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Abstract: Erosion of tidal turbine blades in the marine environment is a major material challenge due
to the high thrust and torsional loading at the rotating surfaces, which limits the ability to harness
energy from tidal sources. Polymer–matrix composites can exhibit leading-blade edge erosion due to
marine flows containing salt and solid particles of sand. Anti-erosion coatings can be used for more
ductility at the blade surface, but the discontinuity between the coating and the stiffer composite can
be a site of failure. Therefore, it is desirable to have a polymer matrix with a gradient of toughness,
with a tougher, more ductile polymer matrix at the blade surface, transitioning gradually to the high
stiffness matrix needed to provide high composite mechanical properties. In this study, multiple
powder epoxy systems were investigated, and two were selected to manufacture unidirectional glass-
fiber-reinforced polymer (UD-GFRP) plates with different epoxy ratios at the surface and interior
plies, leading to a toughening gradient within the plate. The gradient plates were then mechanically
compared to their standard counterparts. Solid particle erosion testing was carried out at various
test conditions and parameters on UD-GFRP specimens in a slurry environment. The experiments
performed were based on a model of the UK marine environment for a typical tidal energy farm with
respect to the concentration of saltwater and the size of solid particle erodent. The morphologies
of the surfaces were examined by SEM. Erosion maps were generated based on the result showing
significant differences for materials of different stiffness in such conditions.

Keywords: glass-fiber-reinforced polymer; powder epoxy composites; gradient toughness; mechani-
cal testing; slurry erosion testing; SEM analysis

1. Introduction

Tidal stream energy in the European Union has been identified as a key pillar of
diversification of the energy supply towards clean, low-carbon renewable sources and
away from fossil fuels [1]. The ocean energy industry estimates [2] that 100 GW of wave
and tidal energy capacity can be deployed in Europe by 2050, meeting 10% of Europe’s
current electricity needs. To quote from [2], “Ocean energy produces electricity at different
times from wind and solar. It is an essential solution to help a variable wind and solar
production match with a variable power demand every hour of the day. This will become
increasingly valuable as Europe reaches 80–100% renewable electricity. Ocean energy is a
new industry, that can deliver 400,000 EU jobs by 2050, billions of euros in exports, and
industrial activity—specifically in coastal regions, where this is most needed”. The United
Kingdom possesses significant tidal resources, and the proper and full-scaled utilization of
tidal energy could provide millions of people with power for their homes.
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In contrast to wind energy, tidal energy is highly predictable and could therefore
contribute to the UK electrical grid baseload [3]. In addition, the density of water is
800 times higher than the air, leading to a 20 to 1 watt generation ratio between tidal and
air for the same turbine diameter [4,5]. Marine renewable energy aims to operate in the
harshest conditions of environments deployed, however, leading to critical thrust and
torsional loading on the tidal turbine blades [6,7]. Design, stress analysis and lifetime
prediction of tidal turbine blades based on coupon-level composite laminate static and
fatigue data has been developed [8–10] and furthered using bespoke finite element analysis
software [11,12], assisted by blade test data generated with a number of tidal device
developers [13].

There has been considerable research on the wet aging of glass and carbon fiber
composites for marine structures over recent years, and the development of ocean energy
has increased this activity, as reviewed by Alam et al. [14]. Test acceleration is usually
achieved by increasing water temperature [15], although other factors such as reduced
sample thickness or increased pressure may help to saturate samples more quickly. Weight
gain kinetics data are then used to define diffusion models, which allow water profiles in
more complex structures such as turbine blades to be estimated [16]. Relations between
water content and mechanical properties can then be used to predict long-term mechanical
behavior. This is a simplified approach; more complex methods which take account of
strong coupling between water ingress and mechanical loading, and including swelling
and viscoelastic response, are under development [17,18].

The presence of cavitation bubbles [19], silt and sand can have a major effect on the
structural integrity of the blades, but this is often overlooked in the field. Erosion protection
coatings can be applied, but they suffer from a distinct stiffness change from the composite
underneath due to the intrinsic discrete nature of coatings, leading to poor interfacial stress
transfer and ultimately decohesion [20].

In the literature of the solid particle abrasion and erosion of composite materials and
also observed in slurry conditions [21–23], there have been some well-characterized trends
observed on the performance. These include peaks in erosion as the function of impact
angle changing depending on the volume fraction of reinforcement material. What has
not been studied, however, is the change in erosion rate with impact angle for the matrix
material of varying mechanical properties.

It is generally desirable to have a tougher resin at the surface of the composite laminate,
as it is likely that erosion of the composite will be modified by a tougher surface matrix
material. In general, the tougher a resin is, the lower its mechanical stiffness, and hence the
lower will be the bulk mechanical properties (stiffness and strength) of the fiber-reinforced
composite laminate (we might envisage that the ideal design of a laminate for tidal blade
purposes would be one with a toughened resin only at the surface or close to the surface,
and with an un-toughened resin in the remainder of the laminate, which would give the
ideal mixture of surface erosion resistance with high laminate bulk mechanical properties).

