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Abstract: Usually, roughness destroys adhesion and this is one of the reasons why the
“adhesion paradox”, i.e., a “sticky Universe”, is not real. However, at least with some special type
of roughness, there is even the case of adhesion enhancement, as it was shown clearly by Guduru,
who considered the contact between a sphere and a wavy axisymmetric single scale roughness, in the
limit of short-range adhesion (JKR limit). Here, the Guduru’s problem is numerically solved by using
the Boundary Element Method (BEM) with Lennard–Jones interaction law, which allowed us to explore
the contact solution from the rigid to the JKR limit. It is shown that adhesion enhancement stops either
for low Tabor parameter, or by large waviness amplitudes, due to the appearance of internal cracks
within the contact patch. We do not seem to find a clear threshold for “stickiness” (complete elimination
of adhesion), contrary to other recent theories on random roughness. The enhancement effect is well
captured by an equation in terms of the Johnson parameter derived by Ciavarella–Kesari–Lew, and is
much larger than the Persson–Tosatti enhancement in terms of increase of real contact area due to
roughness. The Persson–Tosatti energetic argument for adhesion reduction seems to give a lower
bound to the effective work of adhesion.
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1. Introduction

Adhesion is a challenging topic in tribology [1–3] with relevance in several engineering
applications that range from biomimetics [4], soft matters [5], soft robots [6], grippers [7], friction [8–12].
Although roughness is usually responsible for adhesion reduction [13–15], Briggs and Briscoe [16]
showed already in 1977 that relatively small random roughness amplitude could enhance adhesion
in pull-off experiments as well as relative rolling resistance by a factor up to 2.5. Later, Guduru [17]
showed that in the contact between a rigid sphere and a soft halfspace with an axisymmetric
single wavelength waviness, adhesion could be enhanced by a factor up to 20 with respect to the
Johnson–Kendall–Roberts smooth case ([18], JKR in the following). The enhancement was first modeled
theoretically by Guduru [17] and then proved experimentally by Guduru and Bull [19]. The basic
assumptions of the Guduru [17] model are that (i) the contact area is simply connected (there are
no circular grooves within the contact patch) and that (ii) the halfspace is constituted by a soft
material (elastomer or rubber) hence adhesion can be simply modeled by JKR theory [18]. Loading
and unloading a rigid sphere from the wavy surface leads to several jump instabilities and related
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dissipation, which is responsible for the measured enhancement. Kesari et al. [20] showed that if
the roughness wavelength is substantially shorter than the sphere radius, then an envelope solution
can be obtained, which describes well the loading-unloading hysteretical behavior well known to
experimentalists (see also Kesari and Lew [21]).

Waters and coauthors in [22] developed a Maugis–Dugdale cohesive model, still based on the
assumption of simply connected contact area, to account for the transition between the rigid and JKR
limit. They showed that toughening and strengthening of the interface was mostly restricted to the
JKR regime, while, in the rigid limit, they found the Bradley [23] solution for the smooth rigid sphere.
Ciavarella [24] further discussed the assumptions of the Guduru model and the conclusions of Waters
and coauthors [22]. In particular he noticed that for hard solids (i.e., in the rigid limit) the axisymmetric
roughness should reduce the macroscopic adhesion by orders of magnitude with respect to the
smooth sphere limit. Ciavarella [24] supported his argument by considering the Rumpf–Rabinowich
model ([25–27]), which geometry is analogous but not equal to that of Guduru and is used for adhesion
of hard particles (the model neglects the elastic deformation). The Rumpf–Rabinowich model predicts
that increasing the substrate roughness the macroscopic adhesion force first decreases and then
increases again. Ciavarella [24] suggested that the Guduru and the Rumpf–Rabinowich models may be
respectively close to an upper and a lower bound for macroscopic adhesion of rough bodies (see also
Ciavarella [28]).

In this paper, we reconsider the geometry of Guduru [17] and obtain a closed form solution for
the rigid limit, which clearly shows that increasing the waviness amplitude A reduces the macroscopic
adhesion force by orders of magnitude. By using the axisymmetric Boundary Element Method (BEM)
the contact problem is solved with Lennard–Jones interaction law, for varying waviness amplitude
A and wavelength λ and for different Tabor parameters of the sphere µ, without the restrictive
assumption of a compact contact area. Numerical results are well in agreement with the theory both
in the rigid and in the JKR limit. The transition from one regime to the other is numerically studied
using the BEM code. In the JKR regime adhesion enhancement is well captured by the Johnson
parameter as derived by Ciavarella–Kesari–Lew [21,24], and is much larger than the Persson–Tosatti
enhancement [13] in terms of increase of real contact area due to roughness. It is shown that at large
Tabor parameters µ (> 3), increasing A first leads to adhesion enhancement as predicted by Guduru
theory [17], but then strongly reduces the macroscopic adhesive force due to the appearance of internal
cracks. We found that for A/λ & 10−1 the JKR solution greatly overestimates the pull-off force and the
hysteretical dissipation.

