of the radicals
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must be present in the resin. Monomers and oligomers are stabilized with inhibitors that prevent
premature polymerization. Furthermore, the oxygen present in the resin also has a significant effect on
free-radical polymerization. The critical energy dose parameter (Ec) estimates the needed energy for
triggering the polymerization. The critical dose energy model hypothesizes that polymerization is that
Ec is given by the dose of UV photons that are not absorbed by the fillers and that produce enough
free radicals to exhaust the population of inhibitors in the mixture, as well as to provide a surplus for
triggering of polymerization [47]. Different models are available for estimating the viscosity of the
suspensions. However, in general, if interactions between the particles are neglected, the viscosity of
the suspension is related to the viscosity of the dispersing media, the volume fraction of the suspended
particles, and particles shape [48]. During the 3D printing, the resin is usually allowed to settle in the
equilibrium state, and this is a function of resins viscosity [49]. Furthermore, during the movement
of the building platform in high-viscosity resin, the forces generated are much higher. Both factors
significantly influence the building speed to the point that the material is not possible to process.
Experimental design boundary conditions were empirically determined by preparing resins with
different concentrations of fillers and tested in terms of curing and flow behavior. Curing behavior was
studied by curing one layer of resins at different curing times and measuring the curing layer thickness
(curing depth), whereas flow behavior was determined by testing the resins directly on a 3D printer.
Graphite and MoS2 both strongly absorb the light at curing wavelength (around 400 nm), whereas PTFE
is practically translucent at this wavelength. Hence, the limiting factor for the incorporation of graphite
and MoS2 into resin was the attenuation of light, and, for PTFE, the limiting factor was resin viscosity.
Concentration of graphite and MoS2 were set to yield around 60 µm of curing depth at 15 s of curing
time. The concentration of the PTFE was set in a way that the increased viscosity of the resin did not
drastically impair 3D printing behavior at ordinary speeds. To compensate, the light attenuation effect
of the graphite and MoS2, 0.04% wt.% of Sudan I was added to the mixture to provide the same curing
depth. Composition of the samples is presented in Table 1. The samples are abbreviated based on the
used filler systems, where R, P, G and M stands for reference resin, PTFE-filled resin, graphite-filled
resin and MoS2-filled resin, respectively. Hybrid filler systems are abbreviated using a combination
of abbreviations of the used filler system (for example, a sample containing PTFE and graphite is
abbreviated as PG).

Table 1. Concentrations of the fillers in samples.

Sample PTFE (%) Graphite (%) MoS2 (%)

R / / /
P 5 / /
G / 1 /
M / / 1.6
PG 5 1 0
PM 5 / 1.6
GM / 0.5 0.8

PGM 5 0.5 0.8

It has to be noted that these compositions were found to be suitable for our particular experimental
setup. When using fillers of different particle sizes or different curing systems, the boundary conditions
may completely change, especially for the graphite and the MoS2.

2.3. Sample Preparation

Resins were prepared by mixing oligomer (CN964A85) and monomer (SR605D) in a weight ratio
of 7:3, respectively. Photoinitiator (2 wt.%) and a suitable concentration of the fillers and/or dye was
added to the mixture. The mixture was stirred at 50 ◦C until achieving the complete dissolution of the
components. Test specimens (tensile test specimen according to ISO 527 5B standard, Pin-on-Disk (PoD)
specimen (diameter 8 mm, height 20 mm) based on ASTM G99 standard, dynamic mechanical analysis
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(DMA) specimen dimensions of 2 × 5 × 20 mm and Charpy specimen dimensions of 4 × 10 × 44 mm)
were prepared using the top-down DLP 3D printer manufactured by Doorson (Maribor, Slovenia).
The 3D printer was equipped with a DLP projector (Acer H6510BD, Taipei, Taiwan) as a light device.
The processing conditions for the preparation of the test specimens are summarized in Table 2. Samples
were post-cured in a UV curing system (UVITRON Intelli-Ray 600, West Springfield, MA, USA) at
100% intensity for 900 s on each side.

Table 2. Processing conditions used for the preparation of the test specimens.

