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Abstract: Efficiency improvement is the new challenge in all fields of design. In this scenario the
reduction of power losses is becoming more and more a main concern also in the design of power
transmissions. Appropriate models to predict power losses are therefore required from the earliest
stages of the design phase. The aim of this project is to carry out lubrication simulations of several
variants of a cylindrical roller bearing to understand the lubricant distribution and the related
churning power losses. Several strategies to reduce the computational effort were used. Among them
the sectorial symmetry and three innovative meshing strategies (purely analytical with and without
interfaces and analytical/subtractive) that were implemented in the OpenFOAM® environment.
The results of the different approaches were compared among them and reasonable savings in terms
of computational effort were shown.
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1. Introduction

Eco-friendly technologies represent a positive trend for the future. The achievement of ambitious
goals in terms of energy savings is strictly related to the capability to design more efficient systems.

In these regards, the recent developments in computer science have opened new possibilities.
While in the past, different design solutions were characterized from an energetic point of view by
means of experimental tests, in recent years more and more numerical studies are available in literature.
Numerical techniques, in fact, allow to overcome the need of prototyping, enabling a comparison and
an optimization of the different designs starting from the earliest stages of the development.

With focus on the efficiency and thermal behavior, CFD (computational fluid dynamic) seems to
be one of the most appropriate tools to study churning losses of mechanical components, including
bearings. Among the different CFD-approaches, SPH (smooth particle hydrodynamic), a meshless
method, has the advantage of being easily applicable [1] even if the accuracy of the results was shown
to be insufficient for comparable computational effort [2]. On the other side, mesh-based methods such
as FV (finite volume) allow very high accuracy but in most cases the computational effort required
is not compatible with the industrial practice [3]. To partially overcome this problem, in the past
several attempts were made. In particular, rotating reference frames [4,5], innovative partitioning
strategies [6,7] and, mostly, mesh-handling algorithms [8–11] have been developed and applied in
order to reduce the simulation effort.

Among the mesh-based methods, most approaches require geometrical, kinematical or
physical simplifications.
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Simple numerical studies dealing with single rolling elements (e.g., as spheres) or neglecting
the relative motion between the elements were published by Noda et al. [12], Gonda et al. [13],
Gao et al. [14,15] and Marchesse et al. [16].

Hu et al. [17] studied the oil distribution and the power losses of a bearing by means of
commercial software using a rigid mesh motion/mesh sliding strategy. This approach relies on multiple
meshing regions with interfaces between the grids. A similar approach was used by Zhang et al. [18].
Liebrecht et al. [19,20] used the same modelling technique to study tapered roller bearings.

Rigid mesh motion/mesh sliding strategies have also been implemented in open source software.
Examples of application of those strategies to bearing simulations were reported by Felderman et al. [21].
This approach is effective, but the presence of interfaces introduces numerical interpolation errors and,
most importantly, affects the computational effort by introducing additional equations to be solved.

Steady-state approaches relying on rotating reference frames were used by several authors.
Among them, Raju et al. [22] who studied needle bearings, Adeniyi et al. [23] who studied aeronautical
bearings and Wen et al. [24] who simulated ball bearings. These approaches could be effective for
rotating elements. However, this approach is not capable to reproduce the roto-translational motion of
the rolling elements could not be reproduced.

Among the different approaches, the rigid mesh motion/mesh sliding strategy seem the most
appropriate to simulate bearings, because it allows the proper reproduction of the geometry and
the kinematics without simplification. In this paper, thanks to self-developed boundary conditions,
the rigid motion of all the bodies was set without the need of interfaces between multiple grids,
i.e., limiting the number of equations to be solved. Moreover, considering that the final goal of the
research is to study and optimize the lubrication and the efficiency of roller bearings (this requires a
plenty of simulations), a first stage was dedicated to the study of how several levels of geometrical
simplifications could affect both the physical results and the computational efficiency. Among the
studied simplifications were rounding radii and symmetries (this implies neglecting gravity). The most
effective and computationally efficient model will be selected for the successive lubrication studies.
For each model, an ad-hoc meshing strategy was developed and implemented in the OpenFOAM®

environment. Limiting the computational effort by avoiding any kind of mesh deformation and
need for remeshing, together with an analytical control of the mesh generation to better handle the
element distribution and quality parameters, is fundamental for the successive stage in which the most
appropriate model will be used systematically to study and optimize the lubrication and the power
losses of a bearing. Only having effective and computationally efficient models will make it possible to
perform systematical studies. This paper is intended to show the capabilities and performance of the
different approaches for this kind of investigation.

