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Abstract: The aim of this paper was to propose a novel in silico mixed elasto-hydrodynamic
lubrication model with the purpose of wear prediction in Total Hip Replacements (THRs). The
model considers the progressive wear contribution in the calculation of the meatus filled by the
non-Newtonian synovial fluid. The results were referred to the gait cycle kinematics, calculated
by using musculoskeletal multibody software, while the loading was assumed by literature in vivo
measurements. The simulations allow evaluating the fluid and the contact pressure fields and the
acetabular cup wear over the time. The results were obtained considering a Ultra High Molecular
Weight PolyEthylene, UHMWPE, cup and were compared with results from the literature, showing a
good agreement in terms of total volume wear of the cup.

Keywords: tribology; total hip replacement (THR); musculoskeletal multibody system; in silico
model; mixed elasto-hydrodynamic lubrication (MEHL); wear

1. Introduction

Nowadays many people suffer of osteoarthritis, a joint disease caused by several factors, such
as aging, trauma or intense sport activities. The disturbance increases when the joint surfaces slide
excessively on each other, causing cartilage deterioration and, consequently, direct contact between the
bones, which could produce deformation, wear and pain.

A solution currently adopted is the replacement of the unhealthy joint with a prosthesis, an implant
made of biomaterials designed to improve stability, load capacity and mobility, and to guarantee
minimal friction and wear.

Examples of actual implants are represented by hip and knee artificial joints, which are the main
human joints replaced: several surgical strategies and techniques are adopted in terms of total or
partial replacements [1,2].

The implants can be viewed as complex tribological systems and for this reason the implant
activity produces wear. The duration is strictly connected to the wear rate of the joint, hence researchers
are currently focused on measuring or estimating it through experiments (in vitro), mainly by using
simulators. Nowadays, the scientific interest is rising around the possibility to obtain accurate
theoretical models in order to move toward the in silico approach for the analysis of the prosthesis
behavior in terms of wear [3–7].

Since the in vitro approach requires so much time and resources, even if it is a very accurate
modality in the framework of the phenomena prediction, a deep knowledge of the bio-tribology of
the implants is needed, so that numerical models could be built to simulate in a more and more
accurate way, in general and in a faster way with respect to the in vitro approach in particular, the
best combinations of materials and geometry in correspondence of generic loading conditions of the
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analyzed joint coming from the human daily activities (gait, running, climbing and so on) with the
purpose to optimize the bio-bearing tribological design especially for minimizing its wear rate.

The lubrication of a natural human synovial joint is a complex mix of elasto-hydrodynamic, full
film and boundary lubrication modes and it is still under investigation.

Regarding the artificial joint, the lubrication phenomenon can be analyzed by considering a
combination of Boundary Lubrication (BL), Mixed Lubrication (ML), Hydrodynamic Lubrication (HL)
and Elasto-Hydrodynamic Lubrication (EHL) depending on load and motion conditions [8,9].

The EHL is a particular case of the hydrodynamic mode characterized by the deformation of the
joint surfaces due to the high pressure reached in the gap, and it is typical of tribo-systems with a low
geometrical conformity and with low elasticity. The surfaces’ deformation due to the load allows the
survival of very low constant fluid film thickness, which contributes to minimizing the surfaces’ wear.

The synovial fluid pressure profile in this zone substantially follows the Hertzian pressure, and
the minimum film thickness is located at the exit of this area, causing the well-known pressure spike.
The combination of high load and low relative motion could lead to contact between the articulated
surfaces despite their deformation, so that in these contact areas the contact pressure rises and in this
case the regime is referred to as Mixed Elasto-Hydrodynamic Lubrication (MEHL).

Among the synovial joints, which are the human joints allowing the biggest range of relative
motion between the linked bones, one of the most important is the hip, which can be modeled as a
spherical joint linking the femur and the pelvis. Due to the hip anatomical position, the hip spherical
surfaces, namely the femoral head and the acetabular cup, have to bear a load greater than the body
weight during most daily activities.

Moreover, the wear phenomenon analysis in the hip joint is affected by several factors, and it
is difficult to identify the wear type that occurs within it [10], especially considering the different
biomaterials used in the Total Hip Replacement (THR), mainly polymers, metals and ceramics [11–14].

Since the MEHL lubrication problem is mostly approached by solving the Reynolds equation,
the introduction of surface deformation together with the dependence of some parameters on the
pressure and the contact areas brings with it a series of difficulties related to the high non-linearity of
the problem and to the transition between the full lubricated areas and the contact ones.

An important role is played by the model that evaluates the surfaces’ deformation starting from the
pressure field: some authors, as explained successively, used fast Fourier transform techniques based on
the Finite Element Method, FEM, models regarding mainly hard-on-hard pairs; other authors justified
the usage of easier models, like the constrained column one, when the prosthesis is a soft-on-hard
coupling [15–17].

In general, some authors developed models that are able to analyze the tribological performance
of artificial hip joints and interesting research studies have been found in the scientific literature.

In [18], the authors studied the effects of the fluid viscosity variation on the contact area regarding
a hip implant made of a UHMWPE acetabular cup and a metallic femoral head through a full numerical
methodology developed for the mixed lubrication mode, while in [6] a general tribological analysis
was conducted for spherical bearings with complex spherical-based geometry by using models to
simulate interesting tribological quantities like wear, regarding a mixed EHL regime.

In [7], the authors analyzed the variation of the contact pressure, the contact area and the
wear volume loss over several cycles regarding a metal-on-metal hip joint replacement through a
finite-element model coupled with Archard’s equation, validating the model with hip simulators’
experimental data.

The analysis of the transition between the full film lubricated areas and the contact ones is a critical
issue in mixed lubrication modeling. The simplest idea is represented by the introduction of a contact
model activating in the domain portion where the fluid film thickness is lower than a certain limit
chosen according to the boundary layer that appears in a tribological system when the two surfaces are
excessively pushed against each other, leading to the rising of the contact pressure, which, together
with the fluid pressure of the lubricated areas, contributes to the load support.
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Some techniques are based on the reduced Reynolds equation, FEM models or asperity contact
pressure models, and they are adopted by authors and available in the scientific literature [6,18–21].

In [22], an EHL simulation model was developed to analyze the tribological behavior of a
metal-on-metal hip implant subjected to steady-state and physiological loading and motion gait cycle
conditions by using the multi-grid method and the fast Fourier transform. The authors investigated
the contact area position within the cup and the distribution of the fluid film thickness in dependence
on the load components.

In [23], a full numerical analysis of the hydrodynamic lubrication problem was reported regarding
artificial hip joints made of hard materials, such as metal-on-metal or ceramic-on-ceramic, through
the Reynolds equation solved during walking conditions, in order to study the effects of the design
parameters like radii and clearance on the magnitude of the predicted film thickness and considering a
machined dimple on the acetabular cup in several positions.