2. Guduru Contact Problem

JKR Theory

Guduru [17] considered the contact between a rigid sphere of radius R that indents and elastic
halfspace (Young modulus E, Poisson ratio ν) with an axisymmetric waviness of wavelength λ and
amplitude A (see Figure 1).

In the system of reference shown in Figure 1, the axisymmetric waviness has the form

y(r) = −A
(

1− cos
(

2πr
λ

))
(1)

where r is the radial coordinate. Using the Hertzian approximation for the spherical profile [29] one
gets the gap function

f (r) =
r2

2R
+ A

(
1− cos

(
2πr

λ

))
(2)

Guduru [17] solved the adhesive contact problem under the assumptions of compact contact
area (i.e., there are no axisymmetric grooves within the contact patch) and in the limit of short range
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adhesion [18], which requires soft bodies into contact with large surface energy. Ensuring the contact
area is compact requires that the gap function is strictly monotonically increasing

d f (r)
dr

> 0, r > 0 (3)

which for the gap function (2) implies
λ2

AR
> 8.5761 (4)

Figure 1. The geometry of the axisymmetric contact problem. A rigid sphere of radius R indents an
elastic halfspace with an axisymmetric waviness of wavelength λ and amplitude A. The sphere is
approximated by a Hertzian profile.

Nevertheless, condition (4) is too restrictive. Indeed, Guduru [17] analysis holds at detachment if
one requires that the normal load is increased from 0 to a value such that the contact radius a gets larger
than a critical radius rc = 2πAR/λ for which the gap function is strictly monotone and any partial
contact within the contact patch has coalesced. To this end it is evident from Johnson [30] analysis
(strictly speaking that was a 2D problem) that a simply connected contact area would be achieved

also when condition (4) is violated provided that the so-called “Johnson parameter” αKLJ =
√

2λwc
π2 A2E∗

is sufficiently high to ensure spontaneous snap into full contact. By using three different solution
approaches Guduru [17] obtained that the JKR adhesive solution for the geometry in Figure 1 can be
written in dimensionless form as

W1 = 4β
[

2a3

3 + α
(

4π2a3

3 + πa
2 H1 (2πa)− π2a2H2 (2πa)

)]
W = W1 − 4

√
βa3

∆ = a2 + απ2aH0 (2πa)−
√

a
β

(5)

where the following dimensionless parameters have been defined

α =
AR
λ2 , β =

λ3E∗

2πwcR2 , W =
W

πwcR
, ∆ =

∆R
λ2 , a =

a
λ

, (6)

and Hn (·) is the Struve function of order n, E∗ = E/
(
1− ν2) is the composite elastic modulus, wc is

the surface energy per unit area, W is the external load, W1 is the normal load in the adhesiveless
problem and ∆ is the remote approach (>0 when the punch approaches the halfspace, see also [22]).
Inspection of Equation (5) reveals that the Guduru problem, in the JKR regime, depends on two
dimensionless parameters {α, β}: α represents the degree of waviness of the surface, with large (small)
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α implying high (low) amplitude waviness, while β can be interpreted as the ratio between the elastic
and the surface energy, with large (small) β implying a stiff (compliant) material [22]. For α = 0 the
classical sphere-flat JKR solution is retrieved

W = 4β
2a3

3
− 4
√

βa3 (7)

∆ = a2 −
√

a
β

(8)

3. Numerical Solution

3.1. Axisymmetric BEM Formulation

In the previous section the JKR solution of the Guduru contact problem was briefly summarized.
Several variants of the Guduru contact problem have been studied by different authors [20–22,24,28],
nevertheless all of them assume full contact within the contact patch (a simply connected contact area).
To overcome this limitation an axisymmetric Boundary Element Method (BEM) was developed
assuming that the rigid sphere and the wavy halfspace interacts with a Lennard–Jones interaction law
(LJ in the following, see Figure 2a)

σ (h) = −8wc

3ε

[( ε

h

)3
−
( ε

h

)9
]

(9)

where σ is the traction (σ > 0, when compressive), h is the gap and ε the equilibrium distance
(the maximum tensile stress σ0 = − 16wc

9
√

3ε
takes place at separation h = 31/6ε). BEM contact codes that

use the LJ interaction law have been derived previously by several authors to solve contact problems
similar to the one tackled here. For example Wu [31] solved the adhesive contact problem between
a sphere and a longitudinal wavy surface, while Medina and Dini [32] studied the problem of an
adhesive sphere squeezed against a rough substrate. Notice that other BEM solution strategies exist
that are based on energy minimization [33,34].

The contact problem considered is equivalent to the case of a “rough” axisymmetric rigid Hertzian
indenter squeezed against an elastic halfspace (Figure 2b). The Guduru gap function is written as

h = −∆ + ε +
r2

2R
+ A

(
1− cos

(
2πr

λ

))
+ uz (r) (10)

where ∆ > 0 when the Hertzian profile approaches the halfspace and uz (r) is the deflection of the
elastic halfspace (see Figure 2b).