2. Materials and Methods

2.1. Bearing Losses

Bearings allow the relative rotation between two mechanical components.
In journal or hydrodynamic bearings, the converging gap ensures that the two surfaces are kept

separated by a fluid flow which implies frictional losses. The power dissipation is mainly due to viscous
effects. This kind of bearing was already studied in the past by the author using OpenFOAM® [25].
This kind of simulation is relatively simple from a geometrical point of view because the domain does
not significantly change its shape during operation.

Rolling bearings are geometrically more complicated and carry the load by means of interposed
rolling elements.

The load independent power losses of rolling bearings can be classified into seal losses and
hydraulic losses. The latter can be further subdivided into squeezing and churning/windage ones.

Squeezing losses are mainly related to volume variations and pressure gradients that causes
additional flows. Churning losses are due to the splashing of the lubricant due to the motion of the
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components. It is well known that the squeezing losses, except for spray lubrication, are of a lower
order of magnitude with respect to the churning ones [26].

The focus of this paper is on the churning losses. Thus the EHL film was neglected, as it is standard
practice [27–31] to adopt different numerical methods for it. Therefore, also the modeled gap between
rollers and races is not fully representative of the real one and each bearing element is in its nominal
position. The rollers move around the bearing and rotate around their axis, but maintain their relative
position in the center of the cage-pocket and the middle of the races. Moreover, the gap between rollers
and races was increased to 0.05 mm. With these assumptions, changes in the rheology of the lubricant
and the entire EHL regime, can be neglected. This assumption is standard practice when studying the
churning losses of bearings. The goal is to separate the churning losses from the contact losses, which
are commonly calculated using special EHL tools and are not the focus of this study.

2.2. Bearing Geometry

The bearing considered in this study is a Schaeffler NU222-E-XL-M1 with a roller guided cage and
NU222-E-XL-M1A (Figure 1) with an outer ring guided cage (for the purposes of this study, the main
difference between the cages is the width of the radial gap between the cage itself and the shoulder of
the outer ring—Figure 2). It is a cylindrical roller bearing whose dimensions are listed in Table 1.
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Table 1. Parameters of the bearing.

Dimension Value Parameters Value

d [mm] 110 C0r [kN] 345
D [mm] 200 Cr [kN] 365
B [mm] 38 nG [rpm] 5300
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This model of a non-locating bearing with a single row of cylindrical elements has a very high
radial load carrying capacity and is suitable for higher speeds compared to full complement designs.
The rollers are axially guided between rigid ribs in the outer ring. The cage has a solid design and is
made of brass. The radial clearance between rollers and cage is 90 µm.

In the studied configuration, the lubricant was supplied radially into the space in front of the
bearing. The inner ring was rotating with a speed of 4500 rpm (slightly below the limiting speed nG)
while the outer ring was stationary. Consequently, the rotational speed of the cage resulted in 1904
rpm and the rotational velocity of the rollers around their own axis in the inertial frame results was
14,300 rpm. The lubricant selected for this study was an ISO VG 320 which has, at the simulation
temperature of 95 ◦C, a kinematic viscosity of 27.9 cSt (mm2/s). The density resulted in 880 kg/m3.
The oil flow on the inlet was set to 4 l/min for the complete bearing.

2.3. Simplifications

The abovementioned bearing model was considered in the study. However, several levels of
simplifications were introduced and studied: presence or absence of the outer ring ribs and rounding
radii, sectorial symmetry (not capable to consider the effect of the gravity). Furthermore, 2 different
cages were analyzed. Table 2 shows the full list of the simulations performed. In simulations #1 to #3,
just 1 sector of the bearing (360◦/17) was modelled. This was possible thanks to the cyclic symmetry of
the system. The study of the effect of the different simplifications was aimed to create a numerical
model whose solution requires a limited computational effort.

Table 2. Meshes.

Configuration Bearing Cage Type Ribs R. Radii Sectorial/Full

#1 NU222-E-XL-M1 M1 No No Sect.
#2 NU222-E-XL-M1A M1A Yes No Sect.
#3 NU222-E-XL-M1A M1A Yes Yes Sect.
#4 NU222-E-XL-M1A M1A Yes Yes Full

2.4. Meshing Strategies

The different configurations have different internal geometries. While the main differences in
the topology are due to the presence of the ribs and the cage model, from a meshing point of view,
the rounding radii are the most critical parameter to be handled. For this reason, different approaches
were used. All the tools used for meshing are included in OpenFOAM®. However, the different
approaches could be coupled together and applied to bearings only with the development of meshing
templates specifically suited for such configurations.