Askari and Andersen, in [24], studied the hydrodynamic lubrication problem of hip implants
during gait, and developed a computational model based on multibody dynamics and the Reynolds
equation, considering the translational and rotational relative motion between femoral head and
acetabular cup, and investigating the main differences with respect to the case in which only rotational
motion is considered.

Jalali-Vahid et al., in [25], conducted a wide parametric analysis of the EHL problem of hip
joints made of a UHMWPE acetabular cup against metallic or ceramic femoral heads by solving the
Reynolds equation.

In [26], the authors considered the cyclic load and speed walking conditions in an EHL analysis
for the artificial hip joint replacements made of a UHMWPE cup against a hard femoral head, solving
the non-linear Reynolds equation and the elasticity equation through the Newton–Raphson method
and finding that the predicted minimum fluid film thickness stayed constant despite large angular
velocity and load changes.

In [27], an interesting EHL analysis was reported for metal-on-metal hip-resurfacing prostheses
under simple steady-state rotation, by solving the Reynolds equation with the finite difference method
and the elasticity equation with a finite element model, comparing the predicted minimum fluid film
thickness with the one calculated through the Hamrock and Dowson formula.

In [28], a general transient EHL model was developed for metal-on-metal artificial hip joints during
walking conditions using an equivalent discrete spherical convolution model and the corresponding
fast Fourier transform to evaluate the elastic deformation of the spherical bearing surfaces, investigating
the effects of the cup inclination angle and the lubricant viscosity on the prosthesis lubrication.

The aim of this paper is to build a novel numerical model able to solve a modified Reynolds
equation for a soft-on-hard artificial hip joint with a UHMWPE acetabular cup against a hard femoral
head (ceramic or metallic) in the case of a MEHL mode, taking into account:

- The progressive wear phenomenon in the lubricating gap calculation through a modified
Archard law;

- The non-Newtonian synovial fluid behavior through the cross-viscosity model;
- The cup surface deflection using a constrained column model.

In this paper, the model was used in the case of normal gait cycle, but it is adaptable to any hip
kinematics and loads conditions.

2. Materials and Methods

2.1. The Hip Joint during the Gait

The hip joint can be viewed as a spherical joint that links the pelvis and femur bodies, so it allows
three relative rotations defined in three axes:
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- The Flexion–Extension rotation (FE) around the Medio–Lateral axis (ML) perpendicular to the
sagittal plane;

- The Adduction–Abduction rotation (AA) around the Anterior–Posterior axis (AP) perpendicular
to the frontal plane;

- The Internal–External Rotation (IER) around the Proximo–Distal axis (PD) perpendicular to the
horizontal plane.

The lubrication analysis is performed in a reference frame xyz fixed at the cup center, with the x
and z axes lying at the cup edges and the y axis lying on the cup axis to form a right-hand reference
frame as shown in Figure 1 together with the three hip axes.
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Proximo–Distal axis.

During a certain relative motion, the hip is subjected to a contact force that is composed by its
three projections on the three hip axes.

Once the relative angular velocity vector ωhip and the contact force vector Nhip time data in the
hip joint reference frame are available [5] and defined in (1), it is necessary to rotate them in order to
study the lubrication in the cup reference frame. Nhip =

[
NAP NPD NML

]T

ωhip =
[
ωAA ωIER ωFE

]T (1)

The transformation is obtained in (2) by the rotation matrix Rc, which takes into account the inclination
angle αin, defined as the angle formed by the cup axis and the sagittal plane, and the anteversion angle
βav, defined as the angle between the cup axis projection on the sagittal plane and the AP axis.
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

Rx(α) =


1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)


Rz(γ) =


cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1


→ Rc = Rz

(
π
2
− βav

)
Rx(−αin) (2)

Finally, the vectors N and ω defined in the cup reference frame are obtained in (3).{
N = RT

c Nhip
ω = RT

c ωhip
(3)

The gait cycle is composed by the stance phase, starting when the heel strikes the ground and ending
when the toes leaves it, and by the swing phase, until the heel strikes the ground again [29].

Since the interest is to perform a tribological analysis during walking, the time data about the
angular velocity vector and the contact force vector during the gait cycle are needed.

OpenSim® software was chosen for the simulations allowing the calculation of the three hip
angles evolution during the gait cycle and the angular velocities, which are directly involved in the
lubrication analysis.

Regarding the contact force, the experimental measurements done by Bergmann through
instrumented implants [30] were used, considering them more realistic than the simulated ones.

Both the angular velocity vector and the Bergmann loads are referred to a single normal gait cycle
with a period of 1.1 s and to an average man with average body proportions, as shown in Figure 2.
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After the rotation, the definitive load and motion input needed for the lubrication analysis are
shown in Figure 3.
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2.2. The Modified Reynolds Lubrication Equation

Under the classical hypothesis and referring to the Figure 4, the dynamical equilibrium and the
mass one will lead to the Reynolds equation.
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The general Reynolds lubrication equation for a compressible fluid is given in (4), in which the
fluid pressure p depends on some parameters and inputs, such as the sliding effect and the squeeze
one on the right-hand side of the equation. The equation is integrated over a domain Ω closed by the
boundary pressure p0.
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 ∇·( f∇p) = ∇·(ρhv) + ∂(ρh)
∂t

p∂Ω = p0
, f =

ρh3

12µ
(4)

The dependence of the fluid density ρ on the fluid pressure [31] is written in (5) through the
Dowson–Higginson relationship. The density-pressure relation is typical of mechanical applications,
while the synovial fluid is generally considered uncompressible: at any rate the introduction of this
dependence in the model leads to taking into account the eventuality of this particular behavior, which
could be considered in case of faster physical activities; moreover, even if the density keeps a constant
value with a density–pressure relationship it will not affect the Reynolds equation nature and then
its solution.

ρ(p) = ρ0
aρ + bρp
aρ + p

(5)

The fluid viscosity µ is based on the Barus model [31], as in (6), with a modification that considers
an effective nominal viscosity µe f f in order to take into account the non-Newtonian behaviour of
the synovial fluid. Despite the fact that the Barus model was introduced for mechanical bearings
application, is interesting to implement it in the lubrication model because it can significantly affect the
synovial fluid viscosity during faster human physical activities (jumping or running): during the gait
cycle and for a soft-on-hard hip prosthesis the pressure levels reached in the gap are not able to make
the viscosity variation appreciable with respect to the pressure one.

