
lubricants

Article

Operating Behavior of Sliding Planet Gear Bearings for Wind
Turbine Gearbox Applications—Part II: Impact of
Structure Deformation

Thomas Hagemann * , Huanhuan Ding, Esther Radtke and Hubert Schwarze

����������
�������

Citation: Hagemann, T.; Ding, H.;

Radtke, E.; Schwarze, H. Operating

Behavior of Sliding Planet Gear

Bearings for Wind Turbine Gearbox

Applications—Part II: Impact of

Structure Deformation. Lubricants

2021, 9, 98. https://doi.org/

10.3390/lubricants9100098

Received: 30 July 2021

Accepted: 21 September 2021

Published: 1 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Tribology and Energy Conversion Machinery, Clausthal University of Technology,
38678 Clausthal-Zellerfeld, Germany; ding@itr.tu-clausthal.de (H.D.); radtke@itr.tu-clausthal.de (E.R.);
schwarze@itr.tu-clausthal.de (H.S.)
* Correspondence: hagemann@itr.tu-clausthal.de; Tel.: +49-5323-72-2469

Abstract: The use of planetary gear stages intends to increase power density in drive trains of
rotating machinery. Due to lightweight requirements on this type of machine elements, structures
are comparably flexible while mechanical loads are high. This study investigates the impact of
structure deformation on sliding planet gear bearings applied in the planetary stages of wind turbine
gearboxes with helical gears. It focuses on three main objectives: (i) development of a procedure for
the time-efficient thermo-elasto-hydrodynamic (TEHD) analysis of sliding planet gear bearing; (ii) un-
derstanding of the specific deformation characteristics of this application; (iii) investigation of the
planet gear bearing’s modified operating behavior, caused by the deformation of the sliding surfaces.
Generally, results indicate an improvement of predicted operating conditions by consideration of
structure deformation in the bearing analysis for this application. Peak load in the bearing decreases
because the loaded proportion of the sliding surface increases. Moreover, tendencies of single design
measures, determined for rigid geometries, keep valid but exhibit significantly different magnitudes
under consideration of structure deformation. Results show that consideration of structure flexibility
is essential for sliding planet gear bearing analysis if quantitative assertions on load distributions,
wear phenomena, and interaction of the bearing with other components are required.

Keywords: planet gear bearing; journal bearing; structure deformation; mixed friction; wear; wind
turbine gearbox

1. Introduction

The majority of journal bearing analyses, in practice and literature, neglect the impact
of structure deformation of the bearing components. However, many studies show that
this influencing factor can become one of the most important ones in analysis of bearing
operating behavior if structures are sufficiently flexible. Different authors investigate the
impact of misalignment between bearing and shaft caused by a load dependent bending
deformation of the shaft [1–4]. Generally, misalignment reduces minimum film thickness
and increases maximum film pressure. Consequently, it contributes to wear intensity in
the bearing. Some of the most typical applications showing this behavior are crankshaft
bearings of combustion engines [5,6]. Design measures can help to improve journal
bearings’ performance under misalignment. While Zhang et al. [7] report on optimum
radial clearance for given misalignment angles, Bouyer and Fillon [8] observe improved
operating behavior by application of local or global defects to the bush. In planet gear
bearings with helical teeth, a misalignment between pin and planet exists that is induced
by the load distribution in the gear mesh. In the first part of this study, the authors show
an improvement of bearing operating behavior by an axial crowning, which can either be
applied to the pin or the planet [9]. This measure represents a geometrical modification,
similar to the idea of a global defect from Ref. [8], but specific in its shape for the load
situation in planet gear bearings.
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While misalignment caused by shaft deformation is predominantly influenced by
global deformation of this bearing component, changes of the shape of the sliding surface
also modify bearing operating behavior. Due to their highly flexible structure, tilting-pad
journal bearings represent an example for an application that exhibits deformation of the
sliding surface that significantly influences local film thickness and, therefore, characteris-
tics of hydrodynamic operation [10–12]. Concordantly, pad deformation causes a reduction
in minimum film thickness but with different characteristics for the shape of the structure
deformation. While [10,11] identify and predict minimum film thickness in the center
plane of the bearing due to an axial bending of the pad, ref. [12] predicts minimum film
thickness at the bearing edges due to maximum radial deformation in the center plane.
This contradiction shows that journal bearing structure deformation highly depends on
assumed load and displacement boundary conditions, and generalization, as a bearing
property, is limited. Lahmar et al. [13] study the impact of liner deformation on operat-
ing behavior of a compliant journal bearing. At same journal eccentricity, the region of
pressure build-up spreads in circumferential direction, whereas peak pressure significantly
decreases. Prölß [14] investigates the impact of deformation, on planet gear bearings with
spatial fixed pins, and finds similar tendencies due to the high flexibility of the highly
loaded structures. The complexity of structure models requires a weak iterative coupling
between fluid and structure analysis in many applications. Here, the strategy to update
investigated parameters during the iterative procedure strongly influences its convergence
speed, as Profito et al. [15] show for a connecting-rod big-end bearing investigation.

