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Abstract: As aerostatic bearings are used in high-speed metal-cutting machines to increase machining
accuracy, there is the need to improve their characteristics, including compliance, which is usually
high. In practical applications, a significant reduction of bearing compliance is often necessary,
sometimes down to zero and even negative values, to ensure automatic compensation of the elastic
deformation in the machine technological system. A decrease in compliance leads to deterioration in
the dynamic performance of the bearing, so it is necessary to develop new designs that meet the above
requirements. This article considers an aerostatic bearing, in which decrease in compliance is ensured
by the use of air throttling with elastic orifices. To ensure its stability, the principle of combined external
throttling was applied, which can substantially improve the dynamics of conventional aerostatic
bearings. A mathematical model of the elastic orifice deformation was developed, together with the
flow rate performance calculation method. The method ensured full qualitative and satisfactory
quantitative agreement with the experimental data. The model was used in the mathematical
modeling of the aerostatic bearing movement. The article also proposes a method to calculate the
static load capacity and compliance of a bearing, as well as a numerical method for fast computation
of its dynamic performance, which allows for real-time multi-parameter optimization by the bearing
dynamic performance criteria. The study showed that there is an optimal set of design parameters for
which low, zero, and negative static compliance of the bearing is ensured, with the necessary stability
margin, high speed, and the non-oscillatory nature of the transient processes.

Keywords: aerostatic thrust bearing; elastic orifice; external combined throttling; zero compliance;
negative compliance; quality of dynamics

1. Introduction

The exceptional advantages of aerostatic bearings are the high rotation speed and extremely low
friction [1–5]. The bearings are lubricated with compressed gas from the source into the flow path,
which usually uses passive elements to limit the gas flow to create a certain pressure which is necessary
to maintain the current load and to control the displacement of the moving part of the structure,
thereby ensuring its stiffness [4–16]. And although the development of technology has contributed to
the improvement of bearings, they still have a drawback—low stiffness [8,10,17,18].

In 1960, John H. Laub and Frank Batsch of the California Institute of Technology’s Jet Propulsion
Laboratory announced experiments with elastic orifices as a simple means to control the flow of
gas lubricant [19], that helped to improve the performance of structures by increasing stiffness,
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thus providing them with a competitive advantage compared to other types of bearings. Subsequent
experimental studies at the Stanford Research Institute demonstrated the dependence of an elastic
orifice performance on the geometry and material properties [20,21].

However, the characteristics of such bearings and the optimal operating conditions have not
been studied and as well the methods for their calculation have not been developed. Attempts at
mathematical modeling and calculation of elastic orifices did not lead Newgard P. M. and Kiang R. L.
to results that would give satisfactory agreement with experimental data [22].

The thrust bearing design described by these researchers, apparently, is not very suitable for
practical use, because with a small chamber depth the elastic orifice cannot be deformed, while with a
large depth the dynamic performance of the bearing will inevitably lead to instability.

Bearings with external combined throttling of gas have certain prospects, which make it possible
to ensure stable operation of structures even in the presence of a relatively large volume of gas enclosed
in an intermediate chamber [14,23,24].

The literature indicates that replacing a passive throttling diaphragm in the prototype with an
elastic orifice produces a bearing which may have a potential to reduce stiffness. The mathematical
modeling and theoretical study of the static and dynamic characteristics of such a bearing is actually
the goal of this study.

The article proposes a method for calculating the static bearing capacity and bearing compliance,
as well as a numerical method for quickly calculating its dynamic characteristics, which allows
performing multi-parameter optimization of the criteria for the quality of bearing dynamics in real time.
The study showed that there is an optimal set of design parameters for which a low, zero, and negative
static bearing is ensured, with the necessary stability margin, high speed and non-oscillatory nature of
the transients.

2. Design Scheme of the Bearing

The layout of a circular type bearing with a throttling elastic orifice and damping annular
diaphragms is shown in Figure 1.
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Figure 1. Aerostatic thrust bearing with external combined throttling and an elastic orifice.

The design consists of a base 1 and a movable part 2, separated by a lubricant gap of thickness h.
Gas under constant pressure ps through a throttling diaphragm of radius rp of the elastic orifice 3 is
supplied to the chamber 4 of volume vp, where the pressure becomes equal to pp < ps. Then, through
damping annular diaphragms of diameter dk evenly spaced along a circle of radius r1, gas under
pressure pk < pp enters the bearing layer of the bearing, having overcome it and then flows into the
environment at pressure pa.
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The bearing operates as follows. A change in the external force f on the bearing first causes
a change in pressure pk, then a pressure pp, as a result of which the elastic orifice is deformed and
the radius rp of the throttling diaphragm changes, as shown in Figure 2. As a result, an additional
change in gas flow through the elastic orifice occurs. By a targeted choice of the elasticity of the elastic
orifice, it is possible to obtain the desired shape of the load characteristic and bearing stiffness in the
calculation area.
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Figure 2. Elastic orifice deformation pattern.

