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Abstract: The application of sliding planet gear bearings in wind turbine gearboxes has become more
common in recent years. Assuming practically applied helix angles, the gear mesh of the planet stage
causes high force and moment loads for these bearings involving high local loads at the bearing
edges. Specific operating behavior and suitable design measures to cope with these challenging
conditions are studied in detail based on a thermo-hydrodynamic (THD) bearing model. Radial
clearance and axial crowning are identified as important design parameters to reduce maximum
pressures occurring at the bearing edges. Furthermore, results indicate that a distinct analysis of the
gear mesh load distribution is required to characterize bearing operating behavior at part-load. Here,
operating conditions as critical as the ones reached at nominal load might occur. Wear phenomena
can improve the shape of the gap in the circumferential as well as in axial direction incorporating a
significant reduction of local maximum pressures. The complexity of the combination of these aspects
and the additionally expected impact of structure deformation gives an insight into the challenges in
the design processes of sliding planet gear bearings for wind turbine gearbox applications.

Keywords: planet gear bearing; journal bearing; misalignment; mixed friction; wear; wind
turbine gearbox

1. Introduction

Generally, two different design concepts exist for wind turbine power trains. The first
one foregoes a transmission between rotor and generator, and therefore, generator speed
equals the one of the main rotor. Whereas this direct drive design provides high robustness
of the power train, it involves high demands on generator design as the rotating frequency
of the main rotor is in the magnitude of 1% or even less of the net frequency. The second
design approach applies a gearbox between the rotor and generator shaft, which increases
the speed on the generator side and reduces the previously mentioned discrepancy to
approximately 50%. This enables a more compact generator design. Both concepts feature
specific advantages and disadvantages that are comprehensively discussed by Ragheb and
Ragheb [1]. Gearboxes failures contribute 10% to 20% of wind turbine downtimes [2,3].
Most commonly, wind turbines gearboxes feature one or two planetary and one spur gear
stage due to lightweight and compact design requirements. Here, gear tooth as well as
bearing damages represent the main issues leading to downtimes [4]. In recent years, the
application of sliding bearings in wind turbine power trains has become more common, in
particular, in the case of the planet gear bearing. The sliding planet gear bearing requires
less radial space than the conventionally used rolling element bearings and enables flexible
modification of gear rim thickness. Moreover, it is not susceptible to typical damage
mechanisms that occur in rolling bearings and are caused by excitation from the gear mesh.
However, several challenging phenomena in low speed and high load planet gear bearings
exist that are partly specific for this tribologic system and that have not been studied in
detail yet.
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Figure 1 explains the basic design of a typical planet stage for wind turbine gearbox
applications investigated in this study. The torque generated by the kinetic energy of the
wind drives the main rotor that is connected by a hub to the planet carrier. The carrier
rotates with the main rotor speed. Most commonly, four or five planets are attached to
the carrier and distribute the driving torque to the same number of mesh contacts. The
planets rotate in a non-rotating ring gear due to the carrier speed and drive a sun gear that
is connected to the output shaft of the planet stage. Torque decreases from the rotor to the
generator side while rotating frequencies increase according to the particular transmission
ratios. Commonly, additional gear stages follow this first low-speed stage.

Figure 1. Basic design and kinematic properties of a planet stage for a wind turbine gearbox.

Figure 2 shows the red signed forces on the planet as well as the yellow signed
components of the mesh forces. In the case of the straight gear in Figure 2a, the mesh forces
feature a tangential Ft and radial Fr component. As the sum of the radial force components
is zero, the bearing force Fsc is equal to the sum of the tangential forces. Both components
of the mesh force contribute to an oval deformation of the planet. The magnitude of the
oval shape of deformation strongly depends on the ratio between mesh forces and rim
thickness and influences the lifetime of rolling element bearings [5,6]. In the case of the
helical gear in Figure 2b, additional axial force components Fax exist that involve a moment
load about y-axis. This moment load Msc has to be restored by the contact pressure in the
bearing and is a function of the helix angle of the helical gear. An additional moment about
the x-axis occurs if the load distribution on the tooth flanks becomes inhomogeneous in
the lateral direction and causes eccentric points of application of resulting mesh forces.
Figure 2c depicts an assembled helical planet gear with its contact partners in the front
view of a planet stage.