When using standard liquid infusion manufacturing systems for composites, however,
it is not possible to create a layered through-thickness difference or gradient in resins
and resin properties. Design and production of structures from pre-impregnated tapes
(prepreg) of differing properties would permit this gradient, but these prepreg systems are
aimed at aerospace production in autoclaves and would be much too expensive for marine
renewable structures such as tidal turbine blades. Recent developments in the use of
powder epoxy systems for the manufacture of large, thick-section GFRP composites [24–27]
do allow the possible production of such a layered system of resin toughness through the
thickness of the blade.

The purpose of this paper is to examine the effect of solid particle erosion testing on
UD-GFRP specimens in a slurry environment, using various test conditions and parameters.
Furthermore, the novel GFRP manufacturing process using powdered epoxies will be
investigated to examine the concept of employing a toughness gradient at the surface of



Lubricants 2021, 9, 22 3 of 23

a laminate in order to study whether we can identify any modification to the possible
enhancement to resistance to erosion while leaving overall mechanical properties intact.

2. Materials and Methods
2.1. General Overview of the Different Experimental Procedures for Erosion and Mechanical
Manufacturing and Testing

In this study, both mechanical and erosion properties were investigated, leading to
different laminate configurations.

This study was performed in three steps:

• First, a screening of mechanical properties was carried out to select the best experi-
mental toughened epoxy for use as the composite matrix for the surface layer;

• Second, a mechanical compatibility study between the standard and toughened epox-
ies was carried out to determine the cohesive ability between the two resin systems;

• Third, an erosion study was completed using pure standard epoxy laminates and
through-thickness gradient epoxy laminates.

The mechanical tests in this paper rely on test standards developed for composite
materials in which the resin system is homogeneous through the thickness of the test
specimens. For the mechanical testing specimens, the laminates were manufactured with
either one resin system or a constant ratio of toughened and standard powder epoxies.
This is not the case for the erosion tests, however, where the resin system toughness was
varied through the thickness, as shown in Figure 1. Working with epoxy powders allows
the user to change the toughened to the standard epoxy ratio in a discrete manner, resulting
in a gradient through the laminate thickness, which is impossible to achieve with a liquid
infusion system. This gradient allows for much better continuity of the toughened and
un-toughened substrate layers and allows the user to avoid the interlayer decohesion
that can happen with standard toughened protection systems (especially for underwater
applications). The gradient samples in Figure 1 were compared to standard PE6405 epoxy
samples to assess the benefits of the novel processing method.
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2.2. Fibers

Composite materials are the optimum choice for making the most efficient types
of tidal turbine blades, due to their specific strength and stiffness, along with a high
fatigue resilience in water in comparison to metallic materials [28]. In this scope, glass-
fiber-reinforced polymer (GFRP) is usually a good candidate for marine turbine blade
applications due to its relatively low cost [29]. One drawback of GFRP, however, is its
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tendency to corrosion in the marine environment [30], making erosion protection even
more important for glass-fiber FRP compared to basalt and carbon FRP [31]. In this project,
two types of glass fibers were used, one for mechanical testing and one for erosion testing.
A quasi-UD (10% weight in the transverse direction) glass fabric was used for mechanical
testing (SAERTEX® E-Glass U-E-591 g/m2-1200 mm, Saerbeck, Germany), representative
of standard structural composite systems. A 100% UD-glass-fiber fabric (Johns Manville©
StarRov LFTPlus 871 E-Glass, Denver, CO, USA) was used for erosion testing purposes, as
transversal fibers would have otherwise affected the erosion behavior independently to
the epoxy powder matrix properties.

2.3. Epoxy Powders

A powder-based epoxy (PE6405) from FreiLacke (Bräunlingen, Germany) and Swiss
CMT AG (Siebnen, Switzerland) was used in this study as the un-toughened, baseline
epoxy resin. Due to a heat-activated catalyst technology, the powder epoxy provides
significant advantages compared to its liquid equivalents: low minimal viscosity, low
exotherm [24], ability to pre-shape different parts and co-cure them in a one-shot process
and stability at ambient temperature (no refrigeration requirement) [25]. These advantages
result in lower manufacturing costs and quicker production of mechanically superior
composite parts [25] compared to standard liquid epoxy-based composites.

Additionally, a set of experimental toughened epoxy powders (VPB-22, VPB-25, VPB-
26 and VPB-27) were provided by FreiLacke and Swiss CMT AG to the University of
Edinburgh and compared with the commercial PE6405. Plates were tested using the
mechanical testing procedure described further below. First, an initial screening of the
toughened powder epoxies mechanical properties as GFRP in tension (ISO 527-5) and 4-
point bending (ISO 14125) was performed in order to select the best candidate as well as to
compare to the standard powder epoxy GFRP (PE6405). Then, the most suitable toughened
epoxy candidate was mixed with the standard epoxy system at 50%, and 25% toughened
epoxy volume ratios and mechanical properties were investigated. The compatibility of
both epoxy systems was also investigated using a differential scanning calorimetry (DSC)
temperature sweep to determine both their melting and curing temperatures.