In a theoretical analysis of the bearing under study, it is convenient to replace the stiffness
function with its inverse compliance function, which is the transfer function of the elastic system and
is determined by the limit of the ratio of the output quantity (change in the thickness h of the carrier
gap) to the input value (load change f ).

3. Mathematical Modeling of Elastic Orifice Deformation

The design scheme of the elastic orifice deformation is shown in Figure 2. The modeling of elastic
orifice deformation is based on the theory of large deflections of thick plates. Below, is a developed
mathematical model.

3.1. Elastic Orifice Deformation Model

As can be seen from Figure 2, the radius of the orifice can be calculated by the formula

rp = rp0 +

[
u− δ sin

(
arctg

dψ
dr

)]
r=rp0

(1)

where rp0 is the radius of the undeformed orifice, r is the current radius, ψ = ψ(r) is the deflection
function, u = u (r) is the tensile function of the middle surface of the elastic orifice.

Considering the elastic orifice as a round plate with large deflections, we obtain the resolved
system for the function in the form [25]
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where ϕ = ϕ(r) is the Airy stress function, rs is the outer radius of the elastic orifice, E is the elastic
modulus of the orifice material, ν is Poisson’s ratio [26].
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During operation, the outer edge of the elastic orifice does not experience deflection, therefore

ψ(rs) = 0 (4)

On the inner and outer radii of the orifice there are no bending moments and normal stresses in
the radial direction, therefore (

d2ψ

dr2 + ν
dψ
dr

)
r=rs

= 0 (5)

(
d2ψ

dr2 + ν
dψ
dr

)
r=rp0

= 0 (6)

dϕ
dr r=rs

= 0 (7)

dϕ
dr r=rp0

= 0 (8)

Within the framework of Hooke’s law, the relation between the tensile function and the Airy
function has the form [25]

u
r
+

1
2

(u
r

)2
=

1
E

(
d2ϕ

dr2 +
ν

r
dϕ
dr

)
(9)

The system of Equations (2), (3), (9), taking into account the boundary conditions (4)–(8), is closed
and allows one to determine the functions ψ and u. Using these functions, one can find the radius rp of
the deformed elastic orifice by the formula (1).

The proposed calculation model (1)–(9) of elastic orifice deformation is a first approximation. In a
more rigorous formulation, it is necessary to take into account the change in the tensile function not
only in the radius but also in the height of the orifice.

The calculation of the characteristics of the elastic orifice are carried out in a dimensionless form
using dimensionless quantities

R =
r
rs

, Rp =
rp

rs
, Rp0 =

rp0

rs
, Φ =

ϕ

r2
s pa

,

U =
u
rs

, ∆ =
δ

rs
, ε =

E
pa

, Ψ =
ψ

rs
,

Ps =
ps

pa
, Pp =

pp

pa
.

Differential Equations (2), (3) are nonlinear, therefore, to solve the problem (1)–(9), an iterative
process was constructed, at each step of which a system of linearized differential equations
was considered

d
dR

dS(n+ 1
2 )

dR
+

S(n+ 1
2 )

R

 = − ε2R

[
T(n)

]2
(10)

DR
d
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(
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= ∆·S(n+ 1

2 )T(n)
−C (11)

with boundary conditions (
dT(n+1)

dR
+ νT(n+1)

)
R=1

= 0 (12)

(
dT(n+1)

dR
+ νT(n+1)

)
R=Rp0

= 0 (13)

S(n+ 1
2 )R=1 = 0 (14)
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S(n+ 1
2 )R=Rp0 = 0 (15)

where n = 0,1, 2, . . . is the iteration number,

D =
ε∆3

12(1− ν2)
, S(R) =

dΦ
dR

, T(R) =
dΨ
dR

, C =
1
2

(
1−R2

p0

)(
Ps − Pp

)
.

The initial approximation for the function T(R) is its value for an undeformed elastic orifice.
The linearized boundary value problems (10), (14), (15) and (11)–(13) were solved at each iteration

using the finite-difference sweep method [27]. The iterative process (10)–(15) was stopped when
the condition

max
∣∣∣T(n+1)

− T(n)
∣∣∣ < eps (16)

where eps is some small positive number (in the calculations eps = 10−4 is accepted).
The dimensionless radius of the elastic orifice diaphragm, taking into account (1), (9), (15),

was calculated by the formula

Rp = Rp0 +

R
√

1 +
2
ε

dS
dR
− 1

− ∆ sin
(
arctg

dT
dr

)
R=Rp0.