Restoring the moment load requires a significant misalignment between planet and pin
to generate the moment by fluid and asperity pressure in the bearing contact. This creates
a load condition that distinguishes the planet gear bearing from most other applications,
which are primarily loaded by radial forces. Bouyer and Fillon [7] and Sun and Changlin [8]
investigate the impact of misalignment between shaft and stator for journal bearings
and report on the well-known effect of edge loading. Whereas Bouyer and Fillon [7]
experimentally apply different vertical torque levels parallel to load direction, Sun and
Changlin [8] theoretically study the impact of the same misalignment angle applied at
different angular journal positions and variable eccentricities.



Lubricants 2021, 9, 97 3 of 19

Figure 2. Mesh forces and bearing load for (a) straight gear, (b) helical gear, and (c) the helical gear assembled in the
planet stage.

Depending on the concrete application, deformation can have positive as well as
negative impact on the load-carrying capacity of sliding bearings. If elasto-hydrodynamic
deformation is dominant, a rise of the film thickness compared to the hydrodynamic
theory exists [9]. Conversely, Hagemann et al. [10] show a reduction of film thickness for
a large five-pad tilting-pad journal bearing due to consideration of thermo-mechanical
deformation in their analysis and validate the results with experimental data. This decrease
in load capacity is traced to the thermally and mechanically induced axial bending of
the tilting pads. Prölß [11] extends and adjusts the sliding bearing model presented by
the authors in [10,12] to planet gear bearings. He determines a significant impact of
deformation on predicted operating behavior due to the above-described load situation.

This investigation focuses on a basic understanding of the impact of different parame-
ters on the operating behavior of sliding planet gear bearings as this type of bearing has
received increasing importance, especially within recent years. While numerous publica-
tions on conventional journal bearings under low speed and high load conditions exist,
e.g., [13–15], the specific properties of planet gear bearings have not been comprehensively
described in the literature with the exception of [11] to the authors’ knowledge. However,
understanding their specific kinematics, load situations, and deformation behavior is es-
sential for the development of a robust planet gear bearing design, in particular in the case
of helical gears. Many investigations focus on nominal or maximum load conditions but
part- and under-load can also contribute bearing damages as Garabedian et al. [16] show
for rolling element planet gear bearings of a wind turbine gearbox. Therefore, aspects of
the impact of part-load conditions on the performance of sliding planet gear bearings are
also studied. All subsequent analyses in the first part of this study assume rigid macro
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geometries for pin and planet, while the second part [17] focuses on the impact of structure
deformation on predicted results. Moreover, all results represent static equilibriums and
neglect dynamic force components that are of minor interest for the investigated load cases.

2. Materials and Methods
2.1. Governing Equations and Bearing Model

The authors describe the governing equations of the bearing model including the
consideration of oil supply effects in [10,12]. The generalized average Reynolds Equation (1)
for laminar flow is extended by the flow factors according to Patir and Cheng [18] to
consider the impact of surface roughness on hydrodynamic flow in the thin film region.
Due to the exclusive static load conditions investigated in this study, the squeeze term is
neglected in Equation (1).
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Herein, Φp
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z are the pressure flow factors, and Φs
x is the shear flow factor.

Equation (2) describes the local thickness of the lubricant gap h considering alignment
angles between pin and pad ϕx and ϕz.

h(φ, z) = CR − e·cos(φ − γ) + z·
(
−ϕx·cos(φ) + ϕy·sin(φ)
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+ ∆h(φ, z) (2)

In contrast to the conventional journal bearing, the outer solid body rotates, and
the pin is fixed. Therefore, the pin features a stationary temperature profile whereas
temperature in circumferential direction homogenizes in the planet due to sufficiently high
rotational speeds. Equation (3) includes the governing equations of the temperature model
of the planet gear bearing for its three components. Figure 3 visualizes the differences
between the discretization of the solution domains of journal and planet gear bearing for
the thermal bearing model.
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Herein u, v, and w are the flow velocities in the lubricant gap. In comparison to
the journal bearing, the three-dimensional part of the solution domain is adjusted to the
new requirements and the interface of the three to the two-dimensional section of the
solution domain is shifted from the journal radius in Figure 4a to the inner radius of the
planet in Figure 4b. At each internal fluid–solid interface, conjugate heat transfer boundary
conditions are valid. Temperature-dependent lubricant viscosity is determined using the
dynamic viscosity η0 at the reference temperature T0 by the equation of Falz [19].