Parameter Value

Vat floor Fluorinated ethylene propylene
Layer height 50 µm

Curing time of first layers 30 s
Number of first layers 3

Curing time 15 s
Resting time before curing 2 s
Build platform lift height 3 mm

Lift speed 30 mm/s
Retraction speed 150 mm/s

2.4. Characterization

2.4.1. FT-IR Spectroscopy

Double bond conversion (DBC) was determined using a Fourier transform infrared spectrometer
(Perkin Elmer Spectrum 65, Waltham, MA, USA) with attenuated total reflectance (ATR) technique.
The FT-IR measurements were performed on 2 spots on each side of the DMA specimen. Four scans
were made for each measurement from 4000 cm−1 to 600 cm−1, with 4 cm−1 resolution. DBC was
calculated according to the following equation:

DBC (%) = (1− C1/C2) × 100, (1)

where:

• C1 is a coefficient between the surface area of the double bond absorption band (810 cm−1) and
the surface area of the carbonyl group absorption band (1724 cm−1) of the crosslinked specimen.

• C2 is a coefficient between the surface area of the double bond absorption band and surface area
of the carbonyl group of the uncured resin.

2.4.2. Tensile Tests

Tensile properties were determined on a universal testing machine (Shimadzu Ag-X plus 10 kN,
Kyoto, Japan) according to the ISO 527 standard. The gauge length was set to 20 mm, preload at 1 N,
and the testing speed was 1 mm/min to 0.25% strain and then 50 mm/min.

2.4.3. Charpy Impact Tests

The Charpy impact strength was determined using pendulum impact tester (LIYI LY-XJJD5,
Dongguan, China). Unnotched samples were tested using a flatwise impact configuration. The distance
between supports was 35 mm. Samples were tested with a 2 J hammer.

2.4.4. Shore D Hardness

The hardness measurements of all samples were done with Shore D according to the ISO
868 standard.
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2.4.5. Dynamic Mechanical Analysis

Dynamic mechanical properties were determined using a dynamic mechanical analyzer (Perkin
Elmer 8000, Waltham, MA, USA) according to the ASTM D5418 standard. Samples were tested in
flexure using a dual cantilever beam supports. The frequency was 10 Hz and the amplitude was
0.02 mm. Samples were heated from 28 to 120 ◦C, with the heating rate of 2 ◦C/min. For each sample,
two measurements were performed and the average value was calculated as a result.

2.4.6. Tribological Testing

Tribological properties (the µ and ws) were determined with a PoD test setup based on ASTM
G99 at a universal mechanical tester UMT-2 (Bruker Nano Surfaces Division, Campbell, CA, USA).
The cylindrical specimens were tested against 100Cr6 steel disks with an average roughness of
Ra ≈ 0.3 µm (according to DIN EN ISO 25178). The materials were tested in two moving types,
a constant rotating movement with a speed of 250 mm/s and a cyclic direction changing movement
with speed up to 500 mm/s. Both methods were conducted with an applied normal force of 25 N.
Unidirectional tests were done for one hour, while the cyclic tests consisted of an accelerating clock-wise
movement (5 s), followed by a counter-clock-wise movement (5 s) and a resting time of 8 s. This cycle
was repeated 40 times. For the unidirectional tests, the µ was determined as an average value of two
measurements. For the cyclic tests, the µ was taken as an average of two measurements over cycle
numbers of 1–4, 16–20, and 36–40.

2.4.7. Optical Microscopy

The surface analysis of the tribologically tested specimens was investigated with a light microscope
Olympus SZX12 (Olympus IMS, Tokyo, Japan).