µ(γ, p) = µe f f (γ)eαµp (6)

The effective viscosity, in (7), depends on the average shear rate γ, that is the ratio between the
sliding velocity vsl and the gap h through a Cross model, in order to consider the viscosity increase
due the synovial fluid protein aggregation effect in correspondence with low sliding velocity [10,32].
The introduction of the Cross model allows us to examine a wide range of biomechanical activities,
because it considers the synovial fluid shear thinning effect at low sliding velocity, up to a viscosity µ0,
and, on the other hand, returns a constant asymptotic viscosity µ∞ in correspondence of very high
sliding velocity, through the parameters k and n.

µe f f (γ) = µ∞ +
µ0 − µ∞

1 + kγn γ =
vsl
h

(7)

The gap h is composed, in (8), of the geometrical gap hg, depending on the particular pair
undeformed geometry and configuration, the surfaces’ elastic deformation δ and the linear wear uw

cumulated instant by instant. The geometrical gap hg together with the entraining velocity v are
characteristic of the particular joint, and their determination modifies the Reynolds equation adapting
it to the particular geometry and relative motion.

h = hg + δ+ uw (8)

The deformation δ, in (9), is composed of the fluid pressure deformation δ f , obtained by a
deformation model D, and the contact deformation δc, which is calculated by avoiding the overlap
between the surfaces. The overlap is considered if the fluid film thickness decreases below a boundary
layer limit ∆b, which depends on the protein layer adsorbed by the surfaces [10]. In particular, if,
in a specific zone of the domain, the fluid pressure p produces a surface deformation δ f not big
enough to guarantee the complete surfaces’ separation, the resulting overlapping is used to evaluate
another amount of deformation δc, namely the contact deformation, which rises in order to avoid the
surfaces’ interpenetration. δ f = D(p)

δc = max
{

0 ∆b −
(
hg + δ f + uw

) } → δ = δ f + δc (9)
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The calculation of the contact deformation leads to the determination of the contact pressure pc,
in (10), with the same deformation model inversion.

pc = D−1(δc) (10)

The deformation model adopted is the constrained column one, in (11), and it is justified, in case
of soft-on-hard pairs, by the low cup Young modulus with respect to the head one, which is considered
rigid, and it consists of a proportional dependence between the deformation and the pressure through
a spring constant kd defined by the cup geometrical and mechanical properties. Despite the polymeric
mechanical behavior being visco-elastic, the constrained column model provides a good approximation
of the soft acetabular cup deformation in this framework [15,17,25,26].

D(p) = kdp (11)

Then, the domain will be divided into lubricated areas and contact ones, so that the total pressure
pt, expressed as the sum of the two contributions in (12), will support the load on the joint.

pt = p + pc (12)

Moreover, the total pressure produces wear, together with the sliding velocity, through a modified
Archard model in which the wear rate τw is calculated, in (13), with a wear factor kw that, in dependence
on the λ ratio (the ratio between the gap h and the combined average roughness Ra), modifies the
intensity of the nominal wear factor kw0, so that the wear intensity takes into account the contact
severity [33–35]. In particular, the wear coefficient function kw is expressed as a negative power αw of
the lambda ratio, resulting in severe wear in those zones characterized by low film thickness, down to
the boundary layer thickness (contact areas, λ = ∆b/Ra), and in negligible wear in the other zones
characterised by film thickness that is much larger than the average roughness (lubricated areas, λ > 3).

kw = kw0

(
h

Ra

)−αw

→ τw = kwptvsl (13)

The wear rate obtained is integrated, in (14), instant-by-instant over the time t to calculate the
contribution of the linear wear uw to the gap.

uw =

∫ t

0
τwdt (14)

Once the total pressure pt is obtained, it is integrated into the domain’s area to find the load N,
and the same is done with the linear wear uw to evaluate the wear volume Vw, as written in (15).{

N(t) =
∫

ptdA
Vw(t) =

∫
uwdA

(15)

2.3. The Spherical Joint

Regarding a spherical joint, that is the hip case, the Reynolds equation is written in the cup
reference frame xyz, shown in Figure 5, and fixed to the cup center Oc with axes x and z lying on the
cup edges and axis y lying on the cup axis to form a right-hand reference frame.
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Then, the equation is written in spherical coordinates through the radial unit vector r̂ as a function
of the chosen spherical angles θ and ϕ written in (16).

r̂(θ,ϕ) =
[

sin(θ) cos(ϕ) sin(θ) sin(ϕ) cos(θ)
]T

0 ≤ θ,ϕ ≤ π (16)

The Reynolds equation written in spherical coordinates, coupled with the boundary pressure p0

on the cup edges, leads to the spherical Reynolds problem in (17).
sinθ ∂

∂θ

(
sinθ f ∂p

∂θ

)
+ ∂

∂ϕ

(
f ∂p
∂ϕ

)
= R sinθ

[
∂
∂θ (sinθρhUθ) +

∂
∂ϕ

(
ρhUϕ

)
+ R sinθ∂(ρh)

∂t

]
p(0,ϕ, t) = p(π,ϕ, t) = p0

p(θ, 0, t) = p(θ,π, t) = p0

(17)

The geometrical gap hg is calculated in (18) with the dimensionless eccentricity vector n and the
radial clearance c. {

c = R− r
n = e

c
→ hg(θ,ϕ, t) = c

(
1− n(t)T r̂(θ,ϕ)

)
(18)

The spring constant kd used for the constrained column model depends on the cup radius R, the
cup thickness H, the cup Young modulus E and Poisson ratio ν and is shown in (19).

kd =
R
[(

1 + H
R

)3
− 1

]
E
[

1
1−2ν +

2
1+ν

(
1 + H

R

)3
] (19)

Thus the fluid film thickness in the Reynolds equation is obtained in (20).

h(θ,ϕ, t) = hg(θ,ϕ, t) + δ(θ,ϕ, t) + uw(θ,ϕ, t) (20)

Since the cup is fixed with the reference frame, the velocity vP of a point P located by r̂ on the
cup is null, while the velocity vQ of a point Q on the head is composed of a translational part, due to
the time variation of the eccentricity e, and a rotational part, due to the head angular velocity vector
ω [24]. The two velocity vectors are defined in (21).
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{
vP(θ,ϕ, t) = 0
vQ(θ,ϕ, t) =

.
e(t) +ω(t) × [(R− h)r̂(θ,ϕ) − e(t)]

(21)

Thus the entraining velocity vector v is calculated as the arithmetic average of the P and Q
velocities, while the sliding velocity vector vsl is calculated as the difference between the P and Q
velocities, as written in (22).  v =

vP+vQ
2 =

vQ
2

vsl = vP − vQ = −vQ
(22)

In order to write the velocity vectors in spherical coordinates, they must be rotated by the mean of
the rotation matrix Rs, which depends on the spherical angles θ and ϕ shown in (23).