Figure 2. (a) Lennard–Jones interaction law. (b) Equivalent representation of the considered contact
problem in the undeformed configuration (grey lines) and after applying a certain remote displacement
∆ (black lines).
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For axisymmetric frictionless contact problems [35,36]

uz (r) =
1

E∗

∫
σ (s) G (r, s) sds (11)

where σ (s) is the pressure distribution, G (r, s) the Kernel function

G (r, s) =

{
4

πr K
( s

r
)

, s < r
4

πs K
( r

s
)

, s > r
(12)

and K (k) the complete elliptic integral of the first kind of modulus k.
After surveying the Literature on the topic [31–37], we developed an axisymmetric BEM inspired

by the works of Greenwood [35] and Feng [36]. Assume the radial domain is discretized with
N elements, so that we have M = N + 1 discretization points. To solve Equation (10) on a discrete
domain, one needs to determine the elastic deflection uz (r) . A problem arises in evaluating the
integral (11) as the kernel function G (r, s) is singular in s = r. The common approach is to discretize
Equation (11) assuming that the pressure σ (s) has a simple form over a discrete element. To this end,
the simplest approach is to assume that the pressure is constant over each element. Nevertheless,
Greenwood [35] reported that this method may lead to suspicious results, particularly in the regions
with strong pressure gradients and suggested using the method of the overlapping triangles [29],
for which the pressure σ (s) has a triangular form. Hence the deflection at point ri due to a triangular
pressure distribution being pj at r = rj and falling linearly to 0 at r = rj−1 and r = rj+1 is

uz (ri) = uz,i =
1

E∗
Gij pj (13)

where we have solved numerically the integral in Equation (11) to obtain Gij once for all. Notice that
the kernel function singularity at ri = rj−1 and ri = rj+1 is canceled by the pressure being 0 in rj−1
and rj+1, instead, for the singular point ri = rj, we considered a pressure equal to −pj at rj−1 and rj+1
rising linearly at 0 at rj superimposed to a constant pressure ring, equal to pj, in between the radii rj−1
and rj+1 for which the displacement field is known analytically (see Appendix A). By defining the
following quantities

H = h/ε− 1; u =
r
Γ

; L =
λ

Γ
; P =

pµε

wc
; Γ =

(
R2wc

E∗

)1/3

; (14)

Equation (10) is written for the normalized gap Hi (H vanishes for h = ε) at each node i as:

Hi = −∆† +
1
2

µu2
i + A†

(
1− cos

(
2πu

L

))
+ µ

N

∑
j=1

G
′
ijPj (15)

where µ =
(

Rw2
c

E∗2ε3

)1/3
is the Tabor parameter, ∆† = ∆/ε, A† = A/ε, G

′
ij = Gij/Γ and

Pj = −
8
3

µ

[
1(

Hj + 1
)3 −

1(
Hj + 1

)9

]
(16)

All the results that will be presented below were obtained using N = 500 discretization
elements with a constant element size, which proved to be sufficient for obtaining converged
solutions up to a Tabor parameter µ = 5. Lower values of µ did not require such a mesh
refinement, nevertheless, to avoid confusion, the same discretization was used along all the paper.
Unless differently stated, in all the simulations the overall domain length was set equal to the sphere
radius rmax = R = 100ε. The numerical code was implemented in MATLAB. Similarly to Feng [36] an
efficient pseudo-archlength continuation scheme was implemented [38], which is needed to follow the
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system solution branches. Furthermore, to make the numerical solution of the nonlinear system of
Equation (15) faster to solve, the system Jacobian was provided analytically to the numerical solver
(“fsolve” in MATLAB) that implements a Newton–Raphson scheme.

3.2. Validation of the Numerical Results

First to assess the correctness of the numerical implementation, the BEM results are validated
against those provided by Feng [36]. In Figure 3 the dimensionless normal load

W =
W

πwcR
=

2Γ2

µRε

+∞∫
0

P(u)udu (17)

is plotted as a function of the dimensionless approach −∆† for µ = [1, 2, 3]. Markers refer to the data
reported by Feng [36] (its Figure 3) while the solid black lines were obtained numerically using the
BEM presented here. Red dots stand for the Bradley [23] rigid solution, which is compared to the
numerical solution (solid black line) obtained with µ = 0.01. All the curves are in perfect agreement.

-2 0 2 4 6 8

-2

-1.5

-1

-0.5

0

0.5

1

Figure 3. Dimensionless normal load W as a function of the approach −∆† for µ = [1, 2, 3] as reported
by Feng [36] (markers) and as obtained here numerically (solid black line). Red dots show the
Bradley [23] rigid solution, which is compared to the numerical solution (solid black line) obtained
with µ = 0.01.