3. Results and Discussion

3.1. FT-IR Spectroscopy

FT-IR spectroscopy was used to study the influence of the fillers on curing behavior. As the free-
radical polymerization progresses, the concentration of the double bonds is decreased. Hence, the DBC
provides a good estimate of the degree of polymerization (Dp) and the reactivity of the material [50].
After DLP 3D printing, the parts are usually not fully cured due to weak light emitted by the projector.
Thus, the post-curing using a stronger UV light is required to increase the Dp. Nevertheless, it is
desired that after the 3D printing, the parts already have high Dp and good mechanical strength to
ensure a more robust manufacturing process. Since the first printed layers receive a larger dose of
photons due to the long curing times and penetration of light during the curing of subsequent layers,
the DBC on this side of the specimen is usually higher. The DBC of the samples is presented in Figure 1.
After the 3D printing, all samples had relatively high DBC (above 80%). Monofunctional acrylates
such as isobornyl acrylate used in this study are known to exhibit high values of DBC after the curing
due to linear chain formation and delayed gel effect compared to the more crosslinked systems [51].
The DBC of the filled 3D printed samples were in general higher than DBC of the unfilled sample,
except for sample PGM (measured on the side with the last printed layer). As expected, all samples
had higher DBC on the side with the first printed layers. Otherwise, no clear correlations could be
observed between the resin formulation and DBC of the 3D printed samples. After the post-curing
process, the DBC conversion increased to values between 90% and 95%, which is a reasonable range
for such systems. The DBC after the post-curing of the unfilled material was slightly higher than DBC
of the filled materials. This effect was ascribed to the different light absorption properties of Sudan I
dye and the fillers. The azo dyes such as Sudan I used in this study are well known to be prone to
photocatalytic degradation and bleaching, thus reducing their light absorption capacity during the
post-curing [52]. On the other hand, the solid lubricants, such as graphite and MoS2, are very UV
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stable. A consequence of this was that it was harder to fully cure the samples containing fillers in
comparison to a sample containing only a dye.Lubricants 2020, 8, x FOR PEER REVIEW 7 of 20 
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3.2. Tensile Tests

Mechanical properties of the material play an important role in the tribological performance
of the system. Tribological properties, such as µ and ws, are well correlated to the mechanical
properties [53,54]. Furthermore, when parts are used in tribological applications, such as gears,
the material must withstand high mechanical loads during the transmission of power. The tribological
contact represents a very complex loading situation combining tensile, compression, and shear stresses
in the contact area. Nevertheless, the tensile tests provide good insight into the influence of fillers
on the mechanical performance of the material. The addition of fillers into photo-curable resins can
influence mechanical properties by the direct effect of the filler particles with specific properties (shape,
size, modulus, etc.) or by influencing the photo-curing behavior of the resin. Figure 2 summarizes the
tensile properties of the tested samples. The addition of fillers did not significantly (α = 0.05) affect
the tensile modulus (Et) except for the sample PGM, which had slightly increased Et. For all filled
materials, the tensile strength (σm) decreased. This effect was ascribed to the low interfacial strength
between the matrix and the fillers, and the lower Dp of the filled samples (discussed in more detail in
Section 3.1). σm decreased from 50.1 to 45.2 MPa, 43.2 MPa, and 39.4 MPa, for samples R, P, G, and M,
respectively. For the mixed filler systems, the σm was further decreased to 39.9, 37.8, 40.7, and 39.2 MPa
for the samples PG, PM, GM, and PGM, respectively. It can be concluded that the fillers decreased σm

in the order MoS2 > graphite > PTFE. For all filled materials, the strain at break (εb) increased from
7.9% to 9.0%, 10.3%, 13.9% for samples R, P, G, and M, respectively. This was ascribed to the lower Dp

of the filled samples. For samples containing mixed fillers, no clear trends between the composition
and the εb can be observed. It must be noted that samples with the highest εb values (sample M and
PM) also exhibited the lowest DBC values after the post-curing process, indicating the lowest Dp.
Decrease in the strength by the solid lubricants could be potentially reduced by using improved curing
strategies, or by optimizing resins composition, for example, by using an acrylate-epoxy hybrid system,
where parts could also be thermally post-cured or by optimizing current curing strategies.
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3.3. Charpy Impact Tests

Photocurable resins for additive manufacturing are well known to be brittle, and the addition of
fillers can further decrease the impact strength [55]. Thus, it is important that, for practical tribological
applications, these materials have sufficient impact strength to endure the loads during the part
operation. Figure 3 summarizes Charpy unnotched impact strength (acU) of the tested samples.
The acU of the samples R, P, and GM was not significantly different (α = 0.05). The impact strength
of samples G, M, PG, and PM decreased from 23.2 kJ/m2 for sample R to values around 16 kJ/m2

(±1 kJ/m2). Sample PGM exhibits the lowest value of acU (14.4 kJ/m2). On the first look, one of
the biggest disadvantages of VPP technologies compared to thermoplastic-based AM is certainty
low impact strength, since engineering thermoplastics, such as polyamides, exhibit higher acU than
around 20 kJ/m2, as reported for the resins in this study. While an advantage of thermoplastic-based
technologies is obvious at first glance, it must be noted that this may not always be true, especially
since parts produced using material extrusion AM are well known to exhibit high levels of anisotropy,
while VPP-produced parts are more or less isotropic [56,57]. Moreover, in recent years, great efforts
have been made to overcome these challenges. Considerable progress comes from developing new
materials on one side, and on the other side new technologies, such as Hot Lithography, which enables
the VPP of highly viscous resins, resulting in parts with a higher impact strength [58,59].
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3.4. Shore D Hardness

