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Abstract: Hydrophobic surfaces can allow a liquid to slip over the surface and can thus reduce
friction in lubricated contact working in a full film regime. Theory supports that the amount of slip
can be increased if super-hydrophobic surfaces that are composed of a textured low surface energy
material are used. In this work, polytetrafluoroethylene (PTFE) polymer samples were textured with
a femto second laser to create super-hydrophobic surfaces by machining a hexagonal network of
small circular holes with 10 and 20 µm lattice sides. The frictional behavior of these surfaces was
compared to the smooth PTFE samples. Surprisingly, the textured surfaces revealed higher friction
coefficients than the smooth surfaces. This higher friction can be explained by a change of wetting
regime due to high pressure in fluid and a possible generation of vortices in the cavities.

Keywords: surface texture; hydrophobic surface; friction; lubrication

1. Introduction

According to Holmberg and Erdemir [1], about 23% of total global energy consumption
is used to fight friction and wear. It is thus essential to propose solutions to reduce friction
in machine components. In the case of lubricated contacts, surface texturing has proven
to be efficient in several configurations to reduce friction [2,3]. For instance, by creating
a network of shallow grooves on the sliding surface, the friction and temperature in a
mechanical seal can be reduced by 50% [4,5].

Another solution to reduce friction was proposed by Spikes [6,7], which uses surfaces
on which the lubricant fluid can slip, meaning that there is no adherence between the
fluid and the surface. This slip is characterized by the slip length, which is defined as the
distance between the surface and the point at which the relative fluid velocity would vanish.
Salant and Fortier [8] showed theoretically that performance can be further improved by
combining slip and and no-slip areas on the surface. The slip area lets more fluid enter
the contact, as if the film was thicker. The heterogeneous slip/no slip bearing can thus be
compared to a pocket or a step bearing. Several authors have since performed simulations
to demonstrate the interest for this type of slip surface [9,10]. It is thus of importance to
produce surfaces with slip that can be used in lubricated applications.

In their experimental work, Zhu and Granick [11] demonstrated that fluid can slip
on a poorly wetted surface when its roughness height is lower than 6 nm. For lower
roughness level, the level of slip, which is characterized by the slip length, is controlled
by chemical interactions between the fluid and the surface; as early shown by Schnell [12].
In the case of confined flows, roughness can allow slip of the fluid [13]. Using molecular
dynamics, Huang et al. [14] found that the slip length is strongly correlated to the contact
angle formed between the solid surface and a sessile water drop. The contact angle
characterizes by a simple measurement the intensity of chemical interactions of water
with the surface. The slip length is higher when the contact angle is higher. In both
studies [11,14], the value of the slip length is a few tens of nanometers. According to
theoretical work [6–10], these surfaces could provide lower friction level when used in
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lubricated contacts. These theoretical findings were confirmed for lubricated contacts
submitted to low loads for which Choo et al. [15] found that a lower friction is obtained
with hydrophobic surfaces (contact angle higher than 90◦) than with hydrophilic surfaces
(contact angle lower than 90◦). Similarly, Guo et al. [16,17] used several types of coating
materials with different contact angles and showed that higher contact angle values lead
to a behavior corresponding to slip of the lubricant on the coated surface. In the case of
limit lubrication regime, the combination of a hydrophilic and a hydrophobic surfaces
in a water lubricated contact is also efficient to reduce friction thanks to a hydration
mechanism [18,19]. This very low film thickness lubrication corresponding to high loading
is however not considered in the present work.

A much higher contact angle can be found on natural materials that are qualified as
super-hydrophobic, such as the lotus leaf [20]. A texture is combined with a low surface
energy material to give a Cassie Baxter state where the water drop lies on the top of the
texture asperities [21]. Ou et al. [22] were able to significantly reduce water flow friction in
micro-channels by using textured surface with a surface treatment to reduce surface energy.
The slip length of these surfaces was about 20 µm. In 2006, Choi and Kim [23] created an
artificial superhydrophobic surface composed of sharp silicon asperities covered with a
layer of PTFE (PolyTetraFluoroEthylene). They tested the surfaces on a cone-and-plate
rheometer and found slip length up to 20 µm with water. If 30% of glycerin is added to
water, the slip length could reach about 50 µm. This huge slip length value can be explained
by the air trapped between the asperities, which reduces the apparent friction of the fluid
on the surface. Different surface texture patterns were tested by Srinivasan et al. [24] on
a plate-on-plate rheometer. A slip length of about 40 µm was reached in the best case.
A summary of the recent research on this topic and the slip length values obtained can be
found in the paper of Solomon et al. [25].