(17)

Based on the presented formulas, the radius of the orifice was calculated under the action of the
differential pressure in the bearing on the elastic orifice.

3.2. Analysis of Elastic Orifice Calculation Results

The results of the described method for calculating the elastic orifice were compared with the
experimental data of Newgard P. M. and Kiang R. L. [22] for two elastic orifices: 1—for rp0 = 0.125 mm,
δ = 2.64 mm; 2—for rp0 = 0.19 mm, δ = 1.14 mm. The comparison results are shown in Figure 3.Lubricants 2020, 8, x 6 of 20 
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flow dependences q through elastic openings from pressure difference ps − pp at rs = 3.175 mm, 1—for
rp0 = 0.125 mm and δ = 2.64 mm, 2—for rp0 = = 0.19 mm and δ = 1.14 mm.

The graph shows the theoretical (solid lines) and experimental (dashed lines) sensitivity curves of
various-sized elastic orifices with Shore hardness A − 45 (E = 2.16 MN/m2, ν = 0.5) at ps = 238 kPa.
The pressure difference ps − pp is plotted along the x-axis, and the mass flow q of gas through the orifice
is plotted along the y-axis. The calculations used the formula
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q =
cpΓr2

p
√

R0T0
Π

(
pp, ps

)
where cp = 0.85 the empirical coefficient of an orifice diaphragm [17], R0 = 287 m2/(c2 K) is the gas
constant, T0 = 293 K is the absolute temperature, Γ = 4.313 is the adiabatic constant of air [17].

It can be seen from Figure 3 that these curves have a complete qualitative and satisfactory
quantitative agreement. Therefore, the described method can be used to a first approximation in the
calculation of supports with an elastic orifice.

The discrepancy between the theoretical and experimental curves at large pressure drops (at large
deformations of the elastic orifice) can be explained by the fact that with an increase in the strain,
the error increases in the approximate formula (1), in Equations (2), (3), which do not take into account
the changes in the functions ψ and u in the height of the elastic orifice, as well as in relation (9) based
on Hooke’s law, which for rubber at large deformations gives a progressive error. At pressure drop
values from low to moderate the discrepancy is no more than 15%–20%, which is quite acceptable.
High values of the discrepancy appear only at excessively large differences, however, these modes are
not of interest, because in this case the acceptable load of the bearing is way too low.

When calculating the compensating effect of an elastic orifice, the dimensionless input parameters
varied in the region Ps ∈ [1.5, 6], Pp ∈ [1.01, Ps], Rp0 ∈ [0.05, 0.08], ∆ ∈ [0.1, 1.5], ε ∈ [10, 50], ν ∈ [0.45, 0.5].

Figures 4 and 5 shows the calculation results for the elastic orifice, showing that Rp substantially
depends on ∆ and ε and only slightly depends on ν.

The working radius Rp is an almost linear function of the differential pressure, therefore, it can be
approximated with the expression

Rp = Rp0
[
1−Ke

(
Ps − Pp

)]
(18)

where Ke is the elastic ratio of the orifice.
Graphs of Figures 4 and 5 and Equation (18) approximately determine the values of Ke. For the

curves corresponding to ε = 15, we have approximate Equation (18), which implies that Ke ≈ 0.95.
For the curves corresponding to ε = 30, a similar equation has the form 0.0119 ≈ 0.02(1− 1.2Ke), whence
it follows that Ke ≈ 0.34.
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4. Bearing Mathematical Model

To model the bearings presented on Figure 1, we used a mathematical model of motion of
a gas- static bearing with combined external throttling [23], which based on Reynolds differential
equation [3,17], describes the pressure distribution in a thin lubricating gap, and uses the position of
“continuous pressurization line” to replace discrete annular diaphragms with a continuous pressure
function on the line of their locations [28].

The model takes into account the difference regarding the input throttling resistance, which is an
elastic orifice. The dimensionless flow rate through this resistance is expressed by the formula

Qp = ApR2
pΠ

(
Ps, Pp

)
(19)

where the change in the radius of the passage of the elastic orifice is determined by formula (18).

4.1. Bearing Static Model

The static model will include two equations of equality of the flow rate Qp through the elastic
orifice and Qk through the damping annular diaphragms, the flow rates Qk and Qh at the entrance to
the bearing layer of the dimensionless thickness H, as well as the equation of force equilibrium of the
movable element 2, connecting the bearing capacity W and the load F to the movable element

Qp −Qk = 0,
Qk −Qh = 0,
W = F,

(20)

where
Qk = AkHΠ(Pp, Pk) (21)

Qh = Ah
(
P2

k − 1
)

(22)

W = π

R2
c (Pk − 1) + 2

1∫
Rc

R(P− 1)dR

 (23)

P(R) =

√(
P2

k − 1
) lnR
lnRc

+ 1 (24)
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Ah = −1/ ln Rc, Π is the Prandtl expiration function [23].
Obviously, the method of calculating the load characteristic H(F) used for conventional bearings,

in which the input value is convenient to use H and the output F = W, is not suitable in this case, since,
as will be shown below, this function can be multi-valued, i.e., several values of H may correspond to
one value of F. Moreover, for certain values of this variable, the value of F may not be found.