Planetary gearboxes enable torque conversion at very high power densities due to
the separation of the tooth forces to the single planets and the entire compact designs.
Therefore, the level of specific mechanical loads on the components of the gearbox are
extremely challenging and accompany significant structure deformation. In extension
to the first part of this study [9], the subsequent investigations focus on the impact of
deformation on predicted results and the comparison of general tendencies between rigid
and flexible analysis of planet gear bearings for wind turbine gearbox applications. As
thermal effects are not of major impact for this low speed application, according to the
results in [9], only structure deformation induced by mechanical loads are considered
in the analysis. The displacement boundary conditions of the planet stage components
feature a character significantly differing from other applications. Consequently, a specific
deformation behavior of the planet gear bearing sliding surface is expected.

2. Materials and Methods
2.1. Procedure for Consideration of Planet and Pin Deformation

High mechanical loads and, simultaneously, high structure flexibility require consid-
eration of fluid structure interaction in planet gear bearing analyzes. The full or strong
coupling of the fluid and structure problem in one system of equation is numerically
complex, and its application in the literature is limited to less detailed structure mod-
els, focusing on point or line contacts of an elasto-hydrodynamic (EHD) problem [16,17].
For the weak coupling of separated fluid and structure analysis, generally, two different
iterative procedures exist. The first one is to perform a co-simulation between the thermo-
hydrodynamic (THD) bearing analysis and a structure mechanics software. This procedure
involves the advantage of an arbitrary complexity of the structure model. Considera-
tion of non-linear contacts or boundary conditions, varying due to the current operating
conditions predicted in the iterative procedure, are possible. However, this analysis is
time consuming as an analysis of full, unreduced structure model is conducted in each
iterative step. Moreover, the investigated planet gear bearing features low absolute values
and gradients of the film thickness in the highly loaded film region, requiring a strong
under-relaxation to achieve reliable convergence. Therefore, low convergence speeds of
the weak coupling between fluid and structure analysis is present here. The application
of reduced stiffness matrices for the structures represents the second alternative. While
this analysis is less flexible to varying boundary conditions and requires a linear structure
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model, it reduces computational self-times of the simulation, based on a weak coupling,
as the structure deformation can be evaluated based on a priori determined information.
Prölß [14] successfully used stiffness matrices in planet gear bearing analyses for wind
turbine gearbox applications. The procedure will also be applied for further investigations
in this study and is described subsequently.