η(T) = η0·
(

T
T0

)−l
(4)

A periodicity boundary condition in the circumferential direction is applied for the
solution of Equation (1) and the three-dimensional parts of Equation (3) at the particu-
lar boundaries of the solution domain. Moreover, the thermal bearing model assumes
convective heat transfer boundary conditions for the free solid body surfaces. For the
solution of Reynolds and energy equation, a conservative finite difference scheme (Finite
Volume Method (FVM)) is applied. The solution of the generalized average Reynolds
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Equation (1) is based on the difference scheme proposed by Elrod [20]. The combined con-
vection and diffusion problem of the energy equation is stabilized by the Hybrid scheme
according to the description in [21]. References [10,12] describe further details on numerical
implementation, including flow charts of the entire numerical procedure.

Figure 3. Numerical grid for temperature evaluation for the (a) journal bearing and (b) planet gear bearing.

Figure 4. Cross section of the three-dimensional solution domain of the temperature analysis (a) journal bearing, and (b)
planet gear bearing at a certain axial position.

The eccentricities ex, ey and angular alignment ϕx, ϕy between the centerlines of planet
and pin are determined using stiffness matrix C defined by Equation (5) to minimize the
error between mesh forces and bearing contact forces in order to find the static state of
equilibrium. The coefficients of C represent the sum of hydrodynamic and solid contact
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stiffness coefficients in the mixed friction regime while solid contact stiffness is equal to
zero in the hydrodynamic regime.

C =


Cxx Cxy
Cyx Cyy

Cxϕx Cxϕy

Cyϕx Cyϕy

Cϕx x Cϕxy
Cϕyx Cϕyy

Cϕx ϕx Cϕx ϕy

Cϕy ϕyx Cϕy ϕy

 = Chyd + Csolid (5)

Hydrodynamic stiffness coefficients are derived from a linear perturbation of gener-
alized average Reynolds Equation (1). For this purpose, a linear impact of film thickness
modification on fluid film pressure due to translational (X,Y) or angular (ϕX,ϕY) rigid body
displacements relative to the current position described by ex, ey, ϕx, and ϕy is assumed
according to Equation (6).

h∗(φ, z) = h(φ, z) + X sin φ + Y cos φ − z·ϕX . cos φ + z·ϕY sin φ (6)

Solid body stiffness directly follows from the local gradient of the relation between the
mean distance of the contact partners and the asperity contact forces. A highly time efficient
iterative scheme based on the idea of Waltermann [22] and extended to consider moment
loads adjusts solid body positions and minimizes the differences between the outer forces
and moments and the ones restored by the fluid film and the solid contact pressure.

The authors comprehensively validated the theoretical THD bearing model and its
implementation with test data in previous investigations for fixed-pad and tilting-pad
journal bearings, e.g., [10,12,23]. As no test data for planet bearings is available, this step
must be omitted here. However, the correct implementation of the impact of misalignment,
which is of particular interest in this study, was not part of previous validation and is
verified with data from the literature.

2.2. Verification of the Numerical Procedure

Results of Sun and Changlin [8] are used to verify the numerical implementation
of the THD model in the planet gear bearing code with a special focus on misalignment.
Table 1 includes the data of the investigated journal bearing.

Table 1. Bearing parameters [8].

Parameter Value

Geometrical properties

Number of pads, - 1
Nominal diameter, mm 60

Bearing width, mm 66
Radial clearance, µm 30

Pad sliding surface preload, - 0.0

Static analysis parameters

Rotational speed, rpm 3000

Lubricant properties

Lubricant dynamic viscosity, mPas 9.0

Due to the isoviscous approach of the study, no impact of the modified kinematics
in the planet gear bearing code has to be expected. Figure 5 shows excellent agreement
between the two analyses for the local film pressure distribution in the case of the aligned
bearing (a,b) as well as for the highest investigated level of misalignment (c,d). While
maximum pressures in [8] are given with 33.06 MPa for the aligned case and 143.34 MPa for
the misaligned case, they are predicted with 33.30 and 144.2 MPa in this study. Additionally,
the resulting moments of the fluid forces due to different levels of misalignment in Figure 6
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nearly match for both analyses and verify the basic implementation of the THD model in
the planet gear bearing code.