The hardness of photo-cured resins is dependent on many factors, all the way from photopolymer
chemistry and structure, curing conditions, and fillers. As discussed in Section 3.1, the incorporation of
a solid lubricant has a significant effect on the curing behavior of the resins, usually resulting in lower
DBC conversion and, thus, lower Dp. The other main effect of solid lubricants on the hardness comes
from the direct effect of solid lubricants. When soft PTFE (Shore D ≈ 55) is incorporated into relatively
hard resin, this will result in lower hardness. The effect of the graphite and MoS2 on the hardness of the
resins is a bit harder to predict (except on the curing behavior) since both fillers can increase or decrease
the hardness of polymer systems [60–62]. In Figure 4, all Shore D hardness values are illustrated.
Sample R exhibited the highest hardness (Shore D ≈ 80), followed by samples GM, G, and M, where
hardness was slightly lower (Shore D ≈ 75). On the other hand, the samples containing PTFE exhibited
significantly decreased hardness, where Shore D of sample R was, while, for the samples PG, PGM,
and PGM, the hardness was further decreased to Shore D values of 70, 67 and 63, respectively.
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3.5. Dynamic Mechanical Analysis

Contrary to most metallic and ceramic materials, polymers upon deformation exhibit characteristic
viscoelastic behavior. This time-dependent viscoelastic behavior is a significant factor to consider when
designing a tribological system [4,8]. DMA is an instrumental technique for studying the viscoelastic
properties of polymers over a wide range of conditions that provides information about the elastic
material response (storage modulus (E’)), plastic response (loss modulus (E”)), and damping behavior
(tan δ) [63]. Some performance characteristics of the tribological systems, such as operating noise,
vibrations, and power transmission efficiency, are strongly correlated to the damping characteristics
of the materials [4,5]. Furthermore, as properties can be determined over a wide temperature range,
important information about the temperature dependency of viscoelastic properties can be obtained.
In Figure 5, the dynamic mechanical properties of samples are presented. All samples exhibited very
similar dynamic mechanical behavior, with typical thermograms presented in Figure 5a. Upon heating,
the E’ of samples decreased at a similar rate until around 50 ◦C, where glass transition temperature (Tg)
in the form of E” peak was reached. Around the glass transition temperature of samples (45–55 ◦C)
the rate of decline of E’ was obviously the highest, up to around 60 ◦C, where the rate of decline was
significantly decreased. The E” reached a peak at around 50 ◦C, whereas the tan delta (tan δ) reached
a peak at around 85 ◦C. At around 90 ◦C, the E’ was practically zero, which is the reason for highly
scattered tan δ data points above this temperature. Due to this high scattering of data, the E” peak
was taken as a glass transition temperature. Building on our knowledge obtained from previous
work, where we developed a system for tailoring mechanical and thermal properties of photocurable
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resins for VPP, the resin composition used in this study was intentionally chosen to provide required
properties for intended application of the resin—components in the power transmissions system of
automatic doors. Instead of choosing a more cross-linked system that has a higher modulus at elevated
temperatures, our approach was to use tough and flexible oligomer, combined with monofunctional
monomer, to provide high toughness and a relatively low glass transition temperature. During use,
the component will operate in the material glass transition region, thus providing excellent vibration
and noise damping behavior, desired in the operation of automatic doors. The drawback of using this
approach is that properties are highly dependent on temperature. Only a slight increase in temperature
brings a dramatic drop in modulus as well as higher expected power losses as a result of the dissipation
of mechanical forces into heat. As presented in Figure 5b the addition of fillers slightly decreased E’ at
30 ◦C for all samples except for sample PG where E’ at 30 ◦C was at the same level. E’ decreased from
1550 MPa for sample R to values around 1400 MPa for samples P, G, and M, to 1330 MPa for sample PM
and to values around 1450 MPa for samples GM and PGM. For the E’ at 70 ◦C, the similar trend was
shown, except for sample M, which had significantly lower E’ at 70 ◦C. The E’ at 70 ◦C decreased from
165 MPa for the sample R to around 150 MPa for samples P, G, and PM, to values around 160 MPa for
samples GM and PGM, to 130 MPa for sample M and it increased to 186 MPa for sample PG (Figure 5c).
These results are in good correlation with the DBC values after the post-curing. All samples exhibited
Tg values slightly above 50 ◦C except for sample M and sample PGM, which had slightly lower Tg