2.4. GFRP Manufacturing Procedure

Laminates measuring 280 mm × 300 mm were manufactured at the desired thickness.
In the case of erosion testing, the samples needed to be quite thick and were manufactured
at 6 mm thickness, whereas in the case of mechanical testing, the standard thickness is
2 mm. Either unidirectional (UD) or cross-ply (CP) [0◦/90◦] s fiber orientations were
laid up, the UD being used for fiber and transverse direction property measurement and
the CP being used to measure the shear response of the material. It is important that
the manufactured laminates are symmetric and balanced, meaning that plies above the
midsurface must exist in the same orientation and same distance below the midsurface.

In both cases, the fabric layers were cut to fit in a steel frame sitting on a steel plate
Figure 2. The mold was covered in PTFE for release after curing. All fabric layers were
weighted, and the powder mass of individual interply layers was determined by targeting
an overall laminate fiber volume fraction of 45%. The epoxy powder was sprinkled
homogenously on top of each fabric layer, using adequate protective equipment (full face
mask and fume hood). A steel top plate, fitting in the cavity frame and covered with PTFE,
was placed on the system. Finally, the plate was enveloped in a peel ply, breather and
vacuum bag and placed in an oven for consolidation.

The curing process was performed under a vacuum of one bar (controlled with a
pressure gauge) to remove any voids for consolidation. No other external pressure was
applied during the curing of the laminates. The curing cycle was as follows: first, the
powder is dried for 8 h at 55 ◦C to reduce the risk of the formation of micropores. Then the
temperature is increased close to the curing onset temperature, at 135 ◦C for 2 h to melt
the powder and to allow the liquid system to achieve an ideal wetting of the fabric at very
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low dynamic viscosity. The plate finally undergoes the full curing temperature, at 185 ◦C,
for 2 h and then the temperature is reduced slowly to room temperature over five hours
(Figure 2).
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2.5. Mechanical Test Procedure

All mechanical test samples were tested according to the standards displayed in
Table 1.

Table 1. Mechanical test standards and dimensions.

Test Description Nominal Sample Length
(mm)

Nominal Sample Width
(mm)

Nominal Sample Thickness
(mm)

Tensile 0◦ and 90◦

(ISO 527-4 and ISO 527-5) 250 25 2

Compression 0◦ and 90◦

(ASTM D6641) 140 13 2

4 point bending 90◦ 0◦ and
(ISO 14125-Class III) 60 15 2

Fiber volume fraction
(ASTM D2734) 10 10 2

Tension, in-plane shear, compression and 4-point bending were investigated. The fiber
volume fraction was crosschecked with burn-off.

2.6. Erosion Test Protocol

In this study, the erosion performance of six types of GFRP grades was assessed for
impact angles ranging from 15◦ to 90◦ (Figure 3). The list of these specimen types and the
test parameters selected can be seen in Tables 2 and 3 respectively. All specimens were
machined from UD glass-fabric-reinforced laminates, with a 0◦ fabric orientation. Some
specimens were machined at 45◦ and 90◦ to assess the impact of fiber angle on the erosion
behavior (Figure 4). The assessment of the erosion process was carried out by mass loss
analysis using an analytical scale with +/−0.01 mg accuracy, while a scanning electron
microscope (SEM) was used to inspect the surface defects and get more detailed results
regarding the type of erosion that seems to occur in UD-GFRP [32].
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Figure 3. Schematic of the test specimen position in respect to the exit nozzle for the range of
impingement angles tested.

Table 2. Specimen codes for erosion testing.

Specimen Codename Description

Std0 GFRP standard plate with 0◦ surface fiber orientation
Std45 GFRP standard plate with 45◦ surface fiber orientation
Std90 GFRP standard plate with 90◦ surface fiber orientation
Grd0 GFRP gradient plate with 0◦ surface fiber orientation

Grd45 GFRP gradient plate with 45◦ surface fiber orientation
Grd90 GFRP gradient plate with 90◦ surface fiber orientation

Table 3. Erosion test parameters.

Parameter Value

Impingement angle 15◦, 30◦, 45◦, 60◦, 75◦, 90◦

Solutions Salt and Sand
Salinity (wt %) 3.5

Sand concentration (wt %) 3
Test duration (min/sample) 30

Sand particle size (µm) 300–600
Impact velocity (ms−1) 9.04
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For the simulation of the erosive marine environments where tidal turbines are sited,
a slurry impingement jet rig was used, shown in Figure 5. The jet impingement rig
follows the design principles introduced by Hutchings [33]. The test rig consists of two
chambers, the slurry chamber, containing the erodent, and the water chamber, containing
water of 3.5% salinity. The water is circulated by a centrifugal pump. Using a T-shaped
venturi chamber, the slurry is mixed in with the water solution prior to the impingement.
Impingement velocity and particle concentration are controlled by changing the position
and diameter of the inlet and outlet nozzles of the T-shaped chamber. For this set of tests,
the selected impingement velocity was 9.04 m/s with a 3% sand particle concentration.
The flat specimen sits on a bracket with adjustable positioning, allowing the testing of
impingement angles ranging from 15◦ to 90◦. Following impingement, the slurry falls
back into the slurry chamber, and excess water flows into the water chamber while a mesh
keeps the particles in the slurry chamber for them to be reused throughout the 30 min
test duration.
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2.7. Sand Analysis

The erodent particles used in the test series are no. 60 high silica sand (Minerals
Marketing). In order to replicate the high wear conditions that tidal turbines can be
subjected to, 300–600 µm diameter particles are used. The sand particles were separated
using stainless steel mesh sieves of 600 µm and 300 µm grid, adhering to ISO 3310-1.