Ry(β) =


cos(β) 0 sin(β)

0 1 0
− sin(β) 0 cos(β)


Rz(γ) =


cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1


→ Rs = Rz(ϕ)Ry(θ)# (23)

The rotated entraining velocity vector in spherical coordinates vs is directly involved in the
Reynolds equation, and it is also useful to calculate the sliding velocity vector in spherical coordinates
vsl,s, as written in (24). vs = RT

s v = 1
2 RT

s

{ .
e +ω× [(R− h)r̂− e]

}
=

[
Uθ Uϕ Uρ

]T

vsl,s = −2vs
(24)

The norm of the sliding velocity vector in the contact plane vsl, defined in (25), will be used to
evaluate the wear rate τw and the average shear rate γ.

vsl =
√

v2
sl,s,θ + v2

sl,s,ϕ = 2
√

U2
θ
+ U2

ϕ (25)

Then, the Reynolds equation is numerically solved to find the total pressure field evolution
pt(θ,ϕ, t) for a given eccentricity n(t) and angular velocity ω(t) time functions. Once the total pressure
pt(θ,ϕ, t) is calculated, it can be integrated into the domain’s area to find load vector N(t), and the
same is done with the linear wear field uw(θ,ϕ, t) to evaluate the volume wear Vw(t), in (26).

N(t) =
π πs

0 0
pt(θ,ϕ, t)r̂(θ,ϕ)R2 sin(θ)dθdϕ

Vw(t) =
π πs

0 0
uw(θ,ϕ, t)R2 sin(θ)dθdϕ

(26)

2.4. Discrete Reynolds Equation

The spherical Reynolds problem in a MEHL regime is a non-linear Partial Differential Equation
(PDE), and it can be discretized on a grid domain, represented by the discrete spherical angles θi and
ϕ j, and solved for each time step tn by using the finite difference method [5,36], building the problem
in a Matlab® environment.

A grid domain is defined and shown in Figure 6.
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Once the grid domain is defined, the Reynolds equation can be written through its quantities in
each grid point in (27)[

sinθ
∂
∂θ

(
f sinθ

∂p
∂θ

)
+

∂
∂ϕ

(
f
∂p
∂ϕ

)]n

ij
=

{
R sinθ

[
∂
∂θ

(sinθρhUθ) +
∂
∂ϕ

(
ρhUϕ

)
+ R sinθ

∂
∂t
(ρh)

]}n

ij
(27)

In order to take into account the gap geometry update due to the progressive linear wear, the film
thickness is calculated in (28) considering the linear wear accumulated until the instant tn−1, so that the
gap depends on the pressure only through the deformation:

hn
ij = hg

n
ij + δn

ij + uw
n−1
i j (28)

A quantity involved in the problem, for example the fluid pressure p, evaluated in its discrete
form on the cross stencil is written in (29) as a vector ps of five elements.

ps =
[

pn
i−1, j pn

i, j−1
pn

ij pn
i, j+1 pn

i+1, j

]T
(29)

Evaluating all of the quantities involved in the equation on the cross stencil, after defining vectors
and matrices for the finite differences, like D2s, Dθs, Dϕs and dt, including, in (30), the products inside
the derivatives in the vectors uθs, uϕs and ut, the Reynolds equation is writeable, in (31), in each grid
point as a scalar non-linear equation RI

(
ps

)
made of products between vectors and matrices.

uθ = sinθρhUθ

uϕ = ρhUϕ

ut = ρh
(30)

fT
s D2sps −R sinθi

(
DT
θsuθs + DT

ϕsuϕs + R sinθidT
t ut

)
= RI

(
ps

)
= 0 (31)

Executing the derivatives with respect to the pressure cross stencil vector ps of the equation RI,
the row JR,I of the Reynolds equation’s Jacobian is obtained analytically.
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Firstly the velocity derivatives with respect to pressure together with the gap derivative are given
in (32). 

∂h
∂p = ∂δ

∂p = kd

∂vs
∂p = − 1

2 RT
s

[
ω×

(
∂h
∂p r̂

)]
=

[
∂Uθ
∂p

∂Uϕ

∂p
∂Uρ

∂p

]T

∂vsl
∂p = 4

vsl

(
Uθ

∂Uθ
∂p + Uϕ

∂Uϕ

∂p

) (32)

The derivatives in (32) are useful to find the ones referred to the average shear rate and to the
effective viscosity in (33). 

∂γ
∂p = 1

h2

(
∂vsl
∂p h− vsl

∂h
∂p

)
∂µe f f
∂γ = −knγn−1 µ0−µ∞

(1+kγn)
2

(33)

The fluid density and viscosity derivatives are given in (34).
∂ρ
∂p = ρ0aρ

bρ−1

(aρ+p)
2

∂µ
∂p =

∂µe f f
∂γ

∂γ
∂p eαµp + αµµ

(34)

Finally the derivatives of the term that directly compare in the Reynolds equation are calculated
in (35). 

∂ f
∂p =

∂ρ
∂p

h3

12µ + ∂h
∂p
ρh2

4µ −
ρh3

12µ2
∂µ
∂p

∂uθ
∂p = sinθ

(
∂ρ
∂p hUθ + ρ∂h

∂p Uθ + ρh∂Uθ
∂p

)
∂uϕ
∂p =

∂ρ
∂p hUϕ + ρ∂h

∂p Uϕ + ρh
∂Uϕ

∂p
∂ut
∂p =

∂ρ
∂p h + ρ∂h

∂p

(35)

Hence the Jacobian row JR,I associated to the scalar equation RI is obtained in (36).

pT
s D2s

∂fs
∂ps

+ fT
s D2s −R sinθi

(
DT
θs
∂uθs
∂ps

+ DT
ϕs
∂uϕs
∂ps

+ R sinθidT
t
∂ut
∂ps

)
= JR,I

(
ps

)
= ∂RI

∂ps

(36)

Closing the equation set with the ones associated to the boundary conditions, the Reynolds
equation set R and its analytic Jacobian JR are obtained in (37).

R(p) = 0 JR(p) =
∂R
∂p (37)

Then, the Newton method with relaxation is used to find the fluid pressure vector p. Starting
from an initial trial pressure p(0), in correspondence with each k iteration, the updated pressure p(k) is
subjected to the cavitation constraint so that it cannot be negative. The iterative method, explained in
(38), runs until the defined residual becomes lower than a chosen tolerance tolp.

p(0)

while res(k) > tolp
p(k+1) = max

[
0 p(k)

− λrJ−1
R

(
p(k)

)
R
(
p(k)

) ]
res(k+1) =

∑
I

∣∣∣∣p(k+1)
I −p(k)I

∣∣∣∣∑
I p(k)I

(38)

The relaxation factor λr is chosen as a function of the current eccentricity vector norm |nn
|, because

it has been seen that the problem requires a greater under-relaxation for a higher eccentricity vector
norm for numerical convergence purposes. The function used in (39) enforces a gradual exponential
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under-relaxation over the unitary norm eccentricity vector through chosen parameters ur and τr, and it
is shown in Figure 7.