Figure 4 shows the pull-off force
∣∣W∣∣pull−o f f (panel (a)) and the approach −∆†

∣∣
pull−o f f (panel (b))

at pull-off as a function of µ (the pull-off force Wpull−o f f is defined as the minimum of the W(∆†) curve).
Blue stars have been obtained from Feng [36], while red squares have been obtained using the BEM
developed here. The results we obtained for both load and approach at pull-off compare very favorably
with those in [36].
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Figure 4. (a) Pull-off force
∣∣W∣∣pull−o f f and (b) approach − ∆†

∣∣
pull−o f f at pull-off as a function of the

Tabor parameter µ = [10−2, 5]. Red squares were obtained with the presented Boundary Element
Method (BEM) scheme, while blue asterisks were obtained from Feng [36].

4. Rigid Limit

The majority of the authors, who have tackled the Guduru contact problem, have focused their
attention on the JKR limit, where it was clear since the early papers by Guduru [17] and Guduru
and Bull [19] that substantial enhancement could be obtained, with few exceptions, as the works of
Waters [22] and that of Ciavarella [24]. Waters et al. [22] developed a Maugis–Dugdale cohesive model
for the Guduru problem that showed adhesion enhancement is mostly limited to the JKR regime.
The cohesive model clearly depended on an additional parameter with respect to the JKR model,
the Tabor parameter µ. Strictly speaking, Waters et al. [22] used the parameter introduced by
Maugis [39], which anyway differs only by a small multiplicative factor from µ. Waters et al. [22]
analysis showed that for small µ the pull-off detachment force converged to the Bradley rigid solution
for the sphere, i.e.,

∣∣WB
∣∣ = 2. Nevertheless, this holds only for a smooth sphere in contact with a flat

halfspace. For example, let us assume λ ≈ R ≈ A, then the pull-off force in the rigid regime could be
estimated by considering the contact between the first crest of the halfspace waviness and the sphere.
The radius of curvature of the crest is

R2 =
λ2

4π2 A
≈ R

4π2 (18)

and the composite radius

R∗ =
(

1
R
+

4π2

R

)−1

≈ R
4π2 (19)

hence the pull-off force of the sphere would be reduced by about factor 1/4π2 ∼ 0.025. Indeed,
using the Rumpf–Rabinowicz model [25–27] Ciavarella [24] recognized this. Although analogous to
the Guduru problem, the Rumpf–Rabinowicz model refers to a different geometry. It considers the
contact between a large sphere of radius R and a rigid small hemisphere of radius r2 placed on a rigid
plane (see Figure 5).
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Figure 5. Left panel: simplified sketch of the Rumpf–Rabinowicz model. Right panel: simplified sketch
of the Guduru model.

Two competitive mechanisms for adhesion take place: while the radius of the hemisphere increases
macroscopic adhesion increases due to the interaction with the hemisphere but decreases as the rigid
plane gets further away from the countersurface, which, using r2 = λ2

4π2 A , can be written as [24]

∣∣W∣∣pull−o f f =
1

1 + 4π2α
+

1(
1 + R†

4π2α

)2 (20)

where R† = R/ε. Similar mechanisms are expected to be at play in the Guduru problem.
Assume that the rigid sphere and the wavy halfspace interact with a Lennard–Jones interaction

law (9). From Equation (15), neglecting the elastic deformations, the dimensionless interfacial gap is

H (θ) = −∆† + A†
[

θ2

8π2α
+ (1− cos (θ))

]
(21)

where θ = 2πr
λ has been introduced. Using Equations (16) and (17) the total load is

Wrigid =
2π

πwcR

+∞∫
0

σ(H)rdr = − 4A†

3π2α

+∞∫
0

[(
1

H (θ) + 1

)3
−
(

1
H (θ) + 1

)9
]

θdθ (22)

which clarifies that at a given approach ∆† the rigid solution depends only on two parameters
{

α, A†}.
Notice that for a smooth sphere-flat contact one can use in the first integral of Equation (22)

dH = r
R dr and obtain that the rigid solution depends only on the adhesion energy and not on the

shape of the potential. This cannot be done for the Guduru gap function, which implies that the
Guduru rigid solution will be slightly affected by the shape of the interaction law used.

In Figure 6 the loading curves are shown for log10 α = [−4,−2,−1, 0, 1] and A† = 1. The solid
black lines are the theoretical predictions based on Equation (22), while the red markers have been
obtained numerically using the BEM with µ = 10−4. Numerical and theoretical predictions are in
perfect agreement, with the curve log10 α = −4 corresponding to the Bradley [23] rigid solution for the
smooth sphere (Equation (22))

WB

(
∆†
)
= −2

(
4
(
∆† − 1

)6 − 1

3 (∆† − 1)8

)
(23)