Super-hydrophobic surfaces appear to be a very attractive solution to reduce friction
in lubricated contacts thanks to slip length values that can be higher than the thickness
of the lubricating film. However, in the literature, these surfaces were tested in micro-
channel flows or in a rheometer where the operating conditions are barely less severe
than in lubricated contacts because there is no hydrodynamic pressure generation. In the
present work, we designed super-hydrophobic surfaces by texturing flat PTFE samples
with a femto second laser [26]. The surfaces were tested on a tribometer with different
speeds and load conditions. We then compared the results to untextured surfaces to
study the possible friction reduction provided by superhydrophobic textured surface in
hydrodynamic lubrication regime.

2. Materials and Methods
2.1. Samples

A plate of 2 mm thickness of pure polytetrafluoroethylene PTFE (Approflon, France)
was used to cut out circular samples with a manual press equipped with a cookie cutter of
10 mm in diameter. The samples were polished with an automatic polishing machine until
0.055 µm arithmetic roughness (Sa) was obtained. After the polishing step, the samples
were washed with ethanol in an ultrasonic bath for 15 min and then dried for 1 h in an
oven at a temperature of 95 ◦C. Contact angle measurements are then realized with a
semi-automatic goniometer (Krüss DSA25) by posing a drop of 5 µL on the sample surface.
For each sample, contact angle measurements are done in five different areas. The values
of contact angle were between 107◦ and 112◦ (see Figure 1), which is in agreement with the
literature [27].
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10 mm

SmoothTextured

100 µm

Sliding direction
of the counterface

Figure 1. Example of half-textured sample with 20 µm lateral texture size and sesille water drop images
on the smooth and textured areas with respective contact angles (112.8◦, 112.5◦) and (147.0◦, 147.2◦).

2.2. Surface Texturing

To increase the hydrophobicity and reach a superhydrophobic state, the surfaces of
the PTFE samples were textured. To allow a better mobility of the water on the surface,
the objective was to obtain a Cassie Baxter wetting state, when the water drop lies on the
top of the asperities, and avoid the Wenzel wetting state, when the water drop fully wets
the asperities. Restrictions need to be imposed on the geometry of the pattern to ensure
that the Cassie Baxter will be the most favorable energetic state [28]. Moreover, the texture
must withstand mechanical shear loading during the friction tests. Thus, it was decided to
create a network of cavities rather than the slender pillars or ridges that are used in the
literature [25]. In this case, the contact angle θtextured for the Cassie Baxter state satisfies
the relation:

cos θtextured = f cos θ + f − 1, (1)

where f is the ratio of the area of the top surface (out of the cavities) to the total area and
θ the contact angle for the smooth surface. To maintain a minimum material thickness
between the cavities, the surface fraction f cannot be lower than about 0.2. If θ ' 110◦, then
a contact angle of 150◦ is expected theoretically for a textured surface. The surface texture
was manufactured with a femto-second laser (Manutech, France). The minimum texture
lateral size that can be machined with the laser is 10 µm. A second set of samples with a
lateral size of 20 µm was also machined to obtain a better control of f and of the shape of
the cavities. Figure 2 shows the topography measured with a white light interferometer
(Taylor Hobson Talysurf CCI 6000) on a sample with a 10 µm pattern size and on a sample
with a 20 µm pattern size. The average depth of the pattern is about 5 µm for the small
texture and about 10 µm for the large texture.