A simple and commonly used descriptor that has a validated relationship with wear
rate is circularity. The circularity factor is a function of the perimeter and the area of the 2D
image of the particle, developed by Riley in 1941 [34]. The circularity factor equation is
given as:

CF = 4πA/P2 (1)

where A is the area and P is the perimeter of the 2D image of the particle.
Based on Equation (1), the circularity factor approaches the value of 1 as the particle

shape approaches a perfect circle.
Images of particles at ×100 magnification were collected. The images were prepared

for analysis in GIMP 2.8, and Matlab was then used to measure the perimeter, area and
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circularity factor (CF). The average CF was 0.819. Since quite often in wear studies, particles
are referred to as angular or rounded without the use of a CF value, the angularity scale
of Macleod [35] was used in order to relate these terms to CF values. The angularity
scale contains particle drawings corresponding to descriptions ranging from well-rounded
to angular. These drawings were processed and analyzed following the established CF
analysis protocol. As it can be seen in Figure 6, the semi-spherical particle has a CF value
very close to the 0.819 obtained for the No. 60 silica sand.
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Figure 6. SEM image of sand particles after the experiment.

Particles used in erosion tests are subjected to repeated impacts and often shatter and
lose their angularity. These changes in shape and size can have a significant effect on the
erosion mechanism [36–38]. In order to determine if the said phenomenon was present in
the tests conducted and presented in this work, particles that were used in the 30-min long
erosion tests were collected, washed and dried. Following the pre-established protocol, at
least 30 particles were analyzed. The CF exhibited a negligible reduction to 0.809, and no
measurable size changes were detected. It appears that the ductile surface of the GFRP
tested did not cause any impinging particle deformation or shattering.

3. Results and Discussion
3.1. Epoxy Powders Calorimetry and Fiber Volume Fraction Characterization

The standard and toughened epoxy powders were investigated using DSC tests, as
shown in Figure 7, to assess the co-curing potential of both powders. First, both powders
displayed an endothermic peak representing the sintering and melting of the powders.
The standard epoxy displayed an earlier fusion onset, at approx. 51 ◦C compared to
approx. 59 ◦C for the toughened one, with melting enthalpy values of 14 J/g and 5.4 J/g
for the untoughened and toughened powders, respectively. The close melting temperature
windows allowed for a homogeneous liquid mix of both epoxies.

The curing process for both resins involved a heat-activated catalyst, allowing for
a substantial melt temperature window without any cure, enabling good consolidation
before curing. The cure onset temperature of the toughened epoxy was c. 140 ◦C while it
was c. 178 ◦C for the standard one. Although the difference is substantial, both resins were
quickly heated from 135 ◦C to 185 ◦C, allowing for co-cure compatibility. One can notice
that the exothermic curing enthalpy of the standard epoxy almost twice the value of the
enthalpy of the toughened epoxy (140 J/g to 78 J/g). The authors believe this to be due to
the toughening additive present in the toughened powder.
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Figure 7. Differential scanning calorimetry of (a) standard and (b) toughened powder epoxies for compatibility investigation.

The fiber volume fraction (FVF) was crosschecked using the burn-off method (Table 4).
It appears that the 25% toughened samples were slightly more fiber-rich than the 50%
toughened samples. The edges of the mold allowed for some resin to spill out there.
Although this was accounted for in the 45% FVF target calculation, the 50% toughened
resin was more viscous, allowing for less material to escape. Still, with an average of 46.65%
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FVF for 25% toughened and 44.8% FVF for 50% toughened, the numbers are sufficiently
close for direct comparison.

Table 4. Fiber volume fraction for both toughened powder-epoxy ratios.