(Figure 5d).
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Figure 5. Dynamic mechanical properties of the unmodified resin and resins modified with different
solid lubricants (PTFE, graphite and MoS2): (a) dynamic mechanical analysis (DMA) thermograms of
the PTFE-filled resin (storage modulus—black curve, loss modulus—red curve, tan delta—blue curve);
(b) storage modulus at 30 ◦C; (c) storage modulus at 70 ◦C; (d) glass transition temperatures.
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Whereas thermoplastic-based AM technologies are using polymers as a feedstock, the VPP
uses basic building blocks (monomers and oligomers) and polymerize them during the 3D printing.
Since thermoplastic polymers are usually already polymerized by large material manufacturers, so their
structure or chemistry is more or less determined. On the other hand, VPP provides the user with
the opportunity to elegantly tailor the structure and chemistry of the material by combining different
monomers and oligomers. In this way, the viscoelastic spectrum of the material could also be adjusted
for the specific applications. For example, contrary to our approach, for applications where high power
transmission efficiency is needed, one has the opportunity to decrease the hysteresis loop for that
particular loading conditions by tailoring the resin composition, thus decreasing power losses.

3.6. Tribological Testing and Damage Analysis

Two different testing methods were conducted, first to gain general information about the material
behavior and second about the application’s relevant performance. The 250 mm/s unidirectional
rotating tests should provide general information about the material behavior, whereas the 500 mm/s
cyclic test imitated the application case–drive system for automatic doors. The tribological properties
of samples determined using a unidirectional test are presented in Figure 6a. It is obvious that PTFE
had the highest effect on the tribological behavior of the 3D printed specimens. All samples containing
PTFE exhibited a decrease in µ from values around 0.7 to around 0.5. Samples containing only graphite
and MoS2 exhibited similar average values of µ as the unlubricated material. A similar trend was
also given for the ws, where all samples containing PTFE exhibited an enormous decline in ws from
around 2.5 × 10−7 cm3/Nm to values ranging from 2.0 × 10−8 cm3/Nm to 3.0 × 10−8 cm3/Nm, which is
a decrease in order of magnitude. Samples containing only graphite and MoS2 exhibited just a small
decrease in ws to the values of 1.8 × 10−7 cm3/Nm and 2.0 × 10−7 cm3/Nm, respectively. When looking
at Figure 6b, where the µ is presented as a function of sliding time, it is evident that despite the similar
average values of µ for samples R, G, and M, the friction development was different. At the beginning
of the tests, the µ of samples R, G, and M was in the same range at values around 0.6. The µ of sample R
slowly increased over time, whereas the µ of samples G and M quickly increased up the testing time of
5 min, then a more or less steady state was observed. The samples G and M had a lower curing degree
and thus also lower modulus, strength, and hardness. At the beginning of the test, when transfer films
were not well developed, the harder sample R had lower µ, but, towards the end of the test, the µ
of sample R surpassed the µ of samples G and M. On the other hand, PTFE-filled samples exhibited
different development of friction, where the µ was much lower and constantly increasing over time at
a similar rate. This was ascribed to the quick development of PTFE transfer films that enabled low
friction sliding of the pin over the steel counterpart. As the test progressed, the temperature of the
specimen was slowly increased, resulting in a decrease of modulus and hardness and an increase in µ.