As proposed by Salant and Fortier [8], the samples were only partially textured to
give a heterogeneous slip/no slip surface that will generate hydrodynamic lift between the
sample and the counterface. Indeed, in hydrodynamic lubrication, the lubricant is drawn
into the contact by the sliding movement of the surfaces. To maintain this lubrication
regime, part of the surfaces must form a converging space so that the outlet section of the
entrained fluid is smaller than the inlet. This design keeps the fluid film under pressure and
creates a lift force that pushes the two surfaces apart. We were inspired by this principle
by texturing only half of our samples. In this way, the lubricating film will pass through
the textured part, in which the flow of the fluid will be facilitated by the slip, unlike the
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exit (the second half of the sample was kept smooth). This will create a lift force that will
prevent contact of the two surfaces and will maintain a hydrodynamic lubrication regime
throughout the friction test. The configuration of the half textured sample is presented in
Figure 1. Three samples of each texture were manufactured and tested.

(a) (b)

Figure 2. Surface topography of the samples measured by white light interferometry: (a) Sample
with 10 µm lateral texture size. (b) Sample with 20 µm lateral texture size.

2.3. Test Rig and Experimental Conditions

The test rig that we used for these experiments is presented in Figure 3a) and schema-
tised in Figure 3b). The tribometer is composed of an horizontal arm mounted on a
frictionless air bearing allowing free vertical motion of the sample support. The polymer
sample was glued to the arm of the tribometer. Before the glue dries, the PTFE disk was
put into the contact with the counter-face, that is a smooth glass disk, to ensure perfect
alignment of the sample and the glass. After drying, a controlled load was applied by
means of a calibrated mass. Some water was poured on the glass disk to lubricate the
contact. The textured part of the sample was placed upstream with respect to the direc-
tion of rotation of the disk, which allows the lubricant to pass through the textured part
first. Once the contact is established, the glass disk is rotated by a motor mounted under
the tribometer. A displacement sensor was mounted in front of a thin elastic beam that
maintains the sample support. When the sliding starts, the elastic beam bends due to the
friction resistance of the sample/disk contact. This bending displacement was measured
by the displacement sensor and related to the frictional force of the contact by the stiffness
of the setup measured prior to the experiments.

Several sliding conditions were tested by changing the sliding speed and normal load.
The rotational speed ω of 100 rpm, 150 rpm and 200 rpm and the calibrated masses from
10 g to 70 g were used. The radial position of the sample on the disk was Rd = 0.035 m.
The test conditions are summarized in Table 1. The averaged loading pressured calculated
from the applied mass and the sample area is also indicated.

Table 1. Test conditions.

Parameter Value

Sample material PTFE
Rotating disk material Glass

Lubricant Water at 20 ◦C

Rotational speed ω (rpm) 100, 150, 200
Applied mass (g) 10, 30, 50, 70

Corresponding averaged pressure (kPa) 1.3, 3.8, 6.4, 9.0
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(a)

(b)

Figure 3. Presentation of the test rig: (a) Picture of the rig. (b) Principle of operation.

Each sample was used only once for each normal load and sliding speed combination
to avoid any wear of the surface texture. Sliding duration was set at 30 s. The friction
coefficient presented later on was averaged on the last 25 s.

2.4. Simulation Tool

A simulation tool was used to analyze the results of the test. The configuration of
the studied problem is presented in Figure 4. The sample of radius R is placed at distance
h0 from a flat surface moving along the x direction. A possibility of integrating a flatness
defect of the sample was introduced into the model by introducing two radii of curvature
R1 and R2.

R

Ry

Rx

~x

~y

h0

V

F

T

Sample

Moving plate

Figure 4. Configuration of the simulated problem.
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It is assumed that the fluid flow between the sample and the moving surface is
governed by the Reynolds equation. In addition, a mass conserving cavitation model is
used [29], leading to:

F
∂

∂x

(
h3

µ

∂D
∂x

)
+ F

∂

∂y

(
h3

µ

∂D
∂y

)
= 6V

[
∂h
∂x

+ (1− F)
∂hD
∂x

]
(2)

where h is the local film thickness and µ the fluid viscosity. F is switch function and D a
universal variable that is related to the pressure p of the fluid or its density ρ, depending if
the fluid film is cavitated. In full film zones:

F = 1, D = p, and ρ = ρ0 (3)

and in zones of cavitation:

F = 0, D =
ρ

ρ0
− 1, and p = pcav. (4)

In these equations, ρ0 is the liquid density and pcav is the cavitation pressure. The Reynolds
equation was discretized by the finite difference method and the system of equations was
solved by a direct LU decomposition method for sparse matrices. Once the pressure in the
fluid domain was calculated, the normal force N and the friction force T on the sample
were calculated.