Therefore, a parametric method was used to determine the load F and the gap H, as a function of
pressure Pp

F = F(Pp), H = H(Pp).

When calculating the static characteristics, we used the boost pressure Ps, radius Rc, the tuning
factors of the combined external throttling system χ, and the elastic ratio of the elastic orifice Ke.

The method for calculating static characteristics includes

– determination of the “calculated point” parameters corresponding to the dimensionless thickness
of the bearing layer H = 1,

– calculation of flow rate Q(F) and load H(F) characteristics of the bearing.

In the “calculated point” mode, the coefficients Ak, Ap of expenses (21), (22) are determined.
First, we calculate the coefficient Ah and determine the pressure Pk, Pp, corresponding to the value of
the calculated clearance H = 1

Pk =
√

1 + χ
(
P2

s − 1
)
, Pp =

√
P2

k + ς
(
P2

s − P2
k

)
,

then we calculate the coefficients

Ak =
Qh

Π
(
Pp, Pk

) , Ap =
Qh

Π
(
Ps, Pp

) .

When calculating the flow and load characteristics, we sequentially set np pressure values
Pp ∈ [1, Ps] according to the formula Pp = 1 + ip(Ps − 1)/np, ip = 0, 1, . . . , np. For each of its values,
we can find the flow Qp according to formula (19).

The first two Equations (20) allow us to write a nonlinear equation for an unknown pressure
Pk ∈

[
1, Pp

]
in the form

AhH3
(
P2

k − 1
)
−Qp = 0 (25)

where

H =
Qp

AkΠ(Pp, Pk)
(26)

The solution of Equation (25) was found by the bisection method [27]. The integral in formula (23)
of the bearing capacity W was calculated by the Simpson rule [18].

Bearing compliance is determined by the formula

K = −
∂H
∂F

(27)

Equation (20) make it possible to establish the values of the elastic ratio Ke, at which the bearing
reaches zero compliance (K = 0).

To determine the compliance of the bearing, we give the load F a small perturbation ∆F.
The response will be disturbances ∆H, ∆Pk, ∆Pp, quantities H, Pk, Pp, respectively.

We write the system of Equation (20) with respect to disturbances in the matrix form
0 Ck 0

Chh Chk −Cp

Ckh Ckk Cd




∆H
∆Pk
∆Pp

 =


1
0
0

∆F (28)
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where

Ck =
∂W
∂Pk

, Chh = 3AhH2
(
P2

k − 1
)
, Chk = 2AhH3Pk, Ckh = AkΠ

(
Pp, Pk

)
, Ckk = AkH

∂Π(Pp,Pk)
∂Pk

,

Ckp = AkH
∂Π(Pp,Pk)

∂Pp
, Cp = Cp1 + KeCp2, Cp1 = ApR2

p
∂Π(Ps,Pp)

∂Pp
, Cp2 = 2ApRpΠ

(
Ps, Pp

)
.

Solving (28) by the Cramer rule [27], we obtain the formula for bearing compliance

K = −
∆H
∆F

=
Cp(Ckk −Chk) + ChkCkp

Ck
[
Cp(Ckh −Chh) + ChhCkp

] (29)

Using (29), it is possible to set the value of the elastic ratio Ke, at which the bearing has zero
compliance (K = 0). Most simply, this can be done for the "calculated point" mode H = 1. Using (19),
(20), (22), (29), we find

Rp =

√√√√AkΠ
(
Pp, Pk

)
ApΠ

(
Ps, Pp

) ,Cp =
ChkCkp

Chk −Ckk
,

Ke0 =
Cp −Cp1

Cp2

(30)

In calculations it is sometimes convenient to use an inverse relationship

Ke(K) =
1

Cp2

[ Ckp(Chk −KCkChh)

KCk(Ckh −Chh) + Chk −Ckk
−Cp1

]
(31)

It has been found that for relatively large Ke, the bearing can lose stiffness. This is the case when
the denominator (29) vanishes. It is easy to verify that this occurs when

Ked =
1

Cp2

Ckp

(
1−

Ckh
Chh

)−1

−Cp1

 (32)

Note that the critical value of the elastic ratio Ke calculated by formula (32) occurs when Rp > 0,
that is, when the orifice is still able to pass gas during deformation. It closes only when the pressure
drop is too large and Ke ≥

1
Ps−Pp

.