2.4.1. Analytical Meshing & Interfaces

The approach we called “analytical meshing & interfaces” was used for simulation #1. A first
subdivision of the domain was made axially between the rolling element end faces and the internal
faces of the cage (whose surface normal is parallel to the bearing axis). A second subdivision was
made just after the opposite face of the cage. This was done both for the inlet, as well as for the outlet
side (purple surfaces in Figure 3). This ensured that a mesh with extruded prismatic elements only
was created for each axial portion of the domain. The 5 meshes, belonging to the different axial slices
of the bearing, result conformal among them from a geometrical point of view, but not conformal in
terms of position of the nodes. The introduction of arbitrary mesh interfaces (AMIs) [32] allowed
the numerical connection between those meshes. The AMI operated by projecting one of the patches
boundary mesh onto the other, ensuring that that the values of a generic field were the same on both
sides of the interface.
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Figure 3. Meshing approach for configuration #1: 4 arbitrary mesh interfaces (AMIs) are present
(purple). In the lower part of the figure the 3 typologies of 2D mesh (successively extruded) are shown.

The principle behind this approach was the decomposition of one lateral face into a set of
quadrilaterals. Edges can be straight lines, arcs or splines [33]. The further discretization of the
4-edged polyhedron was defined through the seed of 2 adjacent edges. In Figure 3 (bottom left) it can
be appreciated that the grid—created with blockMesh [32]—was made of 19 quadrilaterals (blocks).
The blocks always had 4 edges. Some of them were curved according to a defined function. In block 2
(1st mesh), for example, the upper edge was curved to follow the outer ring curvature. The left edge of
block 8 (1st mesh), was curved to follow the curvature of the roller. Other edges (for example of block
10—1st mesh) were curved just to keep the quality of the elements above a certain threshold.

The 2nd (and 4th) portion of mesh between the 1st and 2nd AMI (3rd and 4th AMI) (bottom
center of Figure 3) was made of 6 blocks. The central mesh between the 2nd and 3rd AMIs (bottom
right of Figure 3) was made of 15 blocks. The possibility to create the mesh as a compound of multiple
blocks allowed better control of the internal quality of the grid and significantly sped up its generation.
The creation of this grid (1.2 M cells) had taken, on a 48 GFLOPS workstation, only 8 s. The finest
grid used during the mesh sensitivity analysis with the same block layout, was of about 7.3 M cells.
Its generation takes about 55 s showing a linear scalability.

2.4.2. Analytical Meshing without Interfaces

For configuration #2, in which the rounding radii were neglected (but not the ribs), it was possible
to create the whole geometry with multiple extrusions without the need of AMIs. To achieve this goal,
a more complex partition of the frontal (extrusion) surface (Figure 4 left) was used. This consisted of
39 blocks. Not all the blocks were extruded for the whole bearing length. Block 1 to 5, for example,
were missing in the mid (axial) portion where the outer ring was located. In the same way, blocks 11,
13, 18, 22, 23, 24, 27, 28, 29 and 39 were not extruded in correspondence of the roller. This approach
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was very powerful and enables the creation of a good quality grid in a very short time (10 s). However,
with this approach, it was not possible to model all the rounding radii like those of the rings and of
the roller.
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2.4.3. Analytical & Subtractive Meshing Approach

In order to simulate configuration #3, in which all the rounding radii were modelled, a first mesh,
without internal cavities (like those corresponding to the roller and the cage for simulation #2) was
created analytically with 39 blocks successively extruded. This initial background grid generated
(Figure 5 up left) in 11 s. Differently from mesh #2, the 39 quadrangles of the plane surface (Figure 4
right) where extruded for the whole axial length of the model. Successively, in order to create the
boundaries corresponding to roller, cage and rings, a cut of the background mesh using a subtractive
approach (snappyHexMesh [32]) was used. In a first stage, the cells of the grid intersecting the surfaces
of roller, rings and cage (defined via .stl files), were split into smaller cells (refinement). Each cell was
subdivided into 8 smaller cells. Eventually, if required, the resulting refined cells were further split
until the desired accuracy is reached. Once this operation is complete, a process of cell removal began
(Figure 6). All cells inside the stl-defined boundaries (i.e., inside the solid rollers, the solid cage and the
solid rings) were removed from the grid.
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This approach was very effective but not as efficient as the analytical generation. The conversion
of the background grid into the final mesh took about 75 s. This was, in any case, still a much better
result with respect to a comparable automatic tetrahedralization which took, using a Netgen [34]
algorithm, about 900 s.