3. Results
3.1. Sample Characterization

The contact angle results for the textured surfaces are given in Table 2. A representative
image of a water drop on a textured surface can be seen in Figure 1. As expected, the texture
significantly increased the contact angle that was initially close to 110◦ for the flat smooth
PTFE surface. The contact angle of textured surfaces reached values close to, or higher
than 150◦. This value is considered to be the threshold, above which the behavior is
superhydrophobic. Furthermore, the texture with a 20 µm lateral size gave better results
because of better precision of the laser machining and better control of the surface fraction f .

Table 2. Contact angle of water drops on texture surfaces.

Sample Spacing Static Angle

T10-1 10 µm 133 ± 1◦

T10-2 10 µm 143 ± 2◦

T10-3 10 µm 145 ± 2◦

T20-1 20 µm 147 ± 2◦

T20-2 20 µm 142 ± 2◦

T20-3 20 µm 153 ± 3◦

In addition to the contact angle characterization, the global shape of the samples was
measured with a 3D optical microscope (Alicona InfiniteFocus). It was then possible to
calculate the principal radii of curvature R1 and R2 of the surfaces of all of the samples that
we used. The results are presented in Figure 5. These results show that the samples were
not perfectly flat, with a curvature radius of about 0.5 m. This curvature induced a film
thickness variation in the contact between the sample and the glass disk of several tens of
microns. It is noteworthy that this value is significantly larger than the texture depth.



Lubricants 2021, 9, 31 7 of 13
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Figure 5. Principal curvature radii of the PTFE samples.

3.2. Friction Tests

Figure 6a presents typical tangential force signals as a function of the sliding distance
for one sample of each type (smooth, textured with a lateral spacing of 10 µm and textured
with a lateral spacing of 20 µm). Even if the average value of the tangential force is
stabilized, all the three signals exhibit some oscillations at three different frequency levels
(see Figure 6b). The high frequency corresponds to noise on the signal. The oscillation with
a period of about 0.07 s is the flexural natural frequency of the tribometer. The damping of
the fluid film is not sufficient to vanish the vibration during the test duration (30 s). Finally
an oscillation with a longer period probably induced by the revolution period of the disk
(about 0.4 s) is also viewable. The signals are averaged over 25 s to eliminate the effect of
these time oscillations.

The results of the tests presented in Figure 7 are averaged over three samples of
each category (smooth, textured with a lateral spacing of 10 µm and textured with a
lateral spacing of 20 µm). An error bar represents the variation among the three samples.
The friction coefficient is the ratio of the friction force T over the normal load N. It is
presented as a function of the duty parameter G, which is defined in the following way:

G =
2µVR

N
(5)

where V = Rdω is the linear sliding speed of the sample/disk contact.

(a) (b)

Figure 6. Measured tangential force as a function of the distance or time for three types of samples.
The loading mass is 30 g and the rotational speed is 150 rpm. (a) Tangential force versus sliding
distance for full test recording (b) Tangential force versus time during the last half second.

To highlight the evolution of the friction, a power law was fitted to each set of results.
For each sample family, the opacity of the markers is proportional to the applied load
making it possible to identify the effect of speed and load independently. Increasing
the load at a given speed makes the friction lower while increasing the speed leads at a
given load to a higher friction. For each family of samples, the friction increased with
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G, which means that the lubrication regime is mainly hydrodynamic. The variations in
friction coefficient obtained for each category can be related to the difference in shape
within the samples (see Figure 5). Unlike the expectations, the lowest friction was obtained
with the smooth surfaces, while the 10 µm spacing textured surfaces gave the highest
friction value. Although the surface texturing was expected to allow slip of the fluid on
the surface by increasing the contact angle, the results revealed that this was not the case.
One possible explanation of this surprising finding is that the flatness defects of the sample
had an influence on the results. This hypothesis will be discussed and verified in the
following section.