λr
(∣∣∣nn

∣∣∣) = 1−

 0 i f |nn
| ≤ 1

(1− ur)
(
1− e−

|nn
|−1
τr

)
i f |nn

| > 1
(39)
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When the Newton cycle has reached the convergence, the total pressure pt
n
i j found is used to

evaluate the linear wear, in (40), that will be elaborated in the gap calculation at the successive time step.

uw
n
ij = uw

n−1
i j + τw

n
ij∆t (40)

Finally, the MEHL problem block diagram is clarified in Figure 8.
The MEHL Reynolds equation solution needs eccentricity and angular velocity to find pressure,

while in general the eccentricity is unknown and the aim is to find it while taking advantage of the
known load.

In order to solve the inverse problem, a further Newton iterative cycle is used: starting from a
trial eccentricity n(0), the updated eccentricity n(h) is evaluated so that the calculated loads N

(
n(h)

)
converge to the reference ones Nre f by setting to zero the function F defined in (41).

F(n) = N(n) −Nre f = 0 (41)

The Jacobian JF of the function F is built in the numerical way, in (42), by means of a small arbitrary
increment defined by ε.

JF(n) =
∂F
∂n

[JF]i j =
∂Fi
∂n j
�

Fi
(
n j(1 + ε)

)
− Fi

(
n j

)
εn j

(42)
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The iterative cycle on the eccentricity, shown in (43), runs until a defined residual becomes lower
than a chosen tolerance tolN.

n(0)

while res(h) > tolN
n(h+1) = n(h)

− J−1
F

(
n(h)

)
F
(
n(h)

)
res(h+1) =

∣∣∣F(n(h))
∣∣∣∣∣∣Nre f

∣∣∣
(43)

The inverse MEHL problem block diagram is explained in Figure 9.
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3. Results and Discussion 
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3. Results and Discussion

In this paragraph the results of the simulation regarding the gait cycle are shown. The input data
are represented by the Bergmann loads and the angular velocity vector is shown in Figure 3, while the
parameters used for the simulation are listed in Table 1 and are comparable with the ones found in the
literature and referenced in the table.

The first result shown in Figure 10 is the time evolution of the dimensionless eccentricity vector
n(t) components during the gait. In Figure 10 it is important to note that the y component of the
eccentricity is the main component responsible for the contact between the surfaces, especially in the
stance phase of the cycle, because of the combined action with the other two components, while the
squeeze action is mostly due the x and z components.

The total pressure pt(θ,ϕ, t) and the gap h(θ,ϕ, t) fields are shown in two different time instants
in order to analyze a full film lubrication phase of the cycle, at 1.43% of the gait, and a mixed one, at
92.9%, in which the coexistence and the transition between the lubricated areas and the contact ones
are visualized.

Firstly, the surface plots for the full lubrication phase are shown in Figure 11. As expected, the peak
pressure is located in the domain portion characterized by small gap supported by the deformation.
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Table 1. Simulation input parameters.

Parameter Value

Acetabular cup inclination angle αin 45
◦

[10]
Acetabular cup anteversion angle βav 90

◦

Femoral head radius r 14 mm [10]
Radial clearance c 100 µm [10]

Acetabular cup thickness H 9.5 mm [15]
Acetabular cup Young modulus E 1 GPa [10]

Acetabular cup Poisson ratio ν 0.4 [10]
Barus model exponential factor αµ 19.8·10−9 Pa−1 [31]

Cross model upper limit viscosity µ0 40 Pa s [32]
Cross model lower limit viscosity µ∞ 9 mPa s [32]

Cross model parameter k 9.54 [32]
Cross model parameter n 0.73 [32]

Synovial fluid nominal density ρ0 850 kg/m3

Density model parameter aρ 5.9·108 Pa [31]
Density model parameter bρ 1.34 [31]

Boundary pressure p0 0 Pa
Boundary layer thickness ∆b 30 nm [19,35]

Roughness Ra 0.1 µm [10]
Nominal wear factor kw0 10−7 mm3/N/m [10]

Archard model exponential factor αw 2.24 [34]
Spherical domain mesh density 100× 100

Time domain steps number 70
Pressure tolerance tolp 10−5

Load tolerance tolN 10−2

Relaxation parameter ur 0.2
Relaxation parameter τr 0.2

Increment for the numerical Jacobian ε 10−4
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Figure 11. (a) Pressure field in the full film lubrication phase; (b) gap field in the full film
lubrication phase.

The same instant is then represented in the following plots in Figure 12, where the pressure pt and
the gap h are shown in the θ and ϕ directions in the correspondence of the domain point (θmax,ϕmax),
where the pressure peak is reached.
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Regarding the instant characterized by a mixed lubrication phase, the same surface plots are
shown in Figure 13, in which a sudden interruption of the film thickness h(θ,ϕ) decrease is seen where
it reaches the boundary layer thickness ∆b: in this zone the pressure pt(θ,ϕ) follows the rules of the
deformation model depending on the amount of contact deformation.
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The same instant is analyzed in Figure 14 with the plots along the θ and ϕ directions in
correspondence with the domain point (θmax,ϕmax), which is characterised by the peak pressure: in
these plots the coexistence of the lubricated area and the contact one can be seen in a better way.
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It is interesting to follow over time the maximum pressure pmax(t) and the minimum gap hmin(t)
evolution in Figure 15, in order to evaluate the magnitude order of the pressure reached in the coupling
and to analyze the phases characterized by the contact: during the gait cycle, the analyzed pair is
almost always in a mixed lubrication phase, while the pure full film lubrication (full film existence on
the whole surface) is experienced only in the first instants of the gait characterized by a fast decrease of
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the gap towards the boundary layer thickness ∆b; hence after about the 7% of the gait cycle there was a
coexistence of lubricated areas and contact ones and the load was supported by both fluid pressure
and contact pressure in some locations of the domain, which can be clearly visualized in subsequent
figures; the maximum pressure qualitatively follows the most critical load components’ time trend; it
reaches a peak value of 10.46 MPa at about 16% of the cycle and it almost reaches this value again in
the second phase of the stance period at about 47% of the gait.
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Figure 15. Maximum pressure and minimum gap evolution during the gait cycle.

Figure 16 shows the fields of fluid pressure p and contact pressure pc on the acetabular cup surface.
The instants analyzed are referred to the time interval from about 12% of the cycle to 24%, during the
stance phase, when the minimum film thickness has just reached the boundary thickness and the high
fluid pressure is gradually replaced by the contact one during the transition (Supplementary Video S1).
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Figure 16. (a–d) Fluid pressure transition from the full film lubrication phase to the mixed one; (e–h)
contact pressure transition from the full film lubrication phase to the mixed one.