The tribological behavior can be further explained by looking at the optical micrographs of the
tested pins presented in Figure 7. All surfaces of the samples without PTFE were damaged as a result of
the combination of adhesive and abrasive wear. This is evident in the regions marked with red ellipses,
where specimens had deformed regions that were formed as a result of the softening of the material
combined with scratched from abrasive wear. Samples containing graphite and MoS2 had regions
where removed material redeposited back on pins (shown by white arrows in Figure 7). Surfaces of the
samples filled with PTFE had only slight signs of abrasive wear in the form of small scratches, with some
regions having an original surface structure (blue ellipse in Figure 7b). Furthermore, contrary to
other samples, the surfaces of PTFE samples were covered with white particles that were ascribed to
deposited PTFE powder that was pulled out of the matrix. The samples containing MoS2 had yellow
regions present in the material and wear debris, suggesting the involvement of mechanochemical
reactions. Under harsh conditions of the tribological test, the MoS2 can decompose by cleavage into
Mo and S atoms, which further react with oxygen and iron in the counterpart to form MoO3, FeS,
and other oxidized sulfur compounds [26].
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Figure 6. Tribological properties of the unmodified resin and resins modified with different solid
lubricants (PTFE, graphite and MoS2): determined using a unidirectional test at 250 mm/s: (a) coefficient
of friction and wear rate of samples; (b) coefficient of friction as a function of sliding time for the
reference resin and PTFE, graphite and MoS2 modified resins.
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Figure 7. Optical micrographs of the pins after the unidirectional test at 250 mm/s: (a) reference resin;
(b) PTFE-filled resin; (c) graphite-filled resin; (d) MoS2-filled resin.

Corresponding counterparts presented in Figure 8 further confirm that, for samples without
PTFE, both adhesive wear and abrasive wear were present. The regions highlighted with blue arrows
had thick transfer film strips present at the counterpart surface. Contrary to thermoplastic materials,
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thermosets, such as acrylates used in this study, do not melt. Furthermore, thermoset materials are
usually harder and exhibit much less plasticity than results in a lower possibility of effective transfer
film formation. Nevertheless, most studies report the development of thermoset transfer films when
sliding against hard surfaces, such as steel. Samples containing PTFE developed much thinner transfer
films with no thick material strips. Thin transfer film has a much higher contact area compared to
the area between material strips and the pins, resulting in a higher load transfer capacity. It is well
known that PTFE can be easily pulled out of the matrix and deposited on the counterpart in a form
of thin third-body transfer film, which reduces the µ and ws by providing low adhesion between the
different surfaces. In contrast, the adhesion between thermoset material strips and the specimen is
much higher since both materials have the same surface energy and thus strong interactions, resulting
in high adhesive wear. A high amount of wear debris (red arrows in Figure 8) was present at the
counterparts of samples without PTFE, while counterparts of PTFE-filled samples had only traces of
the wear debris present at the counterparts.
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reference resin; (b) PTFE-filled resin; (c) graphite-filled resin; (d) MoS2-filled resin.

A quite similar trend was observed for the cyclic test, with resulting tribological properties
presented in Figure 9. For this movement, the µ significantly declined for PTFE-containing samples,
but this time to an even greater extent. This could be explained by taking a deeper look into both testing
methods as well as on mechanical and thermal properties of samples. During the unidirectional test,
the temperature slowly increased to the point of steady-state conditions, where the system achieved
the thermodynamic equilibrium. This effect is nicely illustrated by the friction development curves in
Figure 6b, where reference and PTFE-containing samples exhibited a constant increase in friction as a
result of heat development and softening of the material. In contrast, graphite-containing samples



Lubricants 2020, 8, 104 14 of 19

quickly reached the steady state. During the cycling test, the specimen is subjected to only 10 s of
sliding, followed by 8 s of resting time. Since there is no friction during the resting time, no heat is
developed, which allows for the fast cooling of the specimen surface by conductive heat transfer into
highly conductive steel parts. This should result in much lower overall heat development, which,
combined with high dependence of mechanical properties, discussed in Section 3.5, results in much
lower µ of well-performing systems. Furthermore, during the cyclic test, the velocity was constantly
changing, and it reached much higher values than during the cyclic test. Combined with the fact that
the viscoelastic properties of polymers are time dependent, this will result in totally different material
behavior, even at the same temperature. The described behavior of the investigated tribological systems
has important implications in terms of the practical applications of the materials. Photocurable resins
based on the investigated compositions are more suitable for low-temperature applications without
significant heat development during an operation, which results in an increased temperature and
in turn deteriorated tribological performance. The ws of lubricated samples was again decreased
compared to the reference material similarly as in the unidirectional test, but, this time, an addition of
PTFE provided less benefit. In the unidirectional test, the PTFE provided an enormous decrease in
wear in order of magnitude, while, in the cyclic test, the wear was only decreased approximately by
two-fold. The MoS2-containing sample closely followed the PTFE, with an only slight difference in
wear, while the graphite-containing sample performed the worst among lubricated materials. In the
case of the cyclic test, the performance of PTFE containing a hybrid lubricant system was significantly
better, especially for the MoS2-containing samples, indicating a synergistic effect between the PTFE
and MoS2.
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Figure 9. Wear rate and coefficient of friction of the unmodified resin and resins modified with different
solid lubricants (PTFE, graphite and MoS2) determined using a cyclic test at 500 mm/s.