Figure 5. Pressure distributions determined by Sun and Changlin [8] (a,c) and the planet gear bearing code (b,d) for
misalignment angles of γ = 0.0◦ (a,b) and γ = 0.03◦ (c,d).

Figure 6. Resulting moment for different levels of misalignment angles determined by Sun and Changlin [8] (a) and the
planet gear bearing code (b).
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2.3. Flow Factors and Solid Contact Pressure

The detailed prediction of flow factors and solid body pressure is not an aim of this
study. In fact, these parameters are introduced to apply a consistent bearing model with
representative parameters. Flow factors are analyzed based on the average Reynolds
equation according to [18]. Results are given in Figure 7a. An application of the theory of
Greenwood and Williamson [24] provides a relation between the mean film thickness on the
node of the numerical grid and solid contact pressure due to the interaction of the asperities
that is shown in Figure 7b. The contact surface features a root mean square roughness value
of Rq = 2.83 µm and matches the one earlier presented by the authors in [25]. A turning
process generates the surface topography that features small grooves in the circumferential
direction. Solid body contact pressure is determined based on the formula proposed by
Hu et al. [26]. Consequently, it slightly deviates from the ones presented in [25], which
are evaluated differently. The concrete course of the solid body load-carrying capacity has
exemplary character in this investigation. Therefore, the contradiction that the theory of
Greenwood and Williamson presupposes a normal distribution of the surface roughness
that does not exist for the investigated contact surface is accepted here.

Figure 7. Pressure and shear flow factors (a) and solid body contact pressure (b).

2.4. Investigated Sliding Planet Gear Bearing

Table 2 includes the basic analysis parameters of the investigated planet gear bearing.
The values are of the typical magnitude of planet gear bearings applied in 3 MW wind
turbine gearboxes.

Table 2. Planet gear bearing parameters.

Parameter Value

Geometrical properties

Number of pads, - 1
Nominal diameter, mm 250

Pitch circle diameter, mm 499
Bearing width, mm 300

Angular span of lube oil pocket, degrees 20.5
Width of lube oil pocket, mm 260

Radial clearance, µm 138
Pad sliding surface preload, - 0.0

Static analysis parameters

Nominal rotational speed, rpm 30
Nominal bearing load, kN 900

Lubricant supply temperature, ◦C 60
Lube oil supply pressure, MPa 0.2
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Table 2. Cont.

Parameter Value

Lubricant properties

Lubricant ISO VG 320
Lubricant density kg/m3 865 @ 40 ◦C

Lubricant specific heat capacity kJ/(kg·K) 2.0 @ 20 ◦C
Lubricant thermal conductivity, W/(m·K) 0.13

2.5. Bearing Loads Due to Mesh Forces

According to the illustrations in Figure 2, the mesh forces generate the load of the
planet gear bearing. The static radial bearing load Fsc is equal to the sum of the tangential
mesh forces that result from the driving torque Td and the contact between ring gear and
planet gear and between planet gear and sun gear, respectively.

Fsc = 2·Ft =
4·Td
d1

(7)

Using the normal pressure angle αn and the helix angle of the helical gear β, Equation (8)
defines the axial and radial components of the mesh forces.

Fr = Ft· tan αn
cos β

Fax = Ft· tan β
(8)

Neglecting special features of tooth flank geometry and the impact of deformation,
axial as well as radial mesh forces of the two contacts compensate for each other and do not
contribute to static bearing force. However, the eccentricity of axial forces causes a moment
load Msc that has to be restored by the bearing. This moment load follows according to
Equation (9).

Msc = Fax·d1 (9)

Consequently, moment load Msc depends linearly on the driving torque and, addi-
tionally, it is a nearly linear function of the helix angle of the helical gear. Restoring this
moment by the bearing contact requires an alignment of pin and planet relative to each
other. The impact of this effect on planet gear bearing operating behavior is considered as
a key or contributing effect throughout the entire subsequent investigations.