10−5 10−4 10−3

10−2

10−1

G

f

smooth, 10 g
smooth, 30 g
smooth, 50 g
smooth, 70 g
10 µm, 10 g
10 µm, 30 g
10 µm, 50 g
10 µm, 70 g
20 µm, 10 g
20 µm, 30 g
20 µm, 50 g
20 µm, 70 g
Fit smooth
Fit 10 µm
Fit 20 µm

Figure 7. Measured friction coefficient as a function of the duty parameter G for three type of samples.
The values are averaged from three samples of each set and the error bar is the standard deviation.
The opacity of the symbols is proportional to the load level. A power law fit curve is presented for
each category.

4. Discussion
4.1. Simulation of the Effect of Surface Curvature

According to the lubrication theory, no hydrodynamic pressure can be generated be-
tween parallel flat surfaces. However, our results showed that a hydrodynamic lubrication
regime can be reached with smooth samples. The hydrodynamic force is in fact generated
by the surface residual curvatures due to the polishing process. In addition, this force
depends on the surface curvature radii. This makes the comparison of the performance of
different samples difficult because their surfaces are not identical. To highlight the effect of
surface curvature, simulations were carried out on the configuration presented in Figure 4.
The simulations were performed for different values of the curvature radii Rx and Ry of
the sample and for different values of the central film thickness h0. The parameters that
were used in the simulations are given in Table 3.

Table 3. Parameters used for the simulation of Figure 8.

Parameter Value

Viscosity µ (Pa·s) 0.001
Averaged sliding speed V (m·s−1) 1

Sample radius R (m) 0.005
Curvature radius Rx (m) 0.1–1
Curvature radius Ry (m) 0.1–1

Domain size (m) 0.012
Number of nodes 256 × 256

Cavitation pressure pcav (Pa) 0
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The calculated friction coefficient f = T
N was presented as a function of the duty

parameter G scaled by a shape factor:

G∗ = G×
(√

RxRy

R

)a

(6)

All of the simulation results with different surface curvatures were laid on the same line
with the power law coefficient a = 0.355, as can be seen in Figure 8. When presented as a
function of this modified duty parameter G∗, the friction coefficient is independent on the
surface curvature. It is thus possible to fit the simulation results with a power law function:

f = 6.16× (G∗)0.62 (7)

10−5 10−4 10−3

10−2

10−1

G∗

f

Rx = Ry = 1 m
Rx = Ry = 0.5 m
Rx = Ry = 0.2 m
Rx = Ry = 0.1 m

Rx = 5× Ry = 0.5 m
5× Rx = Ry = 0.5 m

Fit, Equation (7)

Figure 8. Simulated friction coefficient as a function of the modified duty parameter G∗ for different
values of the surface curvature radii. A power law curve has been fitted on the results.

4.2. Discussion of the Experimental Friction Results

To remove the effect of the residual curvature of the samples, the friction coefficient is
presented as a function of G∗ in Figure 9. The power law (7) obtained from simulations has
also been added to the figure. It is interesting to see that the friction coefficient obtained
with the smooth samples S2 and S3 is in good correlation with simulation law. Meanwhile,
sample S1 gives a slightly lower friction. When the surfaces are textured, a significantly
higher friction is obtained, except for a few conditions. This observation stands for the two
configurations of texture. Although an increase of the hydrophobicity of the surfaces due
to texturing was expected to provide a better sliding of the water and to reduce friction,
the opposite is obtained here. This means that the slip of water does not take place.

An analysis of the results of the literature ([13,22,23,25]) where a friction decrease
was obtained thanks to surface texture enhancing hydrophobicity shows that in all cases
the texture was composed of pillars or ridges parallel to the flow direction. Even if an
amount of air is maintained between the texture, the fluid flow was facilitated between the
ridges and pillars. In our case, the texture is composed of cylindrical cavities. Even if these
cavities are efficient in increasing hydrophobicity and can maintain the air trapped in the
cavities, there is no easy path for the water flow.