The tribological performance of samples can be well explained by looking at the micrographs of
the tested pins presented in Figure 10 combined with counterparts presented in Figure 11. After the
cyclic test, all samples were damaged as a result of both abrasive and adhesive wear. It seems that the
adhesive wear was more dominant compared to the unidirectional test, with large damaged regions
present at the surfaces of the specimens (red ellipses). This time, PTFE also containing samples had
visible damage caused by adhesive wear. The surface of the PM sample (Figure 11c) had similar
damage, combining both signs of adhesive and abrasive wear, but to a much lesser extent, with less
deep scratches.
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Looking at the micrographs of corresponding counterparts shown in Figure 11 gives further
hints on present wear mechanisms. The surface of a counterpart of the reference sample (Figure 11a)
was covered with a transfer film, this time without visible strips (Figure 11a). On the other hand,
PTFE-containing samples (Figure 11b) left similar strips of material on the surface of counterparts as
samples without PTFE in a unidirectional test. This can be explained by the nature of the two tests.
During the unidirectional tests, the transfer film can be much more easily developed and maintained
since there is no changing of moving direction. Meanwhile, during the cyclic tests, the transfer film
can get easily destroyed by the change of the direction. Here, the adhesion of the transfer film to the
counterpart plays a much higher role than in unidirectional tests. Counterparts of MoS2-containing
samples were covered with small lumps of material (blue arrows in Figure 11a,b) that were quite
uniformly distributed over the surface, combined with thin transfer film, visible by the yellow color.
This “lumpy transfer” is a common transfer mechanism for polymers that do not result in improved
wear and friction characteristics. Therefore, the most benefit of MoS2 to the friction and wear should
come from a thin layer of transfer film. It seems that this type of transfer layer was best developed for
the MoS2-containing samples. This may be linked back to the mechanochemical reactions between
the MoS2 and the steel. It has been suggested that the formation of FeS on the counterparts should
lead to enhanced adhesion of the slide layers to the counterparts [26]. Enhanced adhesion may be
responsible for the good performance of the sample PM in the cycling test, where transfer film can be
easily destroyed. Similarly, as for the unidirectional test, counterparts of poor-performing samples had
a high amount of wear debris, marked with red arrows at the bottom of the micrographs in Figure 11.
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4. Conclusions

In the present study, the photocurable resins for additive manufacturing with improved tribological
properties were successfully prepared by modifying photocurable acrylates with different solid
lubricants. The solid lubricants reduced the coefficient of friction and wear rate of 3D printed parts in
the order of PTFE > MoS2 > graphite. The resins with the hybrid filler system (PTFE/MoS2) exhibited
the best overall tribological properties, indicating a synergistic effect between the PTFE and MoS2.
Compared to the unmodified photocurable resins, filled systems exhibited a reduced coefficient of
friction and wear rate up to 52% and 92%, respectively. The developed photocurable resins are suitable
for AM of components, which are not subjected to high temperatures and where a good damping
performance is desired. Although present research provides information about the principal effects of
the solid lubricants on the properties of photocurable resins, the effect of shape and particle size of
the fillers was not explored and presents a potential direction for further research. This paper tries to
provide basic guidelines for improving the tribological performance of photocurable resins for VPP and
points out a few potential advantages of VPP for the production of tribological components, namely,
high building accuracy and surface finish, a simple modification of the resins, ability to fine-tune the
material viscoelastic spectrum, and low anisotropy of 3D printed parts. Despite the promising results
of this study, additional effort is required for further development of VPP to the point that it is ready
for industrial implementation. With the large pool of different commercially available building blocks
(monomers and oligomers) and additives, combined with ease of material modification and rise of
low-cost VPP 3D printers, there seems to be a great potential for further improving the tribological
properties of VPP 3D printed parts and developing this field.
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