Sample
Mass of

Composite
(g)

Mass of
Fibers

(g)

Volume of
Composites

(cm3)

Volume of
Fibers
(cm3)

FVF
(%)

25% Toughened (1) 1.060 0.688 0.572 0.265 46.3
25% Toughened (2) 1.103 0.723 0.592 0.278 47.0
50% Toughened (3) 1.062 0.664 0.587 0.255 43.5
50% Toughened (4) 1.371 0.865 0.754 0.333 44.1

3.2. Initial Toughened Powder Screening

The initial mechanical comparison was performed in 0◦ tension (Figure 8a), 0◦ flexure
and 90◦ flexure (Figure 8b), where 0◦ refers to the major fiber direction of the SAERTEX®

E-Glass fabric. In every case, the VPB-25 outperformed all the other toughened powder
composites, with a mean tensile strength of 427 MPa and a mean tensile modulus of
40.9 GPa. Note that the strain to failure of all 0◦ tensile specimens was approx. 2.65%
and did not vary with matrix composition, as the 0◦ fiber dominates the failure. Still, it
should be noted that all toughened powders performed poorly compared to the standard
epoxy, especially in flexure. Indeed, the toughened powders were much more viscous and
nonhomogeneous than the untoughened baseline powder (PE6405), leading to difficulties
in infiltrating the closely packed fiber bundles, thus resulting in high void percentages
and local stress and decohesion at the interface between the fiber and the matrix. Actually,
according to the manufacturer data, VPB-25 was the least viscous of the toughened powder,
with the lowest dynamic viscosity prior gel of 22 Pa.s, to be compared to the 1.26 Pa.s for
the standard resin.
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3.3. Toughened and Standard Epoxy Compatibility Study

In a second step, the compatibility of the toughened and standard powder epoxy
systems was investigated. The powders were thoroughly mixed before manufacturing into
1/1 and 1/3 (ratio of toughened to un-toughened epoxy) volume ratios and then used for
the production of glass fabric plates, as outlined in Section 2.4 above. The results in 0◦

tension highlight the large positive influence that the addition of PE6405 has on the mixed
systems (Figure 9).
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erties of glass-fabric-reinforced standard epoxy powder (PE6405) and mixed standard/toughened
powder samples at 1:1 and 3:1 volume ratios.
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It is clear from Figure 9a that the longitudinal (0◦) tensile properties are dependent on
the volume content of toughened powder-epoxy (VPB-25). The red line shows the linear
best-fit curve across the three different epoxy ratios, which is a suitable approximation
for correlating 3 data points. The relationship indicates a 0.31% drop in 0◦ stress at break
per additional volume percentage of VPB-25 toughened epoxy. Evidently, the addition of
the toughened epoxy results in a loss in material tensile strength. It is hypothesized that
this is attributed to the lower matrix stiffness, resulting in increased interfacial stresses
for the more ductile epoxy. Ultimately, the toughened samples fail at lower stress due to
the accumulation of local stress concentrations. The 0◦ tensile Young’s modulus, while
not idealized by the linear trend, does see a significant drop in stiffness with the addition
of toughened epoxy. The incorporation of 25% volume content of VPB-25 results in a
drop in stiffness by roughly 9.1%. This initial drop may be attributed to the worsened
transferability between the fiber and matrix (due to more ductile matrix). However, the
further addition of VPB-25 only sees a further drop of 2.8%, perhaps suggesting that the
degradation in stiffness plateaus towards a specific volume content of VPB-25. Nonetheless,
it is clear that both strength and stiffness drop with the incorporation of the toughened
powder-epoxy.

The 90◦ transverse tensile properties presented in Figure 9b characterize the matrix
properties under tension. These properties also degrade with increased toughened epoxy
content. It is difficult to conclude from only 3 data points whether the correlation is linear.
It appears, however, that the 90◦ Young’s modulus closely matches the best-fit curve.
Conversely, the material strength sees varying drops depending on the toughened epoxy
content, which does not match the linear trend. Indeed, the standard deviation for the
25% data point does not coincide with the best-fit line, suggesting that the relationship
is not linear for material strength. This is likely because the transverse properties are
matrix-dominated, hence why they seem less linear trends.

The longitudinal (0◦) compressive results are presented in Figure 9c The stress at break
decreases with the increased volume content of toughened epoxy and is in accordance
with the linear approximation; seeing a 0.42% drop in strength per percentage increase
in volume content of VPB-25. Interestingly, the 0◦ compressive Young’s modulus initially
increases at 25% VPB-25 volume content but is followed by a drop in stiffness at 50% VPB-25
volume content. The standard deviations associated with the compressive modulus values,
however, deem the spread to be inconclusive, and so the compressive test would need to be
repeated in order to validate the 0◦ compressive stiffness as a function of VPB-25 content.

It is hypothesized that the increased ductility from the toughened powder-epoxy
results in a greater interfacial mismatch in the modulus between the fiber (Ef) and the
matrix (Em). Figure 10 illustrates this difference in elastic modulus, where the modulus of
the toughened epoxy (Em2) is lower than that of the standard epoxy (Em1). As such, the
interfacial mismatch in the modulus is greater for the toughened matrix: Ef−Em1 < Ef−Em2.
It follows that with a greater modulus mismatch, larger stress concentrations may arise at
the interface between the fiber and the toughened matrix. It is argued that this mismatch,
and the induced additional stresses, could result in premature plastic yielding. Similar
effects can be seen between substrates and coating systems [20,39], and in this case, the
toughening of the epoxy may be the reason for the weakened mechanical properties.