The resulting total pressure pt, together with the sliding of the surfaces, causes the wear of the
coupling and the gradual removal of material. In Figure 17 the linear wear field uw is shown, together
with the total pressure, along the gait cycle in four instances between about 12% and 98% of the gait, in
order to visualise the growth of the material removed by the surfaces (Supplementary Video S2).
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The linear wear 𝑢௪ at the end of the cycle is then shown in Figure 18 in order to give an idea of 
the amount of worn material during a gait cycle. Together with the linear wear, which turned out to 
have a magnitude order comparable with the nanometers, the trajectory of the pressure peak is 
shown, from the red cross to the blue square, which could be evaluated as the contact point track on 
the acetabular cup surface. It can be seen that the contact point track initially keeps its position around 
the Proximo-Distal axis, which is the most loaded direction during the stance phase; it then moves to 
the cup center during the swing phase and finally returns to its initial position. 
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The linear wear uw at the end of the cycle is then shown in Figure 18 in order to give an idea of
the amount of worn material during a gait cycle. Together with the linear wear, which turned out
to have a magnitude order comparable with the nanometers, the trajectory of the pressure peak is
shown, from the red cross to the blue square, which could be evaluated as the contact point track on
the acetabular cup surface. It can be seen that the contact point track initially keeps its position around
the Proximo-Distal axis, which is the most loaded direction during the stance phase; it then moves to
the cup center during the swing phase and finally returns to its initial position.
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A focus on the contact point track is shown in the spherical angles θ and ϕ plane in Figure 19.
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The surface integration of the linear wear uw(θ,ϕ, t) field evolution allows evaluating the wear
volume Vw(t) trend during the gait, as shown in Figure 20. The resulting wear volume is practically
null in the initial full film lubrication phase; it then grows with a big slope during the stance phase and
then the slope decreases toward the swing phase.
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Since the linear wear and thus the worn volume turned out to be small, it can be assumed that the
geometry of the surface varies proportionally with time at least during the first million cycles, which is
considered to be the amount of cycles executed by an average man in a year: thus a volumetric wear
rate Vw,r can be obtained in (44) by multiplying the last value of the wear volume Vw, f at the end of the
cycle by the number of cycles ncyc done in a year.

Obviously, this assumption is valid for the first million cycles: the wear phenomenon over a
million cycles was studied by other researchers, for example [37,38], through experimental in vitro
wear tests, and it can be seen that the worn material grows proportionally with the cycles for 1–1.5
million cycles with a certain slope (running-in phase) and then the slope decreases reaching a constant
value (steady-state phase). Since the obtained volumetric wear rate Vw,r is referred to as the running-in
phase, it can be intended as an indicator of the prosthesis performance in terms of duration.

Vw,r = Vw, f ncyc = 27.35
mm3

year
(44)
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The volumetric wear rate value obtained is comparable with the ones found in the literature and
scientific reviews. In particular, the value is close to the ones found by [10,38–40] even if the latter
refers to retrieved metal on metal hip replacements.

With reference to the pressure and gap profiles of Figure 12, the results showed that the classical
asymmetrical shape between the inlet zone and the cavitation one was not pronounced for the used set
of the prosthesis parameters and for the particular kinematical and loading data: this is probably due
to the low entity of the relative sliding motion with respect to the squeezing one.

In fact, the mentioned asymmetrical shape is characteristic of purely mechanical application in
which the sliding effect is amplified by the much higher angular velocity between the components.

Then, in order to see the EHL features, another simulation was conducted with simplified inputs,
described in Equation (45). In particular, the following were considered:

- Only the time evolution of the y component of the dimensionless eccentricity n from 0 to 1.1 over
0.1 s;

- Only the time evolution of the z component of the angular velocity ω as a constant value equal to
500 rad/s, so that a faster relative sliding motion was considered.

n =


0

1.1 t
0.1

0

 ω =


0
0

500

 rad
s

(45)

With this set of inputs, the results can be analyzed in the rotation plane xy characterized by
θ = π/2 and 0 ≤ ϕ ≤ π. Moreover, while all the parameters used are the same reported in the Table 1,
a sensitivity analysis on the radial clearance c was performed in the range from 80 to 140 µm, because
it represents one of the parameters that most affect the performance of a lubricated joint.

The results are shown in Figure 21 in terms of pressure, gap and linear wear profiles in the
rotation plane.
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with different radial clearance values.

Firstly, the classical EHL shapes were visualized, in particular the growth of the pressure along the
inlet zone, which takes place over a greater area than the one covered by the pressure fall-off towards
the cavitation zone; then the minimum film thickness was localized at the exit of the deformation zone.

The effect of the radial clearance increase led the pressure profile to increase and to become more
localized around the deformation zone, and this is due to the decrease of geometrical conformity
between the surfaces’ curvatures. The pressure rise kept the gap thickness almost constant, while the
resulting wear became greater, as expected.
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In Figure 22 the load x and y components are shown against the radial clearance: the y component
increased with the radial clearance as expected, because of the pressure growth, while the x component
decreased because the pressure bell moved towards the cup center in correspondence with the radial
clearance increase, so that the area covered by the high pressure is centered around the y axis.
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4. Conclusions

This paper proposed a novel numerical model with the purpose of analyzing in silico the MEHL
of an artificial hip joint in the case of soft-on-hard prosthesis and to predict the implant wear during
the gait.

The model was used to analyze the tribological configuration of an artificial hip joint, made of a
UHMWPE acetabular cup against a rigid (metallic or ceramic) hard femoral head, subjected to the
gait cycle loading and motion conditions, represented by the in vivo load measurements achieved by
Bergmann [30] and the angular velocities calculated by using the musculoskeletal software OpenSim®

during a normal gait cycle.
The proposed model is based on MEHL conditions during the gait, also considering the synovial

fluid compressibility through the dependence of its density on the pressure, the viscosity dependence
on the pressure by using the Barus model, and the shear-thinning non-Newtonian behavior in the Cross
formulation. The solution was achieved by using a novel convergence algorithm based on two iterative
cycles solved by the relaxed Newton iterative method, which includes the surfaces’ progressive wear
phenomena during the time.

The performed simulations allowed the calculation of gap thickness, fluid/contact pressure and
acetabular cup stress/strain during the gait, and were able to predict the volumetric wear rate of the
prosthesis. In particular:

- The profiles and the shapes of the analyzed quantities are in good agreement with the scientific
literature [10,18,26];

- The predicted volumetric wear is in good agreement with the values found in other researches in
the same framework ([10,38–40]);

- The simulation conducted in the framework of the radial clearance sensitivity analysis showed
the expected tribological behavior in terms of classical EHL shapes.