4.2. Static Characteristics of the Bearing and Their Discussion

Figure 6 shows the load characteristics H(F) of an elastic orifice bearing for different values of
elastic ratio Ke. All curves intersect at one point corresponding to the “calculated point” mode H = 1.
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It can be seen that with increasing Ke, the curvature of the lines changes significantly. When Ke = 0,
that is for the rigid orifice 3, the compliance of the bearing K is always positive. With increasing Ke in
some parts of the load characteristic, the compliance decreases to zero (K = 0), which corresponds to
infinite stiffness, and even a negative value (K < 0). So, at Ke = 0.22 and F ≈ 1.5, the bearing has zero
compliance. At Ke = 0.22, one can find the region 0.35 < F < 4.4, in which the bearing has negative
static compliance (K < 0).

Figure 7 shows graphs of expenditure flow rate dependencies Q(F). It is seen that with an increase
in the coefficient Ke, the nature of the curves changes sharply. Comparison of graphs Figures 6 and 7
shows that the less the compliance of the bearing, the lower the mass flow rate of air.Lubricants 2020, 8, x 11 of 20 
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Figure 8 shows the curves of the dependence of the static compliance K on the coefficient ς of the
setting of the damping annular diaphragms for the “calculated point” mode H = 1.
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This is explained by the fact that at low loads the pressure difference Ps − Pp is large, and as
follows from formulas (18), (19) for Ke > 0, the diaphragm radius Rp will be small, and, therefore, the
flow rate Qp will be small. As the load F increases, the pressure difference Ps − Pp decreases and,
consequently, the radius Rp and the flow rate Qp increase, thereby providing an additional supply of
lubricant to the bearing, which contributes to a more intensive decrease in bearing compliance K.
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An analysis of the curves shows that the dependences K(ς) for the modes of positive compliance
are monotonous in nature, while for zero and negative compliance they are unimodal in nature, where
the minimum of the dependencies falls on a certain value of ς. Moreover, the smaller this minimum,
the greater the corresponding ς.

Figure 9 shows the curves of the dependence of the elastic parameter Ke0 on the coefficient ς of
the tuning of the damping annular diaphragms for the “calculated point” mode H = 1, at which the
bearing has zero compliance. For smaller χ and ς, smaller Ke = Ke0 are required. At the same time,
when setting to too small χ, there may be no modes in which the bearing reaches zero compliance.Lubricants 2020, 8, x 12 of 20 
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Graphs of the dependence of the critical values of the elastic ratio Ked(ς), at which the bearing
loses its static stiffness, and, consequently, stability, are shown in Figure 10.
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The Ked values determined by formula (31) give the upper boundary on the admissible values of
the elastic ratio Ke = Ked. For Ke > Ked, the bearing is also statically unstable.
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5. Bearing Dynamic Model

The mathematical model of the bearing dynamics is based on a bearing motion model with
combined external throttling [23]. The only difference is that the formula for the deviation of the Laplace
transform of the gas flow through the throttling simple diaphragm is replaced with the corresponding
flow formula through the elastic orifice, which has the form

∆Qp = App∆Pp,

App = APRp

[
Rp

∂Π(Ps,Pp)
∂Pp

+ 2KeΠ
(
Ps, Pp

)]
where Rp, Pp are static parameters.

5.1. Method for Determining the Transfer Function Coefficients of Dynamic Bearing Compliance

In the calculations, a new method was used to determine the criteria for the quality of bearing
dynamics, the essence of which is described below.

The transfer function (TF) of the dynamic compliance of the bearing, as a system of automatic
control and regulation can be represented in the form

K(s) =
∆H

∆F
=

b0 + b1s + b2s2 + . . .+ bmsm

1 + a1s + a2s2 + . . .+ ansn (33)

where n > 0, m > 0, n > m, s is the Laplace transform variable [29].
The denominator (33) is the characteristic polynomial (CP) of a linear dynamic system with

distributed parameters, the use of which in the study of its dynamics quality allows us to determine the
stability margin and evaluate the system’s speed from the roots of the characteristic equation [18,29].

For a system with distributed parameters, it is necessary to use a method that would ensure its
presentation in the form (33) based on the calculation of the criteria of stability margin and speed of
devices with a predetermined accuracy.

The representation of the TF in the form of (33) falls under the classical problem of rational
interpolation [30], the solution of which, however, does not provide an exhaustive answer to the
question of the accuracy of the system stability criteria obtained by root methods using the characteristic
equation, because the value of the degree of CP is unknown in advance.