The curves dimensionless normal load W versus dimensionless approach −∆† plotted in Figure 6
show that the pull-off force is not monotonically decreasing with α and that the critical approach at
detachment is close to ∆† ' 0 only for the smallest values of α. Figure 7 shows the pull-off force
as a function of α for log10 A† = [−3,−0.5, 0, 1, 2, 4] (solid lines obtained as the minimum of (22),
while red markers obtained numerically

(
µ = 10−4)). All the curves start at small α from the Bradley

rigid solution
∣∣∣WB,pull−o f f

∣∣∣ = 2 (smooth sphere), while increasing α the pull-off force decays and,
after a transition zone around α ≈ 1, reaches a limit value at large α. It is shown that at large α
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and A† the pull-off force can decrease by more than three orders of magnitude with respect to the
smooth case. To allow a comparison the predictions of the Rumpf–Rabinowicz model are reported
for log10

(
R†) = [0, 1, 2, 3, 4] (blue dashed lines in Figure 7). First notice that, while the rigid limit

of the Guduru problem depends on
{

α, A†}, the Rumpf–Rabinowicz model depends on
{

α, R†}.
Both the models show a similar decay with α, but they give two different limits for large α. In the
Rumpf–Rabinowicz model, a large α implies a very small hemisphere (R/r2 = 4π2α), hence the case
of a large sphere interacting with a smooth plane is retrieved. In the rigid Guduru model, A† and
λ† = λ/ε are not coupled, hence increasing α leads to a vanishing wavelength of the sinusoid but does
not affect A†, which gives the observed adhesion reduction.

-1 0 1 2 3 4

-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure 6. Loading curves for the rigid model. Solid lines have been obtained from Equation (22),
while red markers are numerical solutions for µ = 10−4. The curves are obtained for log10 α =

[−4,−2,−1, 0, 1] and A† = 1.

-4 -3 -2 -1 0 1 2 3

10
-2

10
-1

10
0

10
1

Figure 7. Pull-off force as a function of the parameter α (log scale) obtained using the rigid solution of
the Guduru model (Equation (22), solid black line) and the Rumpf–Rabinowicz model (Equation (20),
blue dashed line), while red squares are numerical solutions for µ = 10−4. For the Guduru rigid model
the curves are obtained for log10 A† = [−3,−0.5, 0, 1, 2, 4], while for the Rumpf–Rabinowicz model
log10(R†) = [0, 1, 2, 3, 4].
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5. Numerical Results

5.1. Effect of the Tabor Parameter

In the previous subsections we have discussed two limits of the Guduru contact problem: the JKR
and the rigid limit. Here the transition from one limit to the other is investigated numerically by
using the BEM introduced in Section 3.1. Figure 8 shows the pull-off force as a function of the Tabor
parameter µ for λ† = 20, and A† = [0.1, 1, 10]. Small waviness amplitude A† = 0.1 (red circles)
slightly perturbs the solution of the smooth sphere. Indeed at low Tabor parameter the pull-off
force is equal to

∣∣W∣∣pull−o f f ≈ 1.75, while at higher µ it gets slightly larger than 1.5. In all the range
between µ = 0.01 and µ = 5 the pull-off force remains in between the rigid and JKR values (2 and 1.5
respectively). Increasing the waviness amplitude by a factor 10 (A† = 1, green squares) completely
changes the picture. Figure 8 shows that there exist three distinct regimes: (i) the rigid, (ii) the transition
and (iii) the JKR regime. The pull-off force remains very small and equal to the rigid limit (dot-dashed
line) up to µ ≈ 0.25, then starts to increase up to about

∣∣W∣∣pull−o f f ' 3.2 for µ ≈ 1 and for µ > 1
tends to the JKR limit (Equation (5), dashed line). By further increasing the waviness amplitude leads
to smaller pull-off forces not only in the rigid limit, but also at large Tabor parameters µ. We have
indicated in Figure 8 that at µ ' 5 the JKR prediction of the pull-off force is

∣∣W∣∣pull−o f f ' 20,

while numerical results give
∣∣W∣∣pull−o f f ' 1.1.

10
-1

10
0

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 8. Pull-off force
∣∣W∣∣pull−o f f (absolute value) as a function of the Tabor parameter µ for

λ† = 20, R† = 100 and A† = [0.1, 1, 10] , respectively red circles, green squares and blue triangles.
Dot-dashed lines mark the rigid limit (22) whil dashed lines the Johnson–Kendall–Roberts (JKR) limit
(5). For A† = 10 at µ = 5 the JKR limit would give

∣∣W∣∣pull−o f f ' 20.