Figure 8 illustrates static bearing force and moment load as a function of the relative
input torque Tr. Here, 100% Tr correspond to the nominal load situation with a bearing
force load of 900 kN according to Table 2. While the force load in Figure 8a is independent
of the helix angle, the moment load in Figure 8b strongly depends on it. The distribution of
tooth forces to more than one contact due to a profile overlap is neglected in this study.

Figure 8. Force (a) and moment load (b) due to relative mesh load.
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3. Results

Wind turbine gearboxes are commonly equipped with helical gears in the planet stage.
The low level of dynamic excitation due to the continuous tooth mesh reduces the danger
of fatigue damages. As the forces in the axial thrust washers are comparably low, the
moments resulting from the gear mesh have to be restored in the radial part of the bearing.
This specific load conditions cause operating conditions and design measures that are
studied subsequently.

3.1. Impact of Helix Angle of the Helical Gear on Operating Conditions in the Lubricant Gap

To investigate the impact of helix angle of the helical gear on operating conditions
in the lubricant gap, a variation of this parameter is conducted in a range between
β = 0◦ and 8◦, assuming a homogenous load distribution on each tooth flank. Consequently,
no eccentricity of the tangential mesh forces exists, and according to the conventions in
Figure 2b, the resulting moment restored by the bearing Msc results exclusively from My
while Mx = 0 Nm. Figure 9 shows the local pressure distribution in the lubricant gap for a
straight gear (a) and a helical gear (b) with a helix angle β = 7◦ in two different views. Here,
the term “aggregate pressure” refers to the sum of hydrodynamic and asperity contact
pressure. While the aggregate pressure in case (a) purely results from hydrodynamic
fluid film, the edge loading in case (b) that is caused by the moment load due to the axial
component of the mesh forces involves mixed friction, and therefore, a combination of
hydrodynamic and solid contact pressure in the bearing. Moreover, the aggregate pressure
significantly increases in case (b) and reaches a level that exceeds the strength level of
common sliding bearing materials. In addition to these results, Figure 10 includes the
characteristic of minimum film thickness, solid contact and hydrodynamic pressure as well
as the alignment between planet and pin as a function of the helix angle. A significant rise
of the pressure level exists for helix angles β > 4◦. As expected, the load moment My causes
an alignment of the bearing about x- and y-axis due to the cross-coupling effects in the
fluid film.

Figure 9. Pressure distributions @ nominal operating conditions (a) straight gear (β = 0◦) and (b) helical gear (β = 7◦)
(npl = 30 rpm, Fsc = 900 kN, Tsup = 60 ◦C, psup = 0.2 MPa, Msc = 27.6 kNm (b)).
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Figure 10. Impact of helix angle of helical gear on (a) maximum pressures, minimum film thickness, and (b) alignment
angles between planet and pin (npl = 30 rpm, Fsc = 900 kN, Tsup = 60 ◦C, psup = 0.2 MPa).

Deformation of planet and pin potentially reduce the extremely high maximum
pressures. However, the pressure level might remain in a critical range for technically
required helix angles in the magnitude of β ≈ 7◦. Therefore, measures have to be defined
to reduce maximum local load levels in the contact between planet and pin.

3.2. Impact of Radial Clearance on Load Carrying Capacity

Radial clearance is an important design parameter of hydrodynamic bearings. In
particular, a suitable value of this parameter has to ensure two aspects. First, positive
operating conditions for the entire nominal operating range of the bearing have to be
guaranteed. Second, the bearing has to be robust against any disturbances from these
conditions and tolerate shape deviations of the components due to the manufacturing
process. Both aspects especially have to allow thermal changes of the radial clearance due
to the transient operation of the machine.