Table 3 summarizes the properties of the meshes obtained with the different approaches (the
geometrical configurations are described in Table 2). The number of cells reduced from configuration
#1 to #2 due to the presence, in the latter one, of the ribs that limit the volume of the computational
domain. Mesh #3 had the highest number of cells because, to accurately follow the rounding radii,
the above described mesh splitting step produced a much finer grid near the boundaries. This was
confirmed by a higher number of faces of the grid of configuration #3 that, except for the rounding
radii, was very similar to configuration #2.

Table 3. Parameters of the meshes.

Mesh #1 #2 #3 #4

points: 1,343,430 1,297,328 1,035,502 17,277,372
faces: 3,832,976 3,226,656 3,874,220 65,442,418
cells: 1,245,328 967,904 1,442,282 24,518,794

The meshes reported in Table 3 are, for each method, the best compromise between accuracy
and computational effort. A mesh sensitivity analysis was performed. As a matter of example,
for configuration #1 meshes having between about 0.5 M and 7.3 M elements were created and
simulated. Even with the finest grid, the result in terms of power losses differs from the actual one
(1.2 M elements) by less than 1%.

2.4.4. Full Model

To understand the effect of gravity (which relative orientation is a function of the bearing sector
position) on the oil flow through and oil distribution in the bearing, a simulation of the full geometry
was also performed (Figure 7). For the rotational speed considered, no significant differences in terms of
losses and lubricant distribution were expected with respect to the sectorial model because centrifugal
effects are dominant. Nevertheless, to have a complete understanding of the physical phenomena,
it was fundamental to investigate also this effect.
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To build the full grid, a circular pattern of the sectorial mesh #3 was made. The different meshes
were conformal and could be easily stitched together. Therefore, the number of cells of the #4 grid
results was 17 (number of rollers) times larger than mesh #3.

2.5. Boundary Conditions and Mesh Motion

A two-phase incompressible, isothermal solver for immiscible fluids was used. It was based on a
VOF (volume of fluid) phase-fraction interface capturing approach. In such applications, in fact, the
air flows were as important as the lubricant one and a single-phase simplification was not acceptable.
A rigid mesh motion without topology changes or adaptive re-meshing was imposed to simulate the
motion of the components. The rotational speed of the grid corresponded to the rotational speed of the
cage (1904 rpm). This required the development of two boundary conditions (BC) to properly assign
the rotational speed to the different components. Since the grid was rotating, the rotational speed of
the rings were defined in the rotating reference frame by adding (inner ring) or subtracting (outer ring)
the proper velocities. In the same way, the roto-translation of the rollers was obtained by adding a
pure rotation to the motion of the grid. Table 4 summarizes all of the BC.

Table 4. Boundary conditions (BC).

Patch U [m/s]/n [rpm] p [Pa] a [-]

Roller nz
rel = −14,300 ∇p = 0 ∇a = 0

Outer Ring nz
rel = −1904 ∇p = 0 ∇a = 0

Inner Ring nz
rel = 2596 ∇p = 0 ∇a = 0

Cage nrel = 0 ∇p = 0 ∇a = 0
Inlet u = const ∇p = 0 a = 1

Outlet ∇u = 0 p = 100,000 ∇a = 0
Outlet geometry noSlip ∇p = 0 ∇a = 0

Symmetry symmetry symmetry symmetry
Cyclic cyclic cyclic cyclic

Gravity was considered. Simulation were performed limiting the Courant (Co) number to 1
to ensure numerical stability and good convergence. The Co is a measure of how fast information
traverses (u) a computational grid cell (∆x) in a given time-step (∆t). The solution of the system was
performed with a PIMPLE (merged PISO-SIMPLE) algorithm. This conjugated the advantages in
terms of computational efficiency of the SIMPLE scheme with the capability of the PISO one to be
time-conservative [32].
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Mass, momentum and volume fraction conservation equations were defined as follows:

∂ρ

∂t
+∇·(ρu) = 0

∂(ρu)
∂t

+∇·(ρuu) = −∇p +∇·
[
µ
(
∇u +∇uT

)]
+ ρg + F

∂
∂t
α+

∂
∂xi

(αui) = 0

where ρ is the density, u is the velocity vector, µ is the kinematic viscosity of the lubricant, g is the
gravitational acceleration and F represents the external forces. α is a scalar that represents the volume
fraction of the one of the two phases in each computational cell. The averaged properties (φ) of
the mixture in each cell of the domain are calculated as an α-averaged value of the properties of air
and lubricant.

φ = φlub·α+ φair·(1− α)

3. Results

The main goal of the project was to study the effects of the geometrical simplifications on the
lubricant distribution and the power losses. The sectorial simulations were performed on the VSC
cluster [35] while the full simulation (#4) on a Deploy Linux LXD [36] Compute Node [37] backed by a
Ceph storage cluster [38]. Table 5 summarizes the properties of the computational nodes.