Existing methods of linear interpolation are based on solving a linear system of equations with
respect to coefficients (33), which contains n + m equations [30]. Such systems can be solved using
general methods, for example, the Gauss–Jordan method, which has a cubic order of complexity
(n + m)3 (hereinafter, the order of complexity of the computational method means the time complexity
of the algorithm that implements it [30,31]). For large n and m, this can entail a significant expenditure
of computer time in the process of multi-parameter optimization of a dynamic system.

This article presents a quick method to find the coefficients (33). It is based on solving systems
of linear equations of a special form of a substantially smaller order, which allows one to find their
solution using fast methods with a quadratic order of complexity m(n + m), which contributes to a
significant acceleration of the optimization procedure for dynamic systems. If it is required to find
only CP coefficients, then the order of complexity of the method is n2.

When conducting rational interpolation, the degrees n and m of polynomials (33) should be
known. However, their acceptable values can be obtained only on the basis of satisfactory accuracy in
determining the quality criteria of the dynamics of the system.

If it is impossible to determine the values of these parameters without calculating the mentioned
criteria, then finding their difference is not difficult.

Indeed, if an , 0 and bm , 0, then the infinite limit

spK(s)→
bm

an
, 0 (34)
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where p = n − m.
Usually, the difference p is calculated in several units, more often p = 1 or 2, therefore, you can

find this limit and p can be fast enough.
We set the value of m, define n = m + p and find the coefficient

b0 = K(0).

We rewrite (1) in the form

a1 + a2s + . . .+ ansn−1 + Γ(s)
(
b1 + b2s + . . .+ bmsm−1

)
= Λ(s)/s (35)

where
Γ(s) =

−1
K(s)

,Λ(s) = −b0 − Γ(s).

Equation (35) contains k = n + m unknown coefficients.
We calculate e = exp

(
−

2πi
k

)
, where i is the imaginary unit.

Put s1 = 1, and find s j = e s j−1, j = 2, 3, . . . , k Ψ j = K
(
s j
)
, Γ j = Γ

(
s j
)
, Λ j = Λ

(
s j
)
, j = 1, 2, . . . , k.

Note that s j = s∗k+1− j, j = 1, 2, . . . , k, therefore, K
(

sk− j+1

)
= K∗

(
s j
)
, it allows us to reduce the

computation and find Γ j, Λ j in [(k + 1)/2] access to the TF.
Substituting s = sj, (j = 1, 2, . . . , k) in sequence (35), we obtain a system of linear equations for

unknown coefficients (33)
Mx = y (36)

where

M =


s1 s1 s1 . . . Γ1s1 . . .
s1 s2 s3 . . . Γ2s1 . . .
s1 s3 s5 . . . Γ3s1 . . .
. . . . . . . . . . . . . . . . . .
s1 sk s1 . . . Γks1 . . .


,

x =


a1

a2

. . .
bm−1

bm


,y =


Λ1/s1

Λ2/s2

. . .
Λk−1/sk−1

Λk/sk


.

We represent the matrix of the system in the form

M = ΦU (37)

where U is the matrix, Φ is the matrix of the discrete Fourier transform [32]

Φi, j = S(i, j)

where
S(i, j) = s1+q((i−1)( j−1)), i = 1, 2, . . . , k− 1; j = 1, 2, . . . , k− 1,
q(x) = x mod k.

Its inverse matrix is determined by the formula

Φ−1
i, j =

1
k

S(i, j).
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Multiplying Φ−1 by (37), we bring the system (35) to the form

Ux = z (38)

where U = Φ−1M, z = Φ−1y.
For m > 0, the matrix U has a cellular structure of the form

U =

[
E C
0 D

]
.

where E and 0 are the identity and zero matrices of size n× n and m× n, C and D are Toeplitz matrices
of size n×m and m×m, respectively [31].

Indeed, the blocks of matrices Φ−1 and M cells are mutually inverse matrices of the discrete
Fourier transform, therefore, their product will give the identity matrix E. Elements of the block of cells
are obtained by multiplying the rows of the matrix Φ−1 and the columns of the matrix M, which are
also elements of the direct and inverse matrices Fourier transform. The sums of their products, giving
off-diagonal elements of the identity matrix, will be zeros by analogy with the way this holds for the
zero elements of the block E located above them.

The nature of the matrices A and B is explained by the fact that the elements of the columns of
the matrix M for j > n are formed by sums of products of displaced elements of the matrix Φ and the
elements of vector Γ that are different from unity. In such cases, their scalar products yield Toeplitz
matrices [31].

From Equations (37) and (38) it follows that for m > 0 the vector b of the coefficients of the TF (33)
satisfies the system of equations

Db = d (39)

where d is a vector.
Compared to the original Equation (35) of order k = n + m, Equation (39) has a significantly lower

order of m < k/2. Therefore, the solution for it can be obtained much faster.
Equation (39) is a standard problem with an asymmetric Toeplitz matrix of a special form [33],

which can be solved both using general methods, for example, the Gauss–Jordan method [34],
the complexity of which is proportional to m3, and using special fast methods taking into account the
features of Equation (39) and having complexity proportional to m2. The latter include the methods
described in [33,34].