3.4. Slurry Erosion Tests

Fiber orientation plays a significant role in erosion of unidirectional GFRP; Reddy et al.
and Liu et al. [40,41] have observed that at 90◦ fiber orientation the erosion rate is greater
compared to other fiber orientations. As seen in Figure 11, at a 15◦ impingement angle, all
three standard plate specimens (Std0, Std45 and Std90) experienced a small mass gain of a
similar degree. The same behavior is also noticeable in Figure 12 at the same impingement
angle for the 0◦ and 90◦ fiber orientation gradient plate GFRP, whereas the 45◦ fiber
orientation specimen experienced mass loss instead. The high impingement velocity of
9.04 m/s combined with the acute angle of attack and ductile nature of the composites
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allowed the deposition of sand particles on the specimen surface, causing this observable
mass gain.
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Figure 11. Mass loss of GFRP standard plates with three different surface fiber orientations 0◦, 45◦ and 90◦ subjected to
erosion at 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ at 9.04 m/s impact velocity.
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Figure 12. Mass loss of GFRP gradient plates with three different fiber orientations 0◦, 45◦ and 90◦ subjected to erosion at
15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ at 9.04 m/s impact velocity.

As the impingement angle increases, there is a considerable increase in the mass
loss across all specimen types. Namely, the mass loss of Std0 increases steadily with
increasing impingement angle achieving a maximum mass loss at 60◦, after which mass
loss stabilizes. This behavior is in agreement with the solid particle erosion of GFRP results
of Fouad et al. [42] for a range of erosion times and impingement pressures. On the other
hand, Std45 and Std90 experience their highest mass loss at 75◦, followed by a deep at 90◦.

For the gradient plate GFRPs, Grd0 experiences an almost linear increase with a
maximum mass loss at a 90◦ impingement angle. Grd90 also experiences its highest mass
loss at 90◦, but after a linear increase of mass loss up to 60◦, it exhibits a considerable drop
in the mass loss at 75◦. Although polymers are fairly ductile, it is not unusual for them to
behave in a brittle manner and exhibit their highest erosion rate at the impact of an angle of
90◦ as it has also been reported by Boggarapu et al. [43]. Grd45 has more erratic behavior;
its mass loss increases at 30◦ and then decreases at 45◦, followed by a steep increase to its
maximum mass loss at 60◦, a drop at 75◦ and a minor increase at 90◦.

All the tested specimens present a fairly brittle response overall with max erosion
rates occurring at 60◦, 75◦ and 90◦ impact angle. By contrast, Sharifi et al. saw erosion
peaking at 30◦ impact angle. Although the material composition used in both studies is
similar, the completely different erosion trends can be explained by the use of a different
testing apparatus. The slurry pot rig used by Sharifi et al. [44] subjects the GFRP to different
erosion dynamics described by Clark and Burmeister [45] as particles concentrating at the
impact surface forming a sliding bed which changes the mechanism of material removal
from impact by isolated particles to abrasion by the sliding bed.

3.5. Standard versus Gradient Plate Comparison

Figures 13–15 offer a comparison between the erosion performance of standard and
gradient plates with 0◦, 45◦ and 90◦ fiber orientation at 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦

impingement angle.
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As seen in Figure 13, although both GFRP types follow a similar trend, the mass loss
of 0◦ fiber orientation gradient specimens is lower than that of the 0◦ fiber orientation
standard specimens for almost all impingement angles. At 15◦, both specimens experience
a mass gain due to the deposition of sand and salt particles, as it was confirmed by the
SEM analysis seen in Figure 16a. Mohan et al. also discovered that at lower impact
angles (15◦–30◦), samples were gaining weight due to particles getting embedded into the
material surface [22]. The high-pressure water jet impacting the specimen surface facilitates
the diffusion of saline water through the matrix. Along with the interfaces of the glass
fibers within the composite material, the matrix absorbed the saltwater. This absorption
of saltwater enabled the debonding of the glass fibers in the composite matrix, as seen
in Figure 16d [25]. As the impingement angle increases, there is a clear difference in the
erosion behavior of the two types of GFRP. At 30◦ Std0 exhibits 75% higher mass loss than
Grd0, at 45◦, 60◦ and 75◦ the mass loss difference is further increased to 112%, 98% and
110% and finally, at 90◦, the difference is reduced to 61%.

As it can be observed in Figure 14, similar to the Std0 behavior, at 15◦, Std45 exhibits
a mass gain; however, Grd45 exhibits a minute mass loss of 0.00049 g. This difference
in performance could be attributed to the denser epoxy of Grd45, which minimizes the
embedment of sand particles. At 30◦ impingement angle, there is barely any differentiation
between the two specimens, with Grd45 outperforming Std45 by merely 7%, but at 45◦, the
performance disparity becomes clear with Std45 presenting a staggering 945% higher mass
loss. This significant disparity in erosion performance can be explained by the different
damage types identified by the SEM analysis and seen in Table 5. STD45 fibers were broken
away, causing a significant mass loss, whereas the damage to GRD45 was mostly on the
matrix, indicating some level of fiber protection by the polymer. At 60◦, 75◦ and 90◦, Std45
had 22%, 195% and 70% higher mass loss, respectively, than GRD45. It appears that at the
higher impact angles, the ability of the toughened epoxy of Grd45 to absorb the kinetic
energy of the impacting erodent is intensified.
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Table 5. List of defect types based on SEM analysis.