In addition, during the simulations performed to obtain the results of Figure 8, the max-
imum fluid pressure calculated in the fluid film varied between about 6.5 kPa and 270 kPa,
depending on the value of G∗. This pressure would impact the interface between water
and the air trapped in the cavities, as shown in Figure 10. The curvature radius of the
spherical interface is given by the Laplace equation:
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Rc = γ×
(

2
p` − pg

)
(8)

where γ (=0.071 N·m−1) is the water surface tension, p` is the liquid pressure and pg is the
gas pressure. The maximum pressure differential that can withstand the interface depends
on the diameter of the hole and the value of the contact angle θ (see Figure 10). It is thus
possible to calculate a critical diameter dc of a hole from the fluid pressure resulted from
the simulations:

dc = −γ×
(

4 cos θ

p` − pg

)
. (9)

Using the pressure calculated in the simulations, it is found that dc is in the range 0.36
µm for the highest pressure value to 15 µm for the lowest pressure. The size of the texture
used in the experiments is thus not small enough to ensure the stability of the water-air
interface for all of the experimental conditions. It is thus possible for the water to fill the
cavities, either partially or completely.

10−5 10−4 10−3

10−2

10−1

G∗

f

s1
s2
s3

t10-1
t10-2
t10-3
t20-1
t20-2
t20-3

Analytical, Equation (7)

Figure 9. Friction coefficient as a function of the modified duty parameter G∗-Experimental results
and comparison to the numerically fitted curve.

Rc

pg

p` > pg

θ

d

Figure 10. Effect of the liquid pressure on the air water interface shape.

Several papers [30,31] dedicated to the simulation of fluid flow over textured surfaces
with a shape ratio (texture depth to texture width) similar to our case have demonstrated
that flow vortices can be observed in the cavities, even at a very low Reynolds number.
More particularly, Mateescu et al. [30] showed that the viscous dissipation in these vortices
leads to an increase in drag or friction even for Reynolds number values tending to zero.
The most important parameter for drag increase was shown to be the ratio of cavities
depth to film thickness. Given that it is possible for water to partially or completely fill
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the cavities due to the hydrodynamic pressure in the liquid, the air-water interface can
be destabilized thus creating water cavities (Figure 11). The results of Mateescu et al. [30]
suggest that some vortices can appear in our samples and increase the friction. In this case,
the texture would work as a labyrinth seal, contrary to what was expected.

Figure 11. Vortices in the cavities increasing the sliding friction.

5. Conclusions

In this paper, the possibility to reduce friction in a hydrodynamic lubrication regime
with superhydrophobic textured surfaces was experimentally investigated. PTFE disks
were mechanically polished and textured with a femto second laser to create a hexagonal
network of cylindrical cavities on a half of the sample’s surface. The results showed
that with cavities spacing of 10 and 20 µm, the hydrophobic character of the samples
was increased with a contact angle up to 153◦. Friction tests were conducted on these
samples and compared to the results of smooth samples of the same material. In contrast
to what was expected, these tests showed that the texture increased the friction coefficient.
The numerical simulations with Reynolds flow showed that the observed effect could not
be explained by the imperfect curvature of the sample surfaces. However, comparing our
results with the literature provided a plausible explanation in that the fluid partially or
completely filled the cavities due to high pressure in the contact. In addition, the literature
supports the hypothesis that vortices could appear in the cavities, leading to an increase
in friction due to the viscous dissipation. Indeed, the texture in our samples was applied
by creating holes instead of the pillars used by other researchers. Our texture pattern
was designed for better mechanical resistance of the surfaces to shear due to friction.
However, it seems that this type of texture modifies the flow compared to the pillar texture,
thus increasing the friction. This phenomenon can be avoided by using smaller cavities
(sub-micron scale), which would imply the need to change the machining process.
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Abbreviations
The following abbreviations are used in this manuscript:

PTFE PolyTetreFluoroEthylene
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