Figure 9 shows respectively the dimensionless gap H (a) and the corresponding tractions P (b)
for λ† = 20, A† = 1 and µ = [0.15, 0.67, 5] (respectively solid, dotted, dot-dashed line) and A† = 10,
µ = 5 (dashed line) at the pull-off point. Focusing on the three curves corresponding at A† = 1
one recognizes that at low Tabor parameter (µ = 0.15) the maximum tensile force is reached when
the sphere first touches the waviness crest, while for high Tabor parameter (µ = 5, pink dot-dashed
line) the typical pressure spike appears at the boundary of the contact patch. In the intermediate
regime (µ = 0.67) the maximum pull-off force is reached when the second crest first touches the sphere.
Nevertheless, the material is too rigid to deform and the gap remains large at the first throat providing
small adhesive tractions. It is useful to compare the solutions obtained for

(
µ, A†) = (5, 1) with those

for
(
µ, A†) = (5, 10) . In the latter case Figure 8 showed that JKR theory highly overestimates the

pull-off force obtained numerically. Indeed, Figure 9 shows that the contact patch is clustered on the
waviness peaks and axisymmetric grooves (internal cracks) appear, which destroy the well known
enhancement mechanism of the Guduru geometry.
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Figure 9. (a) Dimensionless gap H and (b) dimensionless tractions P versus the radial coordinate r/ε

at the pull-off point for λ† = 20, R† = 100 and varying µ and A† (for both panels please refer to the
legend placed in panel (b)).

To better study the effect of the waviness amplitude A†, Figure 10 shows the dimensionless
pull-off force in absolute value as a function of the ratio A/λ for λ† = [5, 20, 30, 50], R† = [50, 100, 200]
and for a fixed µ = 3 (see legend therein). For each value of λ Equation (5) was used to determine the
pull-off force predicted by the JKR model (dashed black lines), while numerical results obtained with
BEM are reported with markers (see legend in Figure 10). For amplitude to wavelength ratio below
A/λ . 10−1 the numerical simulations and the theoretical results are in very good agreement. For very
small waviness amplitude the JKR result for the smooth sphere is obtained

(∣∣W∣∣pull−o f f = 1.5
)

,

while increasing A/λ adhesion enhancement takes place up to
∣∣W∣∣pull−o f f ≈ 10 for λ† = 50. It appears

that longer wavelengths foster adhesion enhancement. For A/λ & 10−1, the pull-off force suddenly
decreases and, for larger

∣∣W∣∣pull−o f f , decays approximately with a power law, without showing a
clear threshold for “stickiness” (complete elimination of adhesion), contrary to other recent theories on
random roughness [40,41]. It is shown that the sphere radius markedly influences the pull-off decay,
but, in the parametric region explored, it slightly affects the threshold A/λ ' 10−1 at which the abrupt
transition from adhesion enhancement to reduction takes place.
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Figure 10. Dimensionless pull-off force in absolute value as a function of the ratio A/λ for the four
cases λ† = [5, 20, 30, 50], R† = [50, 100, 200] and for a fixed µ = 3 (see legend). Dashed lines stand
for the pull-off force predicted by the JKR model (Equation (5)), markers for BEM numerical results,
while the dot-dashed line is a guide to the eye.

In Figure 11 we have replotted the data in Figure 10 as effective adhesion energy
wc,e f f = wc,e f f /wc versus the Johnson parameter αKLJ . Indeed, based on Kesari and Lew [21]
envelope solution, Ciavarella [24] showed that in the JKR regime the effective adhesive energy at
pull-off depends only on the Johnson parameter αKLJ , i.e.,

wc,e f f =
2
3

∣∣W∣∣pull−o f f =

(
1 +

1√
παKLJ

)2
(24)

which is shown as a solid blue line in Figure 11. On the contrary, a competitive mechanism has been
proposed by Persson and Tosatti [13], which tends to reduce the effective adhesive energy due to
surface roughness in randomly rough surfaces. Persson and Tosatti [13] criterion reads

wc,e f f = wc
Atrue

Aapp
− Uel

Aapp
(25)

where Aapp is the apparent contact area, Atrue is the real contact area, increased due to the substrate
roughness, and Uel is the elastic strain energy stored at full contact. The real contact area Atrue can be
written as [13]

Atrue = 2π
∫

Aapp
drr
(

1 +
1
2
|∇h|2

)
(26)

= 2π
∫ aapp

0
drr

(
1 +

1
2

(
2πA

λ

)2
sin2

(
2πr

λ

))
(27)



Lubricants 2020, 8, 90 13 of 19

where aapp is the apparent contact radius. Dividing Equation (27) by Aapp = πa2
app, it can be derived

that for large enough aapp/λ

Atrue

Aapp
' 1 + π

(
A
λ

)2
. (28)

In Figure 10 we obtained the largest enhancement of the pull-off force (up to a factor 10) at
about A/λ ' 10−1, where Equation (28) would give Atrue/Aapp ' 1.03 (notice that wc,e f f =
2
3

∣∣W∣∣pull−o f f ), hence, in the following, we will neglect this contribution.
For a single scale waviness

Uel
Aapp

=
E

4 (1− ν2)

∫
d2qqC (q) =

πE
4 (1− ν2)