Impingement Angle Defect Type

STD 0◦ fiber orientation

15◦ Exposed fiber, fiber fracture, particle embedment
30◦ Fiber fracture
45◦ Fiber fracture
60◦ Fiber cracking
75◦ Particle embedment, matrix cutting, fiber fracture
90◦ Fiber fragmentation, fiber cracks

STD 45◦ fiber orientation

15◦ Particle embedment, matrix cutting
30◦ Fiber fracture, fiber cracking
45◦ Fiber fragmentation
60◦ Matrix cutting, fiber fragmentation
75◦ Fiber fragmentation
90◦ Fiber fracture, fiber cracking

STD 90◦ fiber orientation

15◦ Particle embedment
30◦ Matrix cutting, fiber exposure
45◦ Matrix debonding, fiber exposure, fiber cracking
60◦ Fiber cracking
75◦ Matrix cutting, fiber fracture
90◦ Matrix cutting, fiber fragmentation

GRD 0◦ fiber orientation

15◦ Fiber exposure, fiber cracking, particle embedment
30◦ NaCl deposition, fiber cracking, matrix debonding
45◦ Matrix cutting, fiber exposure
60◦ Fiber cracking, matric cutting
75◦ Fiber cracking
90◦ Fiber fracture, matrix cutting

GRD 45◦ fiber orientation

15◦ Particle embedment
30◦ Matrix debonding
45◦ Matrix cutting, matrix debonding
60◦ Fiber fracture
75◦ Matrix debonding, fiber cracking
90◦ Particle embedment, matrix cutting, fiber fracture

GRD 90◦ fiber orientation

15◦ Fiber exposure, particle embedment
30◦ Matrix cutting, NaCl deposition
45◦ Fiber exposure, matrix debonding,
60◦ Fiber cracking, matrix cutting
75◦ Fiber fragmentation
90◦ Matrix cutting, Matrix debonding, fiber fragmentation, fiber cracking

Although both Grd0 and Grd45 exhibit a vastly superior erosion performance com-
pared to the equivalent standard plates, the same cannot be said for Grd90, as seen in
Figure 15. At 15◦ impingement angle, both Grd90 and Std90 experience mass gain, which
was also observed for the 0◦ fiber orientation specimens. At 30◦, 45◦ and 60◦ impinge-
ment angle, Grd90 exhibits 113%, 22% and 87% higher mass loss, respectively. At 75◦

and 90◦ impingement angles, though, Grd90 performs significantly better. Namely, the
Grd90 mass loss is 68% and 18% lower than that of Std90 for 75 and 90◦ impingement
angles, respectively.



Lubricants 2021, 9, 22 18 of 23

Overall, the best performing specimen was found to be Grd45 which not only had the
lowest average mass loss over the range of impingement angles, but it also had the best
performance at 15, 45 and 90◦ impingement angles.

Erosion appears to be dominated by the toughness of the matrix when the force of
the jet is perpendicular to the fibers (90◦ fiber orientation). When the force of the jet acts
parallel to the fibers (0◦ fiber orientation), the mass loss is dominated by the fibers’ erosion
resistance rather than the matrix. This is shown by the fact that the GRD materials show
significantly less mass loss at 0◦ and 45◦ fiber orientations, where there is a 100% and 50%
perpendicular component, respectively, of the force of the jet and impinging particles, with
respect to the fiber direction, whereas the GRD materials show no improvement over the
STD materials at 90◦ fiber orientation where there is no perpendicular component of the
force of the jet, with respect to the fiber direction, the jet is entirely oriented parallel to
the fibers.

As alternative means of presentation of the erosion rate results discussed, wastage
maps were drawn (Figures 17 and 18).

3.6. Surface Optical Analysis

Although mass loss measurements can help us quantify the degree of erosion, surface
analysis is required to further understand the erosion mechanisms in place. All specimens
underwent optical analysis using an S700 tungsten filament scanning electron microscope
(Hitachi) (W-SEM) after having a gold coating of roughly 5 µm thickness applied on their
surface to enable the SEM analysis since GFRP is a non-conductive material [44]. The
surface damage types that each specimen was subjected to are identified and listed in
Table 5. As seen in Table 5, GRD and STD specimens of all fiber orientations subjected to
erosion at 15◦ were found to have sand particles embedment in their surface following
testing. This phenomenon can explain the extremely low mass loss and, in some cases,
mass gain, recorded for 15◦ impingement angle erosion (Figures 11 and 12). An example of
the particle being embedded in the surface of the GFRP specimen can be seen in Figure 16a.
As the impingement angle increases, the damage mechanism changes. At 30◦, there were
no embedded particles observed. The STD specimens suffered some fiber damage in the
form of cracking and fracturing seen in Figure 16b. However, GRD specimens for the same
impact angle suffered damage to their matrix, while their fibers were mostly undamaged
(Figure 16c). At 45◦, there is still a clear difference in the damage type and intensity between
STD and GRD specimens which is also reflected by the mass loss results. STD specimens
suffer some fiber damage in the form of fiber fracture and cracking, while the damage in
GRD specimens is again mostly on the matrix as seen in Figure 16d,e respectively. At 60,
75 and 90◦ (Figure 16e–g), as it can also be seen by the mass loss results, the damage is
severe for all specimens. At these impact angles, both GRD and STD type specimens suffer
significant matrix and fiber damage without a clear pattern distinguishing their erosion
behavior based on fiber orientation or epoxy type.