According to the theory of Craig and Bampton [18], the reduced stiffness matrix
=
Cred

characterizing the behavior of the master nodes on sliding surface can be determined
according to Equations (1)–(4).{

FM
FS

}
=

 =
CMM

=
CMS

=
CSM

=
CSS

·{ hM
hS

}
(1)

Herein, M and S are the indexes for master nodes and slave nodes and
=
C is the stiffness

matrix of the structure. All nodes that are loaded by varying forces in the calculation
procedure represent master nodes, while slave nodes are all other remaining ones. In the
concrete case, the master nodes are all located on the sliding surface. The force vector FM
and hM represent the film force F f ilm and the deformation of master nodes hde f on the
sliding surface, respectively. Applying these parameters to Equation (1) gives

F f ilm =
=
CMM·hde f +

=
CMS·hS (2)

FS =
=
CSM·hde f +

=
CSS·hS (3)

Combining Equations (2) and (3) provides

F f ilm =

(
=
CMM −

=
CMS·

[
=
CSS

]−1
·
=
CSM

)
︸ ︷︷ ︸

=
Cred

·hde f +
=
CMS·

[
=
CSS

]−1
·FS︸ ︷︷ ︸

Fred

(4)

The reduced stiffness matrix
=
Cred in Equation (4) contains the information about

structure elasticity and boundary conditions. The reduced load vector Fred characterizes
the impact of the mesh forces on sliding surface deformation. While the description of
planet structure requires Fred, the reduced force vector becomes equal zero vector for
the pin.

The modification of stiffness matrix dimensions due to the reduction procedure is ex-
plained for the planet model. The sliding surfaces of planet and pin are discretized with
128 elements in circumferential and 16 elements in axial directions. Due to condensation
for reduced stiffness matrix, the number of degrees of freedom for the spatial deformable
178,987 nodes of the unreduced planet model is reduced from DOF = 178, 987 × 3 = 536, 961
to DOFred = 128 × 16 × 3 = 6144 of master nodes on the sliding surface. If only the nodes
on the sliding surface are defined as master nodes, the reduced description of the structure is
specific for a load distribution on the tooth flank, as shown in Figure 1a. However, the nodes
on the tooth flank can be considered as additional master nodes, enabling the analysis of
arbitrary load distributions of the mesh forces. This paper studies the impact of structure
deformation on bearing operating behavior under nominal load. Consequently, a definition
of master nodes on the sliding surface is sufficient. In addition, the influence of the defor-
mation behavior of the planet carrier on bearing properties is also considered. In Figure 2a,
the linear contact type ‘Bonded’ is defined at the contact surfaces between carrier and pin
to ensure linearity of the entire model. This contact type merges the two structures and
prohibits sliding or separation of its contact surfaces. Therefore, the model consisting of
planet and pin behaves as a homogenous structure.
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Based on the reduced structure properties introduced in Equation (4), deformation

h
(i)
de f of the sliding surface is evaluated by Equation (5).

h
(i)
de f =

=
C
−1

red ·
(

F(i)
f ilm − k·Fred

)
(5)

Herein,
=
Cred and Fred are the reduced stiffness matrix and load vector, and F(i)

f ilm is
the film force representing the sum of hydrodynamic and asperity contact forces. For the
planet, the force vector Fred models the influence of the mesh forces on the sliding surface
deformation, while this component does not exist for the pin. Assuming a constant shape
of the load distribution on the tooth flank, Fred can be scaled linearly by k to consider
different levels of mesh forces.
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Figure 3 shows the algorithm for iterative calculation of the mechanical equilibrium for
the planet gear bearing considering structure deformation. After the start of the iteration,
the planet bearing code calculates the pressure field p and the planet position for the
undeformed gap contour according to the procedure explained in part I of this study [9].
Here, an equilibrium between the film forces and moments and the outer forces and

moments, generated by the mesh load, exists. Predicted film forces F(i)
f ilm are applied, on the

nodes of the sliding surface of pin and planet, to analyze resulting deformation ∆h
(i)
de f . This

deformation is numerically damped by ξ(i) and considered in the gap function of the next
fluid film analysis, according to Equation (6). These iterative steps repeat for the highly
loaded system until maximum local difference of deformation, between two subsequent
iterations, is less than 1 µm, and the maximum local difference of pressure remains below
0.2 MPa.

h(i+1)
de f = h(i)de f + ξ(i) · ∆h(i)de f ; i = i + 1 (6)
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Figure 3. Flowchart for consideration of deformation.