Figure 11 exhibits the impact of the relative clearance on maximum pressure and
temperature for different gear helix angles. While a comparably moderate influence of
the relative clearance on maximum pressure exists for the lower helix angles of β = 0◦ and
β = 3◦ in Figure 11a, a very significant change for the practical highly relevant helix angle
β = 7◦ is observable as maximum pressure rises progressively with increasing relative
clearance. Moreover, the maximum temperature on the pin sliding surface increases with
rising relative clearance in Figure 11b for the maximum helix angle due to contact intensity,
whereas a commonly expected decrease in this value is present for β = 0◦. Generally,
maximum temperature is only slightly higher than the nominal supply temperature, and
consequently, thermal effects are not of major importance in this study. Results indicate
that relative clearance should be designed as low as possible in the investigated range for
β = 7◦.

Figure 11. Maximum pressure (a) and maximum temperature on the pin sliding surface (b) for variable relative loads
(npl = 30 rpm, Fsc = 900 kN, Tsup = 60 ◦C, psup = 0.2 MPa).



Lubricants 2021, 9, 97 12 of 19

3.3. Impact of Axial Profiling

An axial crowning of contact partners with high edge loading is a common measure to
reduce local maximum contact intensity. Examples for such applications are rolling element
bearings or tooth flanks. To investigate the impact of axial crowning on the performance
of the planet gear bearing, two different artificial crowning characteristics are defined
according to Figure 12a and applied at nominal load conditions with a helix angle of β ≈ 7◦.
The first one focuses on profile relief at the bearing edges where maximum pressures
occur, according to Figure 9b. The second one exhibits continuous parabolic shaped
characteristic across the bearing width. Though the maximum pressure in Figure 12b
slightly decreases compared to Figure 9b, the first profile tends to reduce the load-carrying
bearing width. However, the second profile provokes a significant reduction of the pressure
level. According to Figure 12c,d, a maximum pressure of 77.6 MPa is reached which is
approximately 37% higher than the one for the straight tooth flanks in Figure 9a and
acceptable for several bearing materials. Figure 12d illustrates the continuous pressure
level in axial direction accompanying a homogenous load distribution in the bearing. The
main cause for the advantages of the second crowning profile is that edge loading results
from the tilting movement of the planet relative to the pin about the axis in load direction.
Therefore, the crowning profile involves a comparably high region of nearly constant film
thickness at nominal load that starts at φ ≈ 160◦ at z = 150 mm and ends at φ ≈ 235◦ at
z = −150 mm, as depicted in Figure 13.

Figure 12. Impact of axial crowning (a) on the pressure distribution: (b) crowning #1, (c,d) crowning #2 (npl = 30 rpm,
Fsc = 900 kN, Tsup = 60 ◦C, psup = 0.2 MPa, β = 7◦, Msc = 27.6 kNm).
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Figure 13. Film thickness @ nominal operating conditions with crowning #2 (npl = 30 rpm,
Fsc = 900 kN, Tsup = 60 ◦C, psup = 0.2 MPa, β = 7◦, Msc = 27.6 kNm).

3.4. Operation at Part-Load and Over-Load Conditions

For the investigation of part-load and over-load conditions, the driving torque is
varied, while planet speed remains constant. Assuming a homogenous load distribution
in the gear mesh, the driving torque is proportional to the gear mesh forces causing the
bearing load forces and moments. The subsequently presented figures include the relative
input torque Tr. Figure 8 includes the corresponding force and moment loads.

3.4.1. Part-Load Conditions for Homogenous Load Distribution on Tooth Flank

In many applications, a geometrical optimization for nominal load conditions ac-
companies a degradation of the bearing performance in the part-load operating range.
Figure 14 contrasts maximum pressure and minimum film thickness for the investigated
planet gear bearing with crowning profile #2 and without crowning for relative loads
ranging from Tr = 10% to 100%. Results clearly show that the crowning exhibits advantages
in the entire investigated load range as maximum pressure decreases and minimum film
thickness rises. Moreover, a strictly monotonous characteristic of these parameters can
be observed, and operating conditions in the bearing become unfavorably with a rising
relative load.

Figure 14. Maximum pressure (a) and minimum film thickness (b) for variable relative loads (npl = 30 rpm, Tsup = 60 ◦C,
psup = 0.2 MPa, β = 7◦).