A2

λ
(29)

hence
wc,e f f = 1− 1

2π

1
α2

KLJ
(30)

which is reported as a dot-dashed red line in Figure 11. The numerical results we obtained, plotted with
markers in Figure 11, show that at large αKLJ the numerical results we obtained closely follow
Equation (24). For smaller αKLJ , instead, wc,e f f drops suddenly and decays by further reducing αKLJ
with a strong dependence on the waviness wavelength and sphere radius. Instead, the Persson–Tosatti
energetic argument for adhesion reduction seems to give a lower bound to the effective work
of adhesion.
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Figure 11. The data showed in Figure 10 are reported here as effective adhesion energy
wc,e f f = wc,e f f /∆γ versus the αKLJ for the four cases λ† = [5, 20, 30, 50], R† = [50, 100, 200] and
for a fixed µ = 3 (see legend). The dot-dashed line stands for the reduction criterion of Persson and
Tosatti [13], the solid line for the enhancement criterion of Ciavarella [24] based on the Kesari and
Lew [21] solution of the Guduru problem and the dashed line is a guide to the eye.

5.2. Hysteresis Cycle

It is well known that in adhesive contact mechanics different loading paths can be followed in
loading and unloading a contact pair, which leads also to hysteretical energy dissipation. Here we
show how this gets affected by the waviness amplitude A by proposing two representative examples.
In Figure 12 the loading curve obtained via BEM numerical simulation is plotted as a solid red line for
µ = 4, A† = 0.4, R† = 100 and λ† = 10. On the same graph, the JKR loading curve for the smooth
sphere (black dot-dashed curve) and for the Guduru geometry (blue dashed curve, Equation (5))
are plotted. Figure 12 shows that the numerical and the theoretical curves are very close each other
and the maximum adhesive force reached is about

∣∣W∣∣pull−o f f ' 2 giving a certain enhancement with
respect to the smooth case. A possible loading path (in displacement control) is shown by the arrows.
The jump-in and -out instability are labeled with numbers from “1” to “6” for the loading stage and
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with letters from “a” to “f” during unloading. Looking at Figure 12 one sees the hysteretical dissipation
(proportional to the area enclosed in the hysteretical loop in Figure 12), which could be well estimated
by adopting the JKR model (Equation (5)).

1 
 

 

Figure 12. The dimensionless normal load W is plotted versus −∆†/µ. The curve is obtained via BEM
numerical simulation (solid red line) for µ = 4, A† = 0.4, R† = 100 and λ† = 10. The JKR curve for a
smooth sphere (dot-dashed black line) and for the Guduru geometry (blue dashed line, Equation (5))
are also shown. Loading and unloading paths are indicated by arrows and the jump-in and -out contact
points are respectively labeled by numbers from “1” to “6” and letters from “a” to “f”.

Nevertheless, the amount of dissipation is strongly influenced by the ratio A/λ and the results
obtained by the JKR model (Equation (5)) may be strongly misleading. In Figure 13 the curve
dimensionless normal load W versus −∆†/µ obtained numerically (red solid line) is plotted for
the same parameters of Figure 12 but for A† = 3. Together with the BEM numerical results the JKR
curve for the smooth sphere (black dot-dashed line) and for the Guduru geometry (blue dashed line)
are shown. One immediately recognizes that the JKR model (blue dashed line) is very far from the
actual loading curve (solid red curve). While the sphere approaches the wavy halfspace the JKR model
predicts very large fluctuations of the normal load and relative jumps from one branch to the other
that would lead to very high energy dissipation. The BEM solution, instead, gives much smaller
undulations of the loading curve and smaller jumps-in and -out contact.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

JKR

smoothJKR

Guduru

Figure 13. The dimensionless normal load W is plotted versus −∆†/µ. The curve is obtained via BEM
numerical simulation (solid red line) for µ = 4, A† = 3, R† = 100 and λ† = 10. The JKR curve for a
smooth sphere (dot-dashed black line) and for the Guduru geometry (Equation (5)) are also shown.
Loading and unloading paths are indicated by arrows and the jump-in and -out contact points are
respectively labeled by numbers from “1” to “6” and letters from “a” to “f”.
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5.3. Adhesion Map

To clarify the effect of A, λ and µ on the pull-off force
∣∣W∣∣pull−o f f we fixed the sphere radius

R† = 100 and change µ =
[
10−1, 5

]
and A/λ = [10−3, 100]. Figures 14 and 15 shows the contour plot

of the pull-off force respectively for λ† = 20 and λ† = 5. One immediately notices that larger adhesive
forces are reached with longer wavelengths. Figure 14 shows that adhesion enhancement happens in a
limited parameter region. For very low ratio A/λ the contact problem reduces to that of the smooth
sphere on a smooth halfspace, hence by changing the Tabor parameter from µ = 0.01 to µ = 5 one
moves from the Bradley