The factor ξ(i) varies between 0.01 and 0.2 in this study and is modified by a heuristic
algorithm based on the convergence behavior of the calculation procedure.

2.2. Investigated Gear Set: Planet Gear Bearing

Table 1 includes the basic analysis parameters of the investigated planet gear bearing
that equals the one studied in part I [9]. The values are in typical magnitude of planet
gear bearings applied in 3 MW wind turbine gearboxes. Figure 4 depicts a pin with the
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sliding planet gear bearing. The oil supply pocket is located in the opposite direction of the
bearing load.

Table 1. Planet gear bearing parameters.

Parameter Value

Geometrical Properties

Number of pads, - 1
Nominal diameter, mm 250

Pitch circle diameter, mm 499
Helix angle, degrees 7
Bearing width, mm 300

Angular span of lube oil pocket, degrees 20.5
Width of lube oil pocket, mm 260

Radial clearance, µm 138
Pad sliding surface preload, - 0.0

Static Analysis Parameters

Nominal rotational speed, rpm 30
Nominal bearing load, kN 900

Nominal bearing moment, kNm 27.6
Lubricant supply temperature, ◦C 60

Lube oil supply pressure, MPa 0.2

Lubricant Properties

Lubricant ISO VG 320
Lubricant density kg/m3 865 @ 40 ◦C

Lubricant specific heat capacity kJ/(kg·K) 2.0 @ 20 ◦C
Lubricant thermal conductivity, W/(m·K) 0.13
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Figure 4. CAD model of the pin with sliding planet gear bearing.

2.3. Investigated Gear Set: CAD Model and Material Properties

Figure 5 shows the CAD model of the investigated planetary stage. It consists of a
carrier, five pins, and five planets with a helix angle β = 7◦. Due to the periodicity of the
system, one-fifth of the model in Figure 6 is utilized to reduce the required number of
nodes in the subsequently derived structure analysis. Table 2 includes material properties
of the planetary stage solid body components.

2.4. FEM Approximation for Structure Analysis: Meshing

Figure 7a shows that the planet is divided into two parts. The inner structure (part 1)
features a cylinder geometry that can be well approximated by hexahedral meshes. The
mesh of the outer structure (part 2) can be optionally set to a tetrahedral mesh. Both
sub-structures are joint via a bonded contact to behave as a homogenous structure. The
same method of mesh generation is applied to the pin shown in Figure 7b. Additionally,
pin and carrier are merged by a bonded contact.
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Table 2. Material properties.

Planet Pin Carrier

Parameter Value

Young’s Modulus, MPa 210,000 210,000 176,000
Poisson’s Ratio, - 0.3 0.3 0.275

Coefficient of Thermal
Expansion, 10−6/K 12 11.1 12.5
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The position of the nodes on the sliding surface in FEM model matches the one of the
film analysis to prevent interpolation uncertainties. For the following investigations, the
sliding surface is discretized with 128 in circumferential and 32 elements in axial directions
by using the hexahedral element type. The entire unreduced FE-model features 338,241
nodes. To prove independency of the results, due to level of discretization, the number
of nodes is varied homogenously in all three space directions. Figure 8 shows predicted
radial deformation of the sliding surface at the origin of the angular coordinate for the
same load distribution on the sliding surface of the planet. Results indicate that maximum
relative deviation of radial deformation, between two levels of investigated mesh density,
is below 0.2% starting with the discretization chosen by the authors. Therefore, the impact
of structure discretization on predicted results is expected to be below the remaining
uncertainties of the entire simulation procedure.