Even if the results obtained are satisfactory, of course the proposed model is improvable in order
to characterize the prosthetic tribological performance in a more and more accurate way. Future
researches will be devoted mainly to:
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- Build a finite element model to calculate the deformation field of both acetabular cup and femoral
head, in order to analyze the tribological behavior of other types of THRs in which both contact
bodies must be considered deformable;

- Consider the surfaces’ topography in the gap calculation in order to analyze a more realistic
surface in the mixed lubrication mode and also to consider material transfer phenomena;

- Improve the wear modeling in order to consider more specific wear modes, such as, for example,
delamination effects.
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Nomenclature

FE, AA, IER Flexion–Extension, Adduction–Abduction, Internal–External Rotation
ML, AP, PD Medio–Lateral, Anterior–Posterior, Proximo–Distal hip axes
x, y, z Cartesian axes
N Load vector
ω Angular velocity vector
αin, βav Acetabular cup inclination angle and anteversion angle
Rxi (θ) Rotation matrix for a rotation θ around the xi axis
Rc Rotation matrix from the hip reference frame to the cup one
p Fluid pressure
h Fluid film thickness
ρ Fluid density
ρ0 Nominal fluid density
aρ, bρ Dowson–Higginson coefficients
µ Fluid viscosity
µe f f Effective nominal viscosity
αµ Barus exponential coefficient
µ0, µ∞ Cross viscosities in correspondence of 0 and theoretically∞ shear rate
k, n Cross viscosity model parameters
γ Average shear rate
hg Geometrical gap
δ Total surfaces’ deformation
δ f , δc Deformation due to fluid pressure and contact deformation
uw Linear wear
∆b Boundary layer thickness
pc Contact pressure
pt Total pressure
τw Wear rate
kw, kw0 Wear factor function and nominal wear factor
αw Modified Archard model exponential coefficient
Ra Average roughness
Vw Wear volume
θ, ϕ Spherical angles
t Time
r̂ Radial unit vector
r, R Femoral head and acetabular cup radii

http://www.mdpi.com/2075-4442/8/7/72/s1
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c Radial clearance
H Acetabular cup thickness
E, ν Acetabular cup Young modulus and Poisson coefficient
kd Constraint column model constant
p0 Boundary pressure
e, n Eccentricity vector and its dimensionless form
v, vsl Entraining and sliding velocity vectors
Rs Spherical rotation matrix
i, j, n Finite difference subscripts
p Discretized pressure vector
R, JR Discretized Reynolds equation vector and its analytical Jacobian matrix
λr, ur, τr Relaxation factor and its parameters
res, tol Iterative cycles residual and tolerance
F, JF Load difference function vector and its numerical Jacobian matrix
Vw,r Volumetric wear rate

References

1. Pramanik, S.; Agarwal, A.K.; Rai, K. Chronology of total hip joint replacement and materials development.
Trends Biomater. Artif. Organs 2005, 19, 15–26.

2. Carr, A.J.; Robertsson, O.; Graves, S.; Price, A.J.; Arden, N.K.; Judge, A.; Beard, D.J. Knee replacement. Lancet
2012, 379, 1331–1340. [CrossRef]

3. Jin, Z.; Yonggang, M.; Yuanzhong, H.; Jianbin, L. In Memoriam: Duncan Dowson (1928–2020). Friction 2020,
8, 1–3. [CrossRef]

4. Fisher, J.; Dowson, D. Tribology of total artificial joints. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1991, 205,
73–79. [CrossRef]

5. Ruggiero, A.; Sicilia, A. Lubrication modeling and wear calculation in artificial hip joint during the gait.
Tribol. Int. 2020, 142, 105993. [CrossRef]

6. Wang, F.; Wang, L.; Sun, M. Tribological modelling of spherical bearings with complex spherical-based
geometry and motion. WIT Trans. Eng. Sci. 2010, 66, 3–15.

7. Harun, M.; Wang, F.; Jin, Z.; Fisher, J. Long-term contact-coupled wear prediction for metal-on-metal total
hip joint replacement. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2009, 223, 993–1001. [CrossRef]

8. Dumbleton, J.H. Tribology of Natural and Artificial Joints; Elsevier: Amsterdam, The Netherlands, 1981.
9. Nordin, M.; Frankel, V.H. Basic Biomechanics of the Musculoskeletal System; Lippincott Williams & Wilkins:

Philadelphia, PA, USA, 2001.
10. Mattei, L.; di Puccio, F.; Piccigallo, B.; Ciulli, E. Lubrication and wear modelling of artificial hip joints: A

review. Tribol. Int. 2011, 44, 532–549. [CrossRef]
11. Zivic, F.; Affatato, S.; Trajanovic, M.; Schnabelrauch, M.; Grujovic, N.; Choy, K.L. Biomaterials in Clinical

Practice: Advances in Clinical Research and Medical Devices; Springer: Berlin, Germany, 2017.
12. Affatato, S.; Ruggiero, A.; Merola, M. Advanced biomaterials in hip joint arthroplasty. A review on polymer

and ceramics composites as alternative bearings. Compos. Part B Eng. 2015, 83, 276–283. [CrossRef]
13. Merola, M.; Affatato, S. Materials for hip prostheses: A review of wear and loading considerations. Materials

2019, 12, 495. [CrossRef]
14. Aherwar, A.; Singh, A.K.; Patnaik, A. Current and future biocompatibility aspects of biomaterials for hip

prosthesis. AIMS Bioeng. 2015, 3, 23–43. [CrossRef]
15. Jalali-Vahid, D.; Jagatia, M.; Jin, Z.; Dowson, D. Prediction of lubricating film thickness in a ball-in-socket

model with a soft lining representing human natural and artificial hip joints. Proc. Inst. Mech. Eng. Part J J.
Eng. Tribol. 2001, 215, 363–372. [CrossRef]

16. Wang, F.; Jin, Z. Prediction of elastic deformation of acetabular cups and femoral heads for lubrication
analysis of artificial hip joints. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2004, 218, 201–209. [CrossRef]

17. Jalali-Vahid, D.; Jin, Z.; Dowson, D. Elastohydrodynamic lubrication analysis of hip implants with ultra high
molecular weight polyethylene cups under transient conditions. Proc. Inst. Mech. Eng. Part C J. Mech. Eng.
Sci. 2003, 217, 767–777. [CrossRef]

http://dx.doi.org/10.1016/S0140-6736(11)60752-6
http://dx.doi.org/10.1007/s40544-020-0360-9
http://dx.doi.org/10.1243/PIME_PROC_1991_205_271_02
http://dx.doi.org/10.1016/j.triboint.2019.105993
http://dx.doi.org/10.1243/13506501JET592
http://dx.doi.org/10.1016/j.triboint.2010.06.010
http://dx.doi.org/10.1016/j.compositesb.2015.07.019
http://dx.doi.org/10.3390/ma12030495
http://dx.doi.org/10.3934/bioeng.2016.1.23
http://dx.doi.org/10.1243/1350650011543600
http://dx.doi.org/10.1243/1350650041323331
http://dx.doi.org/10.1243/095440603767764417


Lubricants 2020, 8, 72 26 of 26

18. Wang, F.; Jin, Z. Lubrication modelling of artificial hip joints: From fluid film to boundary lubrication
regimes. In Proceedings of the Engineering Systems Design and Analysis, Manchester, UK, 19–22 July 2004;
pp. 605–611.

