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Abstract: In recent years, the application of environmentally friendly cutting fluids in the metal
cutting industry has been a growing concern in all over the world. In this study, the minimum
quantity cooling lubrication (MQCL) technique, which uses very small amount of cutting oil, is
motivated to apply to the hard milling process of Hardox 500 steel. Further, rice bran oil, a natural
biodegradable oil, is used as the base fluid of Al2O3/MoS2 hybrid nanofluid. ANOVA analysis is
used to study the influences of nanoparticle concentration, cutting speed, and feed rate on surface
roughness. The obtained results indicate that good surface quality is achieved and the cutting
speed is significantly increased to 140 m/min (about 2.55–2.80 times higher than the recommended
values) due to the better cooling and lubricating effects from MQCL system and Al2O3/MoS2 hybrid
nanofluid. Moreover, the microstructure of the machined surface proves the formation of MoS2

tribo film by using Al2O3/MoS2 hybrid nanofluid, indicating that the effectiveness of each type of
nanoparticle in hybrid nanofluid has been promoted. Furthermore, the important technical guides
for machining Hardox 500 steel are provided.

Keywords: hard milling; MQCL; nanopartilces; nanofluid; Al2O3/MoS2 hybrid nanofluid; difficult-
to-cut material

1. Introduction

In recent years, there has been an increasing interest in sustainable machining, green
manufacturing, and environmentally friendly manufacturing, which promote the research
and application of new technologies to minimize negative impacts on the environment.
The field of metal cutting is also not out of this trend. In the last two decades, hard
machining technology, such as hard milling, has been successfully applied, bringing out
economic, technological, environmental characteristics. This technology has attracted the
attention not only by researchers but also by manufacturers all over the world. Especially
in the mold industry, it is now possible to directly machine hardened steel with superior
productivity compared to grinding and Electrical discharge machining (EDM) while still
remaining technical requirements for dimensional accuracy and surface quality.

Hard milling is a method of directly processing steels after heat treatment, with
high hardness (usually 45 HRC or more) [1,2]. During the hard milling process, the heat
generated from the cutting zone is very large, which is the major disadvantage of this
technology, as the large amount of heat generated accelerates cutting tool wear. Therefore,
the cutting tool materials having high hardness and good heat resistance are required as
coated carbide [3–6], ceramics [7], CBN [8], and diamond-coated inserts [9]. This causes
the tool cost to be pushed up. To overcome this problem, it is necessary to take measures to
reduce friction in the cutting zone, thereby reducing heat and improving the efficiency of
the cutting process. In addition to that, metal cutting industries use flood cooling frequently,
but the cutting process during milling is not continuous, so the use of the traditional flood
coolant condition easily leads the thermal shock and causes tool chipping or tool failure. It
greatly affects the tool life and the quality of the machined surface [5,6]. The initial solution
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is hard milling under dry condition, which also contributes to maintain the environmental
friendliness of hard milling technology, but the heat generated from the cutting zone is
very large, speeding up the wear rate, and reducing tool life and the quality of machined
surface. This not only limits the cutting conditions as well as the productivity, but also
contributes to increase machining costs. In order to overcome these problems, there have
been a number of studies that successfully applied minimum quantity lubrication (MQL)
to hard milling. MQL is a method of directly spraying cutting fluid with high-pressure air
flow into the cutting zone, thus providing superior lubrication compared to flood condition.
There have been many studies showing the lubrication efficiency of MQL through the
evaluation of the efficiency of the machining process in terms of cutting forces [10], cutting
heat, surface quality, and so on [11,12]. L.N. Lopez de Lacalle et al. [13] performed a study
on the effect of spraying cutting fluids of flood coolant and MQL conditions in high-speed
milling. In this study, the position of the MQL nozzles with relation to feed direction, tool
wear, cutting fluid consumption, and numerical simulation were investigated to point out
that the cutting fluid under flood condition was not able to reach the inner zone of the
tool teeth, but that under MQL condition can penetrate in cutting zone to help cool and
lubricate the contact surfaces as well as remove the chips. The nozzle position also plays
an important role in the effeciency of fluid spray.