Table 5. Hardware.

Name CPU × Node Ram × Node

VSC 2xAMD Opteron Magny Cours 6132HE (8 Cores, 2.2 GHz) 8 × 4 Gb ECC DDR3
LXD 2xINTEL Xeon® E5-2680 (8 Cores, 3.5 GHz) 12 × 32 Gb ECC DIMMs

Figure 8 shows the predicted power losses of the different configurations. Losses included
viscous and inertial effects and were computed from the shear stresses and pressure fields on each
boundary element.
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To validate the numerical results, two empirical models were used for comparison. The first
one, proposed by Harris [39], is based on experiments. For the current configuration, it predicts
630 W (churning losses only), slightly below the numerical results. The second approach uses the
software Bearinx [40,41]. With this approach, the predicted churning losses were 737 W. While the
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predicted values were comparable to the experimentally derived ones, the CFD results enabled a better
understanding of the physics behind the phenomenon and how different geometries and parameters
are related to different levels of loss.

Despite the different geometries, mostly between #1 and #2 (ribs), the power losses were
comparable. However, it is opinion of the authors that these results cannot be generalized to different
rotational speeds. The rounding radii seemed to not significantly affect the power dissipation. It could
be observed that the regime condition (stabilization of the losses) was reached much faster in the
simulation #1. The absence of ribs, in fact, promoted an easier lubricant flow in the axial direction.

While simplification #1 seems to significantly modify the physical problem producing meaningless
results, Figure 9 shows the effect of the rounding radii. On the left-hand side configuration #2 is shown.
The absence of the rounding radii on the external race caused a stagnation of the lubricant and a higher
wetting of the outer radial surface of the cage. This impacted also on the wetting of the radial surface
of the roller that resulted in less lubrication in configuration #3.
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Figure 10 highlights the differences induced by the relative position to the roller with respect to
the gravitational acceleration. Small differences in terms of oil distribution were present even if the
structure of the bearing was axis-symmetric and the mesh was the same for each sector. As can be
expected, the lower the position of the roller, the higher its wetting with lubricant.Lubricants 2020, 8, x FOR PEER REVIEW 11 of 14 
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Even if the results shown in Figure 9 refer to a specific time step (instantaneous flow field), they
were selected to be representative of the regime condition showing the averaged effects of the presence
of rounding radii on the oil flows.

Computational Effort and Scalability

The 7.3 M- and the 1.2 M-cells meshes (configuration #1) were used to assess the scalability of
the numerical model on the number of processors. For the finer grid, simulations were performed on
the VSC cluster using 64, 128 and 256 cores. Figure 11 (left) shows the good scalability of the results.
The same was made for the 1.2 M mesh. While the scalability seemed to be linear up to 64 cores, the time
required for the solution did not reduce significantly with 128 cores. With 256 cores, the computational
effort even increased. This was due to the time required for the exchange of information between
processors that became higher than the solution time itself. The best configuration for this specific case
was found to be around 20 k cells per core.
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4. Conclusions

OpenFoam® 4.1 with some specifically developed boundary conditions seemed to be suitable for
lubrication simulations. A Schaeffler NU222-E-XL-M1 bearing was modelled with hexahedral elements
taking advantage of different meshing strategies. The studied geometrical simplifications seemed to
not significantly affect the power losses, but unquestionably affected the lubricant distribution and
lubrication of the different components. The presence of the rounding radii on the outer ring promoted
the lubricant circulation reducing its stagnation between cage and rings. The components result was
less wetted.

Gravity seems to slightly affect the wetting of the rollers—depending on their position along the
circumference of the bearing—but these results cannot be generalized to different speeds.

The proposed meshing approaches enabled different levels of geometrical complexity.
Each meshing strategy started from the extrusion of a structured grid. The capability to create
a 3D grid starting from a simple extrusion allowed a much better control of the mesh quality that
directly affected the convergence of the solution and, therefore, the computational effort required.
The reference grid (7.3 M cells) generated in about 55 s with the “analytical meshing & interfaces”
approach. Despite the good meshing performance (a comparable tetrahedral mesh generates in
900 s), the presence of interfaces slow-down the solution due to the additional equations to be solved.
The “analytical & subtractive meshing approach” was less computationally efficient (75 s for the
creation of the mesh) but did not affect the simulation time. The “analytical meshing without interfaces”
was the most computationally efficient in the creation of the grid (10 s) and did not affect the simulation
time. However, it was restricted to simple geometries.

Scalability tests indicated, for two different grids, that an average number of cells per core of
about 20 k was the best balance between computational resources and computational effort (on the
present hardware).
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