∣∣W∣∣pull−o f f = 2 to the JKR solution
∣∣W∣∣pull−o f f = 1.5. Increasing A/λ for

small Tabor parameter (µ < 10−0.6 ≈ 0.25) leads to a strong reduction of the pull-off force, as indeed
we are in the range where the rigid solution of the Guduru problem holds (cfr. Section 2, Figure 7).
Notice that keeping λ constant and increasing A/λ leads to both increasing of A† and α in Figure 7
heading to very strong reduction of the macroscopic pull-off force. Instead, if A/λ is increased at large
Tabor parameter (µ & 0.25 for λ = 20), adhesion enhancement takes place and high pull-off forces
can be reached (in Figure 14 up to

∣∣W∣∣pull−o f f ' 4 for µ ' 5). Contrary to JKR theory predictions,
further increasing of the amplitude to wavelength ratio A/λ does not lead to stronger adhesive forces,
but adhesion is destroyed by roughness.
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Figure 14. Contour plot of the dimensionless pull-off force (absolute value) as a function of
µ =

[
10−1, 5

]
and A/λ = [10−3, 100] for λ† = 20.
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6. Conclusions

In this paper we have reconsidered the Guduru adhesive contact problem. The rigid solution has
been derived, which has been shown to depend only on two parameters: the dimensionless waviness
amplitude A† and the dimensionless parameter α = AR/λ2. It has been shown that increasing A†

and α reduces the macroscopic pull-off force by orders of magnitude due to the effect of roughness.
Secondly, by using a BEM numerical code with Lennard–Jones interaction law, we have investigated
the effects of the waviness wavelength, amplitude and of the sphere Tabor parameter on the adhesion
enhancement. It has been shown that adhesion enhancement is limited to a certain region of the
plane A/λ versus µ. In particular, at low Tabor parameter increasing the ratio A/λ tends to destroy
adhesion. For large Tabor parameters increasing the ratio A/λ first increases adhesion due to the
Guduru enhancement mechanism, but later, for A/λ greater than about 10−1, the waviness amplitude
gets too large, internal cracks appear and macroscopic adhesion reduces strongly. We have shown that
in this region using the JKR model to estimate both the pull-off force and the dissipated energy by
hysteresis leads to very large errors as the hypothesis of compact contact area does not hold.

The enhancement effect is well captured by the Johnson parameter as derived by
Ciavarella–Kesari–Lew [21,24], and is much larger than the Persson–Tosatti enhancement [13] in
terms of increase of real contact area due to roughness. The Persson–Tosatti energetic argument for
adhesion reduction seems to give a lower bound to the effective work of adhesion.

The axisymmetric waviness in the Guduru contact problem is highly idealized with respect to
more common randomly fractal roughness, hence it is difficult to give reasonable estimates of the
parameters we have introduced in our model for a fractal randomly rough surface. The analysis made
is intended to shed light into the problem of adhesion enhancement with a potential application to
the development of nano- and micro-mechanical systems and of bioinspired adhesives. Experimental
measurements have been reported by Santos et al. [42], which show how echinoderms’ tube feet exploit
adhesion enhancement to increase the interfacial toughness on rough substrates. Santos et al. [42]
tried to explain the interfacial toughening accounting for an increased contact area obtained when the
echinoderm feet conforms to the rough substrate. We have found that adhesion enhancement may be
obtained also when the latter effect is negligible.

When rough surfaces are idealized by spherical caps, a very small radius of curvature is
expected at the finest scale, which suggests asperity contact takes place at very low Tabor parameters,
hence adhesion enhancement seems to be very unlikely. At present, the only viable route to adhesion
enhancement seems to be the design of an ad-hoc macroscopic roughness profile.
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Appendix A. BEM Formulation with Constant Pressure Discrete Elements

Equation (10) constitutes the nonlinear problem to be solved. A problem arises in evaluating the
integral (11) as the kernel function G (r, s) is singular in s = r. The common approach is to discretize
Equation (11) assuming that the pressure σ (s) has a simple form over a discrete element. To this end
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the simplest approach is to assume that the pressure is constant over each element. For a constant
pressure p acting over the ring c1 < r < c2 the deflection at r of a single half-space is

uz (r) =
4p

πE∗
[F (c2, r)− F (c1, r)] (A1)

where from Johnson [29]

F (c, r) =

{
cE
( r

c
)

, r ≤ c
r
[

E
( c

r
)
−
(

1−
( c

r
)2
)

K
( c

r
)]

, r > c
(A2)

being K (k) and E (k) respectively the complete elliptic integrals of first and second kind with
modulus k.

Assume we have discretized the surface in N elements, so that we have M = N + 1
discretization points. The deflection at point ri due to a constant pressure pj ring in between the
radii rj and rj+1 is

uz (ri) =
4pj

πE∗
[
F
(
rj+1, ri

)
− F

(
rj, ri

)]
=

1
E∗

Gij pj (A3)

Gij =
4
π

[
F
(
rj+1, ri

)
− F

(
rj, ri

)]
(A4)

where the term Gij within square brackets depends only on the nodal coordinates, hence by varying
i, j = 1, ..., M all the terms can be computed once for all.
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