Elements of the matrix C can be expressed in terms of the vector l

Ci, j = lq(k+i− j), i = 1, 2, . . . , n; j = 1, 2, . . . , m.

With this in mind, we can dispense with the matrix C and, using the solution of system (10),
quickly find the CP coefficients using the complexity nm formula

ai = li −
m∑

j=1

lq(k+i− j) b j, i = 1, 2, . . . , n.

With this in mind, the total complexity order of this method for finding the coefficients (33) is
m(n + m).

5.2. Quality Criteria for Bearing Dynamics

To assess the quality of the dynamics of linear systems, root criteria are often used [29]:

– degree of stability η = Max Re{si}, where si are the zeros of the characteristic polynomial of the
dynamical system, which is the polynomial denominator of the TF (33),
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– damping of oscillations over a period ξ = 100[1− Exp(−|2πβ/η|)]%, where β is the imaginary
part of the root of the characteristic equation with the largest real part.

The degree of stability η characterizes the speed of the system, that is, the rate of attenuation of its
free oscillations.

The criterion ξ of damping of oscillations over a period can be applied to the estimation of the
system stability margin. The smaller ξ, the greater the transient response will have an oscillation,
and the system will have a smaller margin of stability. It is believed that a dynamic system is well
damped if ξ ≥ 90% [29].

At the beginning, using the algorithm for calculating the values of the transfer function, the degree
difference is determined by the TF polynomial p = n − m based on (34).

Further calculations are carried out using the following iterative process.

Step 1. Put i= 1 and m = 1, η0 = inf, ξ0 = inf, where inf is a large number (for example, inf = 1010),
set the accuracy of determining the degree of stability εη and the damping of oscillations for
the period εξ.

Step 2. Calculate n = p + m and, after performing rational interpolation find the vector a of the
CP coefficients.

Step 3. Determine the roots of the characteristic equation, find among them the root with the largest
real part and calculate the criteria ηi and ξi.

Step 4. Verify that the iterative process converges to a solution∣∣∣ηi − ηi−1

∣∣∣ < εη,|ξi − ξi−1| < εξ.

Step 5. If conditions (12) are fulfilled, then the quality criteria of the system dynamics are determined
with the required accuracy, otherwise the process should be continued. To do this, increase the
values of the iteration counter i and degree m by one and go to step 2.

The method described above was used to calculate the quality criteria of the dynamics of the
bearing under consideration.

5.3. Bearing Dynamic Characteristics and Discussion

Among the parameters that do not affect the static characteristics, but affect the dynamic
characteristics of the bearing, are the “compression number” σ and the volume of the intermediate
cavity Vp [23]. The influence of these parameters is of particular interest, because they are a resource to
optimize the quality of a dynamic system.

Table 1 shows the results of bearing optimization according to the performance criterion, which
consisted in finding such pairs (σ, Vp) whose values deliver the maximum degree of stability η.
Optimization was carried out for the values of other input parameters: Ps = 5, Rc= 0.5, χ = 0.48, ς = 0.3,
H = 1. The parameter iK was varied, with the help of which the static compliance K was calculated by
the formula

K = iK·K0,

where K0 is the static compliance of the bearing corresponding to hard orifice 3 (Ke = 0). Corresponding
K values of the coefficient Ke were calculated by the formula (30).
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Table 1. Optimum bearing parameters.

iK K Ke η σ Vp

1.0 0.127 0 0.301 11.6 15.4

0.5 0.064 0.342 0.288 13.2 5.9

0 0 0.320 0.278 13.2 6.6

−0.5 −0.064 0.382 0.272 13.9 4.2

−1.0 −0.127 0.378 0.274 14.0 4.3

−1.5 −0.264 0.401 0.264 15.3 3.2

An analysis of the calculation results showed that for each set of source data there is exactly one
pair of values of the parameters σ, Vp that deliver the maximum performance criterion η. From Table 1
it follows that with a decrease in compliance, the optimal σ tends to increase, while the optimal Vp

tends to decrease. With an increase in Ke, the performance of the bearing decreases somewhat, but
it remains stable even with negative values of K that are in absolute value superior to those of a
conventional bearing (Ke = 0).

A detailed idea of the influence of the parameters σ, Vp on the degree of stability is given by the
graph curves of Figure 11, which are constructed for the same initial data and Ke = 0.32, at which the
bearing has zero static compliance (K = 0).
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The graphs confirm the conclusion that the dependences η(σ) and η(Vp) are extreme. It can be
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the value of the parameter σ at which the system reaches the stability boundary (η = 0).