2.5. FEM Approximation for Structure Analysis: Boundary Conditions and Mesh Forces

At the planet, a stationary mechanical equilibrium between the external mesh forces,
the gravity forces, and the film forces exists. However, numerical differences between these
forces remain and require a ‘Remote Displacement’ boundary condition, with 0 degrees of
freedom, to prevent rigid body movement. In Figure 9a, this boundary condition is applied
on the internal surface of part 2 of the planet. Figure 9b shows the bonded contact model
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for the connection between the planet carrier and planetary pins. Additionally, tapered
rolling element bearings support both sides of the planet carrier and limit movement in
radial and axial directions. The inner surface of the rotor side hub of carrier is fixed to
provoke the twist deformation due to the applied driving torque. The two cross sections of
the one-fifth model of the carrier feature cyclic periodicity boundary conditions.
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Figure 10 shows the homogenous load distribution applied at 4 nodes on each tooth
flank, and the total force components on each side of the tooth flank are included in the
Table 3.
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Figure 10. Homogenous load distribution on each tooth flank.

Table 3. Mesh load on the each tooth flank at nominal load conditions.

Parameter Ring Gear Side Sun Gear Side

Radial force Fr, kN −164 164
Tangential force Ft, kN −450 −450

Axial force Fax, kN 55.3 −55.3

3. Results
3.1. Mesh and Bearing Loads

The relations between mesh forces and the investigated static bearing loads are com-
prehensively described in part I of this study. Considering the helix angle of the helical
gear of 7◦, according to Table 1, the nominal load case corresponds to a bearing force of
Fsc = 900 kN and a moment load of Msc = 27.6 kNm. This load case exists for a relative
input torque of Tr = 100%. According to the explanations in part I, bearing force and
moment loads vary linearly with the relative input torque.

3.2. Verification of the Calculation Procedure

The procedure for consideration of planet and pin deformation, using a reduced struc-
ture model and its implementation in the planet bearing code, is verified by a comparison
to predicted deformation results of the full, unreduced structure model. This study applies
ANSYS for structure mechanical analyzes. Figure 11 shows the results of the deformation
analysis with the full structure model in ANSYS and with the reduced model in the bearing
code. In this case, the same exemplary pressure distribution is applied to both structures.
Results at the center and the bearing end show very good agreement with a maximum
deviation of 1.7 µm. Furthermore, the distribution of deviations that is not shown here
features a harmonic shape and, therefore, indicates differences of predicted rigid body
displacements without significant impact on gap contour and hydrodynamics. Conse-
quently, these results verify the application of the reduced structure model, according to
the procedure explained in Section 2.1.

3.3. Deformation Behavior of Components

The general component deformation behavior, which is already introduced in Figure 11,
is analyzed in more detail in this section. Figure 12 shows the bearing clearance, together
with the deformed contour of pin and planet, at the bearing edge (z = −150 mm) and in
the center of the bearing (z = −4.7 mm) under nominal operating conditions, according to
Table 1. In addition to these deformed components, the resultant gap contour, modifying
the shape of the lubricant gap, is depicted.
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Figure 12 indicates three major characteristics of the deformation distribution for
the two components, due to the load conditions in Figure 12a. First, the pin shows an
indentation due to the pressure load that can be clearly seen by the comparison of the
bearing clearance and the deformed pin contour in Figure 12a. Second, the pressure load
provokes a twist of the components that is well recognizable for the planet, due to its higher
flexibility. Maximum radial deformation in load direction is shifted from approximately
185◦, in the center of the bearing, to 205◦ at its front end. Third, tangential and film forces
pull the planet while the orthogonally acting radial forces push the planet. Consequently,
the planet exhibits an oval shape that also dominates the resulting gap contour.

In addition, Figure 13 shows the variation of major and minor radial clearances at the
front (z = 150 mm) and rear (z = −150 mm) of the planet gear bearing over the entire load
range. The results show that the major and minor radial clearances exhibit nearly linear
increasing and decreasing trends with rising load, respectively. Moreover, ovalization of
the two lateral bearing ends is different. Here, the rear end shows a higher level due to
larger maximum and lower minimum clearance. Figure 14 visualizes this property by
the change of the total radial deformation, which represents the sum of radial planet and
pin deformation, over the bearing width. Here, the major axis on the lateral bearing ends
are shown, additionally, to express the previously described twist of the load zone in a
three-dimensional view.
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Figure 13. Radial clearance of elastic calculation for variable relative loads (npl = 30 rpm,
Fsc = 0–900 kN, Tsup = 60 ◦C, psup = 0.2 MPa, Mbear = 0–27.6 kNm, β = 7◦).
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Figure 14. Change of ovalization of the total radial deformation field over the bearing width @ nomi-
nal operating conditions (npl = 30 rpm, Fsc = 900 kN, Tsup = 60 ◦C, psup = 0.2 MPa, Mbear = 27.6 kNm,
β = 7◦).