19. Wang, F.; Brockett, C.; Williams, S.; Udofia, I.; Fisher, J.; Jin, Z. Lubrication and friction prediction in
metal-on-metal hip implants. Phys. Med. Biol. 2008, 53, 1277. [CrossRef]

20. Zhu, D.; Hu, Y.-Z. The study of transition from elastohydrodynamic to mixed and boundary lubrication.
STLE/ASME HS Cheng Tribol. Surveill 1999, 150–156.

21. Zhu, D. On some aspects of numerical solutions of thin-film and mixed elastohydrodynamic lubrication.
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2007, 221, 561–579. [CrossRef]

22. Gao, L.; Wang, F.; Yang, P.; Jin, Z. Effect of 3D physiological loading and motion on elastohydrodynamic
lubrication of metal-on-metal total hip replacements. Med. Eng. Phys. 2009, 31, 720–729. [CrossRef]

23. Jin, Z.; Dowson, D. A full numerical analysis of hydrodynamic lubrication in artificial hip joint replacements
constructed from hard materials. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1999, 213, 355–370.
[CrossRef]

24. Askari, E.; Andersen, M. A modification on velocity terms of Reynolds equation in a spherical coordinate
system. Tribol. Int. 2019, 131, 15–23. [CrossRef]

25. Jalali-Vahid, D.; Jagatia, M.; Jin, Z.; Dowson, D. Prediction of lubricating film thickness in UHMWPE hip
joint replacements. J. Biomech. 2001, 34, 261–266. [CrossRef]

26. Jalali-Vahid, D.; Jin, Z. Transient elastohydrodynamic lubrication analysis of ultra-high molecular weight
polyethylene hip joint replacements. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2001, 216, 409–420.
[CrossRef]

27. Udofia, I.; Jin, Z. Elastohydrodynamic lubrication analysis of metal-on-metal hip-resurfacing prostheses.
J. Biomech. 2003, 36, 537–544. [CrossRef]

28. Wang, F.; Jin, Z. Transient elastohydrodynamic lubrication of hip joint implants. J. Tribol. 2008, 130, 011007.
[CrossRef]

29. Kharb, A.; Saini, V.; Jain, Y.; Dhiman, S. A review of gait cycle and its parameters. IJCEM Int. J. Comput. Eng.
Manag. 2011, 13, 78–83.

30. Bergmann, G.; Bender, A.; Dymke, J.; Duda, G.; Damm, P. Standardized loads acting in hip implants. PLoS
ONE 2016, 11, e0155612. [CrossRef]

31. van Leeuwen, H. The determination of the pressure–viscosity coefficient of a lubricant through an accurate
film thickness formula and accurate film thickness measurements. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
2009, 223, 1143–1163. [CrossRef]

32. Gao, L.; Dowson, D.; Hewson, R.W. A numerical study of non-Newtonian transient elastohydrodynamic
lubrication of metal-on-metal hip prostheses. Tribol. Int. 2016, 93, 486–494. [CrossRef]

33. Archard, J.; Hirst, W. The wear of metals under unlubricated conditions. Proc. R. Soc. Lond. Ser. A Math.
Phys. Sci. 1956, 236, 397–410.

34. Gao, L.; Dowson, D.; Hewson, R.W. Predictive wear modeling of the articulating metal-on-metal hip
replacements. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 497–506. [CrossRef]

35. Gao, L.; Hua, Z.; Hewson, R.; Andersen, M.S.; Jin, Z. Elastohydrodynamic lubrication and wear modelling of
the knee joint replacements with surface topography. Biosurface Biotribol. 2018, 4, 18–23. [CrossRef]

36. Jagatia, M.; Jin, Z. Elastohydrodynamic lubrication analysis of metal-on-metal hip prostheses under steady
state entraining motion. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2001, 215, 531–541. [CrossRef] [PubMed]

37. Yan, Y.; Neville, A.; Dowson, D. Biotribocorrosion—An appraisal of the time dependence of wear and
corrosion interactions: I. The role of corrosion. J. Phys. D Appl. Phys. 2006, 39, 3200. [CrossRef]

38. di Puccio, F.; Mattei, L. Biotribology of artificial hip joints. World J. Orthop. 2015, 6, 77. [CrossRef] [PubMed]
39. Mattei, L.; di Puccio, F.; Ciulli, E. A comparative study of wear laws for soft-on-hard hip implants using a

mathematical wear model. Tribol. Int. 2013, 63, 66–77. [CrossRef]
40. Bergiers, S.; Hothi, H.; Richards, R.; Henckel, J.; Hart, A. Quantifying the bearing surface wear of retrieved

hip replacements. Biosurface Biotribol. 2019, 5, 28–33. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/0031-9155/53/5/008
http://dx.doi.org/10.1243/13506501JET259
http://dx.doi.org/10.1016/j.medengphy.2009.02.002
http://dx.doi.org/10.1243/0954406991522310
http://dx.doi.org/10.1016/j.triboint.2018.10.019
http://dx.doi.org/10.1016/S0021-9290(00)00181-0
http://dx.doi.org/10.1243/0954406021525205
http://dx.doi.org/10.1016/S0021-9290(02)00422-0
http://dx.doi.org/10.1115/1.2806200
http://dx.doi.org/10.1371/journal.pone.0155612
http://dx.doi.org/10.1243/13506501JET504
http://dx.doi.org/10.1016/j.triboint.2015.03.003
http://dx.doi.org/10.1002/jbm.b.33568
http://dx.doi.org/10.1049/bsbt.2017.0003
http://dx.doi.org/10.1243/0954411011536136
http://www.ncbi.nlm.nih.gov/pubmed/11848385
http://dx.doi.org/10.1088/0022-3727/39/15/S10
http://dx.doi.org/10.5312/wjo.v6.i1.77
http://www.ncbi.nlm.nih.gov/pubmed/25621213
http://dx.doi.org/10.1016/j.triboint.2012.03.002
http://dx.doi.org/10.1049/bsbt.2018.0034
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	The Hip Joint during the Gait 
	The Modified Reynolds Lubrication Equation 
	The Spherical Joint 
	Discrete Reynolds Equation 

	Results and Discussion 
	Conclusions 
	References