For σ < σmin, the system is unstable, and for σ > σmin the stability region is divided into two parts
σmin < σ < σopt and σ > σopt, where σopt is the value of the parameter σ at which the function η(σ)
reaches its maximum.

It was found that in the first part of this region, the transient characteristics are always oscillatory
in nature, and in the second, they can be both oscillatory and aperiodic.

This follows from the analysis of graphs in Figure 12, where the dependences of the decay criterion
for the period ξ on the compression number σ are presented. For Vp < Vpopt, the criterion ξ indicates
the oscillatory nature of the transients (ξ < 100%), where Vp opt are the values of the parameter Vp at
which the function η(Vp) reaches its maximum. The graphs show that for Vp < Vp opt all the curves,
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regardless of the value of σ, indicate the vibration nature of the transients (ξ < 100%), for Vp > Vpopt

the transients become aperiodic (ξ = 100%). It is also seen that with an increase in Vp, the range of
aperiodicity of the transient characteristics expands, that is, an increase in the volume of Vp contributes
to an increase in the dynamic stability margin of the bearing as a dynamic system.
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The data obtained allow us to give recommendations on the choice of values of the parameters
σ and Vp. The values of σ and Vp should be considered the best, which are slightly larger than the
optimal σopt and Vpopt. For example, for the mode of zero static compliance K = 0, σ = 14 and Vp = 7
will be the best. In this case, the bearing will have close to maximum speed and an aperiodic nature of
the transition characteristics.

6. Conclusions

A mathematical model of statics and dynamics of a thrust gas-static bearing with an elastic orifice
was formulated, a model for the deformation of an elastic orifice and a method to calculate the radius
of its throttling diaphragm are proposed, a fast numerical method to calculate the quality indicators of
the dynamics of a linear system with distributed parameters was developed, methods for determining
the static and dynamic characteristics of the bearing were developed.

Calculations using the proposed model of elastic orifice deformation showed that its characteristics
have full qualitative and satisfactory quantitative agreement with the results of experiment [22].
The flaws of the model were revealed and it was concluded that the proposed model and the method
described can be used to a first approximation to calculate the radius of the supply diaphragm of the
elastic orifice. The results of the study of the deformation of the elastic orifice are the basis for the
model of the static and dynamic state of the bearing.

A formula was derived that allows one to calculate the value of the elastic ratio at which the
bearing reaches zero compliance, and a formula to calculate the value of this parameter, at which the
bearing loses its static stability.

The use of the fast numerical method to calculate the bearing dynamics quality criteria made it
possible to repeatedly increase the speed of the multi-parameter design optimization algorithm by
the performance criterion. A numerical experiment showed that, compared with the previously used
method, the speed of the algorithm increased by about 12 times.

It was shown that the use of an elastic orifice allows a multiple reduction of positive compliance of
the bearing, and also allows reduction of the compliance of the bearing to zero and even negative values.
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An analysis of the quality criteria of structural dynamics confirms that with an optimal choice of
the compression number σ and the volume of the inter-throttle chamber Vp of the throttle chamber,
the bearing can provide high speed and a guaranteed stability margin, while keeping the transition
characteristics non-oscillatory.
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Abbreviation

CP characteristic polynomial
E elastic modulus of the orifice material
f, F dimensional and dimensionless bearing loads
h, H dimensional and dimensionless gaps
K dimensionless bearing compliance
Ke dimensionless elastic ratio
n, m transfer function polynomial orders
pk, Pk dimensional and dimensionless air pressures at the exit of annular orifice plates
pp, Pp dimensional and dimensionless air pressures at the chamber 4
ps, Ps dimensional and dimensionless air supply pressures
Qh, Qp dimensionless mass flow rates
r, R dimensional and dimensionless radii
r1, R1 dimensional and dimensionless radii of arrangement of annular diaphragms
rp, Rp dimensional and dimensionless radii of elastic orifice diaphragm
rp0, Rp0 dimensional and dimensionless radii of elastic orifice
s Laplace transform variable
TF transfer function
u,U dimensional and dimensionless tensile functions of the middle surface of the elastic orifice
vp, Vp dimensional and dimensionless values of chamber 4
∆H, ∆F Laplace transformants of the deviation of dynamic functions from their static values
η degree of stability
ν Poisson’s ratio
ξ damping of oscillations over a period
Π Prandtl expiration function
σ “compression number”
ς coefficient of resistance adjustment of damping annular diaphragms
ϕ, Φ dimensional and dimensionless Airy stress functions
χ elastic orifice resistance adjustment coefficient
ψ, Ψ dimensional and dimensionless deflection functions
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