Figure 15 depicts radial deformation of the full three-dimensional structure model for
further analyses of deformation behavior and its major characteristics. Figure 15a visual-
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izes the planet deformation with its significant ovalization that is previously explained.
Figure 15b describes pin deformation. The global pin deformation is dominated by the
twist of the two carrier cheeks, caused by the transmitted torque in the planetary stage.
Therefore, the pin that is connected on both ends, by a crimp to the cheeks, exhibits an
s-shape deformation clearly observable in Figure 15b.
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Figure 15. Radial deformations of components of planet (a) and pin and carrier (b) in ANSYS @ nom-
inal operating conditions (npl = 30 rpm, Fsc = 900 kN, Tsup = 60 ◦C, psup = 0.2 MPa, Mbear = 27.6 kNm,
β = 7◦).

Figure 16 shows the comparison of the film thickness predicted by the rigid and the
flexible calculation. Compared to the rigidly predicted film thickness in Figure 16a,b,
the elastic calculation provides a nearly parallel film thickness with low gradients in
circumferential direction of the loaded zone in Figure 16c,d. The red marks, in the side
view in Figure 16a,c, as well as the top views in Figure 16b,d, give a deeper impact on this
difference. This behavior is typical for highly loaded contacts and incorporate a decrease
in the maximum pressure level.
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Figure 16. Film thickness of rigid (a,b) and flexible calculation (c,d) @ nominal operating conditions
with crowning #2 (npl = 30 rpm, Fsc = 900 kN, Tsup = 60 ◦C, psup = 0.2 MPa, Mbear = 27.6 kNm, β = 7◦).
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3.4. Impact of Axial Profiling Model on Bearing Considering Elastic Deformation of Components

The first part [9] of this study shows that an axial crowning #2, exhibiting a continuous
parabolic shape among the bearing width, is suitable to reduce maximum pressure and
increase minimum film thickness. In the next step, this measure is investigated consider-
ing elastic deformation. Figure 17 illustrates that comparable maximum pressures exist
with, and without, crowning at nominal operation. This result is in contrast to the rigid
one presented in [9], where essential differences are determined. In accordance with the
rigid results, the crowning #2 provides an advantage. However, the maximum pressure
of 23.6 MPa with crowning, in Figure 17b, is only 7.1% lower than the one without ax-
ial crowning. Again, the crowning provides a more homogeneous pressure profile in
lateral direction.
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Figure 17. Pressure distributions of elastic calculation at nominal operating conditions without
crowning (a) and with crowning #2 (b) (npl = 30 rpm, Fsc = 900 kN, Tsup = 60 ◦C, psup = 0.2 MPa,
Mbear = 27.6 kNm, β = 7◦).

Figure 18 shows maximum pressure and minimum film thickness for rigid and flexible
analyses for the entire speed range. The crowning #2 provides advantage in the entire load
range with increasing minimum film thickness and decreasing maximum pressure. While
the reduction in maximum pressure in Figure 18a is comparably low, as explained before,
the rise of minimum film thickness Figure 18b is significant and underlines the importance
of this measure for safe operation.