3.4.2. Part-Load and Over-Load Conditions for Constant Tooth Flank Geometry

While the previously presented results concordantly assume a homogenous load
distribution on the gear mesh, this ideal case is now supplemented by the practical case
of a certain tooth flank geometry designed for the nominal load case. The optimization
of the tooth flank geometry generally aims to match the previously studied ideal case
for the corresponding operating conditions. Consequently, only very low eccentricities
of the tangential and radial gear mesh forces to the middle plane of the bearing exist at
nominal load conditions. This shape optimization accompanies the eccentricities of these
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forces for all other load cases. With increasing load, the resulting mesh forces move along
the tooth flank from one side of the planet to the other one and across the center plane
for the nominal load case. Therefore, a load-dependent derivation of the moments from
the ideal case is present and depicted for an artificial tooth flank geometry in Figure 15.
According to Figure 15a, a parabolic shape of the characteristic of moment My is assumed
between relative loads Tr = 0 and 100%, and a linear one is present in the overload range.
The moment Mx in Figure 15b remains unchanged as no shifts are considered between the
meshing points of sun and planet gear and planet and ring gear, respectively. In opposite to
the ideal case studied so far, the direction of the resulting moment load varies with driving
torque. Figure 15c shows a rise of the resulting moment load due to the eccentricity of
the tangential mesh forces depicted in Figure 15d. In particular, the moment loads in the
part-load region are much higher, as the yellow curve in Figure 15c illustrates.

The modified bearing loads are applied to the bearing with crowning #2 and cause
a significant modification of the characteristics previously shown in Figure 14. Figure 16
indicates a degradation of the characteristic parameters, in particular, in the part-load
range. While the mesh forces, and therefore, the bearing force loads are identical for the
practical and ideal case, their application point changes, and the bearing moment load rises.
Consequently, the minimum film thickness for the practical case in Figure 16b decreases
and is partly below the value predicted for the nominal load case. Moreover, monotonous
characteristics of maximum pressure and minimum film thickness do not exist anymore.

Figure 15. Load moments My (a), Mx (b), and Mres (c) for variable relative loads (npl = 30 rpm, Tsup = 60 ◦C, psup = 0.2 MPa,
β = 7◦); eccentricity of tangential mesh force from the middle plane (d).
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Figure 16. Maximum aggregate pressure (a) and minimum film thickness (b) for variable relative loads (npl = 30 rpm,
Tsup = 60 ◦C, psup = 0.2 MPa, β = 7◦).

3.5. Modification of the Lubricant Gap by Wear

According to the previous results, load conditions of planet gear bearings might
incorporate operation in the mixed friction regime. Consequently, wear mechanisms can
arise. To study their general impact on the conditions in the contact between planet and
pin, solid contact forces Fsol are used to evaluate wear according to Archard’s law [27].

Vw =
k
H
·Fsol ·L = K·Fsol ·L (10)

The wear volume Vw is a function of the contact force Fsol, the sliding distance L and
the wear coefficient K. It is assumed that the softer material is located on the stator side pro-
voking a two-dimensional variable distribution of wear on the sliding surface of the bearing
without axial crowning. In the concrete case, a wear coefficient of K = 8.5·10−9 mm3/J
and an operation time of t = 280 h at nominal load is assumed. These operating conditions
cause significant wear according to Figure 17a. Figure 17b shows the characteristic of the
maximum aggregate pressure and minimum film thickness during the run. Here, wear
increases minimum film thicknesses and decreases maximum pressure monotonously in
the first 160 h. After 160 h a nearly constant level of minimum film thickness close to
pure hydrodynamic operation is reached that slightly reduces in the further run. The pres-
sure level decreases monotonously throughout the entire investigated time range. Local
maximum pressures tend to shift to the middle plane similar to the behavior observed in
the results for crowning #1 in Figure 12b. Nevertheless, maximum pressures significantly
reduce as wear accompanies regions of only slightly changed film thickness. To show
this phenomenon more clearly, the run time is extended to 560 h. Figure 18b depicts an
extension of the load-carrying region in the circumferential direction of the bearing due to
wear. Therefore, maximum pressure reaches a level comparable to the one predicted for the
unworn bearing with crowning #2 in Figure 12d. Though the pressure is more homogenous
in the axial direction with the crowning, Figure 18a indicates that the load-carrying region
in the circumferential direction, which is enclosed by the two red lines in both partial
figures, is smaller than the one of the worn bearing.
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Figure 17. Wear after 280 h run (a), maximum aggregate pressure and minimum film thickness (b), and pressure distribution
after 280 h run (c,d) (npl = 30 rpm, Tsup = 60 ◦C, psup = 0.2 MPa, β = 7◦, t = 280 h).