3.7. Erosion Wastage Maps

Wastage maps were produced as an alternative means of damage visualization. The
construction of these maps followed the protocols described by Rasool et al. [46]. This
visualization technique can help operators predict the level of safety during tidal turbine
blade operation. The erosion wear maps describe the mass loss in (g) on both STD and
gradient plates in three different fiber orientation 0◦, 45◦ and 90◦, at a constant speed of
9.04 m/s and impact angle between 15◦ to 90◦. The color scheme of the map transitions
from the blue for low erosion to green for medium erosion and yellow for high erosion.

As seen in Figure 17, for the 0◦ fiber orientation STD plate, there is medium wastage
at 30◦ and 45◦ impingement angles, and as the impingement angle increases, the wastage
transitions to high. For the 45◦ fiber orientation STD plate, medium wastage occurs at
around 45◦ impingement angle, and it transitions to high wastage at angles greater than
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60◦ with peak wastage at 75◦. For the 90◦ fiber orientation STD plate, the wastage is fairly
low for impingement angle 15◦–65◦, and there is an abrupt increase at angles 75◦ and 90◦.
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Figure 16. SEM micrograph of GRD45 at 15◦ impingement angle (a), STD45◦ at 30◦ impingement
angle (b), GRD45 at 30◦ impingement angle (c), STD45 at 45◦ impingement angle (d), GRD45 at 45◦

impingement angle (e), GRD45 at 60◦ impingement angle (f), GRD45 at 75◦ impingement angle (g),
STD90 at 90◦ impingement angle (h).

The GRD plate wastage maps, seen in Figure 18, differ significantly. For the 0◦

fiber orientation GRD plate, the wastage appears to increase with impingement angle
transitioning to high wastage at 60◦ and peaking at 90◦ with a minor dip at 75◦. For the 45◦

fiber orientation, GRD plate wastage is low for acute impingement angles. There is high
wastage at 60◦. Then it transitions to medium wastage at higher impingement angles. For
the 90◦ fiber orientation GRD plate, the wastage is overall uniformly low, with some peaks



Lubricants 2021, 9, 22 20 of 23

of high wastage at 60◦ and 90◦ impingement angles. An easily observed difference between
the STD plates and the GRD plates is the impingement angle at which they experience their
peak erosion. STD plates’ erosion peaks at 75◦, whereas it is 60◦ for the GRD plates. GRD
plates also present overall lower wastage, but more importantly, their wastage is more
uniform throughout the spectrum of the tested impingement angles. The erosion wastage
uniformity in the GRD plates would translate to uniform erosion of blades which would
make the prediction of damage easier.
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4. Conclusions

In this study, we explored the toughening potential of a new hybrid coating/composite
material in slurry (water, salt and sand) erosion testing designed to mimic the marine
conditions experienced by the material of a tidal turbine blade.

Using a novel powder-epoxy manufacturing system, glass-fabric-reinforced laminates
were produced with a gradient in epoxy matrix toughness, where the surface subject to ma-
rine erosion had the maximum matrix toughness, while the bulk of the laminate contained
epoxy matrix with lower toughness but with higher stiffness and strength. The hypoth-
esis was that this gradient-toughening approach could maintain the overall mechanical
properties of the laminate (tensile, compressive, flexural strength) while providing more
resistance to surface erosion.
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Toughened powder epoxy systems were screened through mechanical testing as
potential candidates for erosion protection for tidal turbine blade applications. Standard
and toughened powders were then mixed, and discrete layers were placed in between
the plies of dry UD glass fabrics with different ratios, creating a toughening gradient
throughout the composite thickness. Mechanical testing was used to check the compatibility
behavior between powders. New samples with different fiber orientations were tested
using a slurry erosion system at different angles in order to create aqueous conditions
simulating the tidal turbine environment. The main discoveries are listed below:

At 15◦ impingement angle, both types of epoxy plates performed similarly, displaying
very low mass loss and sand particle embedment on the surface. At higher impingement
angles, higher mass loss values were observed, and gradient-toughened (GRD) glass-fabric-
reinforced epoxy plates generally outperformed the standard (STD) epoxy plates. The
greatest performance discrepancy was observed for 0◦ and 45◦ surface fiber orientations.
GRD plates appear to have a more ductile response to erosion, with mass loss peaking at a
60◦ impact angle compared to 90◦ for STD plates. Furthermore, their erosion performance
was more uniform across the range of tested impingement angles making the lifetime
prediction of the said materials easier.
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