While results predicted under consideration of crowning show nearly pure hydrody-
namic operation with maximum asperity contact pressures of pc < 0.04 MPa, significant
deviations between the results for flexible and rigid geometries exist for constant clearance
in axial directions. As shown in Figure 18b, minimum film thickness increases under
consideration of deformation. Consequently, the intensity of mixed friction is reduced, and
maximum solid contact pressure decreases, according to Figure 19a. Assuming a boundary
coefficient of friction of µ = 0.03, to derive solid contact shear stress from solid contact
pressure, a notable impact of asperity contacts on maximum temperature and frictional
power loss can be observed, starting with a relative load of Tr = 50%, in Figure 19b.
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Figure 18. Comparison of maximum pressure (a) and minimum film thickness (b) between rigid and elastic calculation for
variable relative loads (npl = 30 rpm, Fsc = 0–900 kN, Tsup = 60 ◦C, psup = 0.2 MPa, Mbear = 0–27.6 kNm, β = 7◦).
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Figure 19. Comparison of maximum solid contact pressure (a) and temperature and frictional power (b) between rigid
and elastic calculation for variable relative loads without axial crowning (npl = 30 rpm, Fsc = 0–900 kN, Tsup = 60 ◦C,
psup = 0.2 MPa, Mbear = 0–27.6 kNm, β = 7◦).

3.5. Modification of the Lubricant Gap by Wear Considering Elastic Deformation of Components

To analyze the impact of flexibility on predicted wear distributions, rigid and flexible
simulations are conducted for 560 h of operation. According to part I of this study, wear is
evaluated according to Archard’s law with a wear coefficient of K = 8.5·10−9 mm3/J.

Vw =
k
H
·Fsol ·L = K·Fsol ·L (7)

It is assumed that the softer material is located on the stator side, provoking a two
dimensional variable distribution of wear on the sliding surface of the bearing that does
not feature the axial crowning.

Figure 20 includes the wear distributions for the nominal load case. In comparison
to the wear distribution predicted for rigid geometries, the flexible analysis shows three
major differences. First, the entire wear level decreases and exhibits a reduction in wear
height by approximately 40%. Second, the extent of the areas featuring wear significantly
reduces in lateral direction and concentrates more on the bearing ends. Third, the angular
span of the area with wear in a circumferential direction rises, due to the characteristic of
the deformed lubricant gap, that shows a wider region of low film thickness, according to
Figure 16c,d.
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Figure 20. Wear after 560 h run with rigid geometries (a) and under consideration of elastic deformations (b) at nominal
operating conditions (npl = 30 rpm, Fsc = 900 kN, Tsup = 60 ◦C, psup = 0.2 MPa, Mbear = 27.6 kNm, β = 7◦, t = 560 h, no
axial crowning).

Maximum pressure, determined for the flexible planet gear bearing in Figure 21b,
is only 26.7 MPa and is, therefore, approximately 38% of the one predicted for the rigid
bearing that is reported, already, in part I [9] and shown in Figure 21a. However, in
contrast to the rigid case, wear has no significant impact on maximum pressure, as film
thickness modification concentrates on the lateral bearing end and has little influence on
hydrodynamics. A comparison of Figure 17b or Figure 21b underlines this statement,
as there is no qualitative difference of the pressure distributions. Additionally, Figure 21
illustrates the extent of the load region in circumferential direction, caused by elastic
deformation and already described for film thickness, in Figure 16. Here, the two red lines
enclosing the load region in the top view of each pressure distribution show a wider range
of contact pressures in circumferential direction and a more homogenous distribution in
lateral direction for the flexible case in Figure 21b than for the rigid case in Figure 21a.
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Figure 21. Pressure distribution after 560 h with rigid geometries (a) and under consideration of elastic deformations (b) @
nominal operating conditions (np = 30 rpm, Fsc = 900 kN, Tsup = 60 ◦C, psup = 0.2 MPa, Mbear = 27.6 kNm, β = 7◦, t = 560 h,
no axial crowning).
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Figure 22 shows the film thickness of rigid and elastic calculations for the worn bearing
after 560 h. As expected, results are qualitatively comparable to the ones in Figure 16 with
the exception of the extension of the loaded area, due to wear in the rigid case. The
minimum film thicknesses of Figures 16 and 22 are summarized in Table 4. By comparing
rigid and elastic calculations, the elastic deformation of components have little impact
on predicted minimum film thickness, whereas the characteristic of the lubricant gap
significantly changes if the impact of deformation is considered.
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Figure 22. Film thickness of rigid calculation (a) and under consideration of elastic deformations (b) at nominal operating
conditions without crowning after 560 h (npl = 30 rpm, Fsc = 900 kN, Tsup = 60 ◦C, psup = 0.2 MPa, Mbear = 27.6 kNm, β = 7◦,
t = 560 h, no axial crowning).