Figure 18. Comparison of pressure distribution with crowning #2 (a) and without crowning after 560 h (b) (npl = 30 rpm,
Tsup = 60 ◦C, psup = 0.2 MPa, β = 7◦).

4. Discussion and Conclusions

This paper focuses on specific operating conditions of sliding planet gear bearings for
wind turbine gearbox applications as well as on the impact of particular design parameters
on the properties in the contact between pin and planet. Special emphasis is given to
the influence of the helix angle of the gear. A helix angle greater than zero incorporates
additional moment loads that have to be restored by the bearing and accompany the edge
loading phenomena and mixed friction processes in the lubricant film.

The level of edge loading is very sensitive to relative bearing clearance for higher helix
angles. Results of a variation of relative clearance in a practical relevant range indicate an
improvement of the load-carrying capacity with a reduction of this parameter. However,
for practical applications, sufficiently high clearances are required that prevent problems
during transient operation or undesirable influences of manufacturing tolerances. More-
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over, the system has to be robust to sustain the deformation of its flexible components due
to the high mechanical loads. As a second geometrical design parameter, axial crowning
of the sliding surface is an appropriate measure to reduce maximum contact pressures.
Contrary to the straight cylindrical pin and planet bore geometry, a homogenization of the
contact pressure on the oblique line of maximum load exists. The shape of the crowning has
to approach the contact surfaces of planet and pin in this region to reduce high deviations
of the film thickness that exists due to misalignment between the contact partners.

Results for part-load conditions reveal critical characteristic operating parameters
if the load-carrying behavior of the gear mesh contact is considered. In particular, the
minimum film thickness is of the magnitude as at nominal operation or can be even lower.
Though the intensity of mixed friction might be lower due to the lower mechanical load,
issues may arise over the lifetime of the machine. Consequently, distinct characterizations
of tooth flank geometry as well as part-load conditions have to be the input parameters of
the bearing design process. Moreover, neglecting the additional load moments caused by
the eccentricity of tangential forces in the gear mesh contact might lead to a completely
different result assessment.

Wear processes in the bearing are able to adapt the shape of the lubricant gap to
the specific requirements of the bearing at operation. While load-carrying capacity is
improved by wear in the investigated case, the characteristic of the gap deviates from
the one determined, applying a crowning to the bearing because wear particularly arises
on the bearing edges. Therefore, the worn gap profile represents an improvement but
not an optimization of the bearing geometry. If the occurrence of wear is tolerable by
the tribologic system, it might be a measure to adjust the bearing itself to the operating
conditions, involving leaving out manufacturing steps for the axial crowning. However,
this option must be carefully evaluated because the danger of bearing damage arises if the
intensity of the wear becomes too high.

According to these investigations, the design process of planet gear bearings for wind
turbine applications involves several specific aspects that need to be studied in detail to
meet the high requirements on the reliability of wind turbine applications. Additionally, the
impact of deformation of the comparably flexible planet stage structure on the operating be-
havior of the bearing needs to be considered according to part 2 of these investigations [27].
Furthermore, future studies must provide details on the validation of these results.
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Nomenclature

c lubricant specific heat
CR radial clearance
d1 pitch diameter
e Eccentricity between pin and planet
F0, F1, F2 viscosity factors
F force
h film thickness
M moment
n rotor speed
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p pressure
Rq root mean square surface roughness
T temperature, torque
U surface speed
u, v, w flow velocities
x, y, z Cartesian coordinates
X,Y translational displacement relative to equilibrium position
Θ lubricant density ratio
γ attitude angle
η lubricant dynamic viscosity
λ lubricant conductivity
ρ lubricant density
ϕx, ϕy alignment angle about x-,y-axis
ϕX, ϕY alignment angle about x-,y-axis relative to equilibrium position
φ angular coordinate
φx,φz

p pressure flow factors
Φx

S shear flow factor
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