Table 4. Minimum film thickness of rigid and elastic calculation at nominal operating conditions with crowning #2 or
without crowning after 560 h.

Parameter Rigid Calculation Elastic Calculation

Minimum film thickness with crowning #2, µm 2.6 2.748
Minimum film thickness with wear after 560 h, µm 1.55 1.75

Figure 23 shows the variation of maximum pressure and minimum film thickness
over the entire load range for rigid and elastic calculations, considering wear after 560 h.
The comparison with the unworn results from Figure 16 indicates that the wear process has
a great impact on predicted maximum film pressure for rigid geometries by decreasing its
value by almost 70%, while it modifies the flexible results less significantly, and maximum
pressure remains nearly constant. However, for the same operating conditions, minimum
film thickness increases from the theoretical value of 0.21 µm to 1.55 µm for the rigid
analysis. Concordantly, a significant rise from 1.11 µm to 1.75 µm is predicted under
consideration of flexible geometries. As this modification concentrates on the bearing edge,
it has little impact on maximum pressure.
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Figure 23. Comparison of maximum pressure (a) and minimum film thickness (b) between rigid and elastic calculation
for variable relative loads, without crowning, after 560 h (npl = 30 rpm, Fsc = 900 kN, Tsup = 60 ◦C, psup = 0.2 MPa,
Mbear = 27.6 kNm, β = 7◦, t = 560 h, no axial crowning).
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4. Discussion and Conclusions

This paper introduces a time-efficient procedure for sliding planet gear bearing analy-
sis, based on reduced structure models. The numerical procedure is verified by comparisons
to co-simulation results, determined with an unreduced structure model of a planetary
gear stage, with dimensions that are typical for wind turbine gearbox applications. Further
structure analyses with this model provide an impact on deformation behavior of the
bearing components caused by the specific load conditions of the helical gear. Under
load, the planet exhibits a characteristic ovalization of its structure that twists in lateral
direction. The pin deforms to an s-shape by the twist of the carrier cheeks it is connected
to. Moreover, both planet gear bearing components show a deformation that provokes
lower film thickness gradients in the loaded region. The modification of the lubricant gap,
generated by this behavior, leads to an enlargement of the loaded area and a reduction
in local load maxima. Consequently, consideration of structure flexibility is essential for
quantitative sliding planet gear bearing analyses.

General tendencies of the impact of an axial crowning and wear on operating behavior
match the ones predicted, based on the presumption of rigid bearing geometries, in part
I [9] of this study. However, the magnitude of their influence changes significantly, as
structure deformation modifies the shape of the lubricant gap in wide ranges. For the
investigated cases of this study, consideration of structure flexibility provides lower maxi-
mum film pressures and higher minimum film thickness. This improvement of predicted
operating behavior reduces the intensity of asperity contacts and of the wear derived from
it. Therefore, results indicate that consideration of structure deformation is also important
to predict wear-lifetime. Moreover, the modified operating behavior has to be taken into
account to characterize the bearing as a component of the entire gear system in the design
procedure. Here, the impact of the planet gear bearing properties on the gear mesh design
represents an example. In summary, part I of this study indicates that different measures
exist to optimize planet gear bearings, while part II additionally shows that a quantitative
judgement about these measures requires a consideration of structure deformation, due to
its high impact on predicted operating behavior.

The entire study uses a THD model that has been validated comprehensively for
journal bearing applications. It is adapted to the planet gear bearing case, and the procedure
for the consideration of structure deformation is verified by a full model structure analysis
in a co-simulation. However, validation of the entire procedure is not possible yet.
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