In addition, due to the use of a very small amount of cutting fluid, MQL is considered
an environmentally friendly technology, which will be a promising development alternative
to wet and dry machining. The quantity of cutting fluids used in MQL technique is
approximately 95% lower than that under flood coolant [13]. Together with the use of
natural biodegradable oils as an alternative to mineral oil, this helps MQL technology
not only improve the machining efficiency such as reducing cutting forces, tool wear,
improving tool life but also retaining the properties of environmental friendliness [14], and
this is technology is very suitable for the trend of sustainable development today.

However, the heat generated from hard milling process is very large, but the cooling
efficiency of MQL is low, so the application of MQL in hard milling is still very limited,
especially for difficult-to-cut materials like hardened steel, Ni alloy, and so on [13]. Hence,
the choice of the cutting tools and cooling and lubricating condition play the very important
roles in hard milling. Some novel promising approaches have been studied and proposed
like CO2 cryogenic, MQL using nano cutting fluids, or the combination of them.

O. Pereira and his co-authors [15] studied cutting forces and tool wear in CO2 cryo-
genic combined with MQL milling of Inconel 718. The obtained results claimed that the
cutting forces reduced about 22% and tool life incresed about 57% compared to MQL
alone. Moreover, tool life prolonged about 40% and 65% when compared with external
and internal CO2 cryogenic cooling due to better lubricating performance. The authors
also studied deeply the use of external and internal CO2 cryogenic combined with MQL
(CryoMQL) to be a suitable alternative for wet machining [16,17]. Furthermore, they found
out that, from microstructure analysis, the thickness of the deformed layer under dry turn-
ing is much bigger than that under CryoMQL technique. It is proven that the CryoMQL
technique provided superior cooling and lubricating effects compared to dry condition.
The change of sub-surface microhardness under CryoMQL technique was also smaller
than that of dry machining [18]. A.Rodríguez et al. [19] used liquefied CO2 as cutting
fluid for drilling process of CFRP-Ti6Al4V aeronautical stacks. The results reveal that the
values of hole diameter diverged below 0.5% from nominal values, the cutting temperature
much reduced, hole surface quality improved, and tool life significantly extended when
compared with dry drilling.

At the same time, the application of nano cutting fluids as the base fluid of MQL
technology used in hard machining has been proven to be an alternative solution for dry
condition [20]. Nano cutting fluid is formed by mixing different types of nanoparticles
such as Al2O3, SiO2, CuO, MoS2, TiO2, CNT, and so on at a reasonable ratio. The purpose
is to improve lubricating and cooling properties of the base fluids. In addition, the presence
of nanoparticles in the solution also contributes to improving viscosity affecting on contact
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line motion and dynamic wetting [21]. Recent studies have shown the effectiveness of using
nano cutting fluid in MQL technology for machining difficult-to-cut materials. Gyoung-Ja
Lee et al. [22] concluded that diamond nanofluid contributes to reduce the coefficient of
friction by 23 wt.%, which leads to improve cutting efficiency and surface quality as well
as reduce cutting temperature compared to the pure fluid. M.K. Ahmed Ali et al. [23]
applied nano Al2O3 and TiO2 lubricant in automotive engines with different mixing ratios.
The experimental results showed that the coefficient of friction and wear decreased by
11 wt.% and 2.6 wt.%, respectively. When analyzing the wear land, the authors found
that the presence of Al2O3 nanoparticles in lubricating oil contributes to improve wear
resistance due to the formation of a protective thin layer on the part surface. Meanwhile,
TiO2 nano fluid is effective in reducing the coefficient of friction. M.K.Sinha and his co-
authors [24] studied and applied ZnO vegetable-based nanofluid with MQL technology
for grinding Inconel 718 alloy, a difficult-to-cut material. The results of the study showed
that the shear force, the coefficient of friction reduced, and the surface quality improved
due to the improvement in the lubrication performance in cutting zone even when the
cutting temperature was higher than that of flood condition. A.K. Sharma et al. [25] has
conducted an overview study of the efficiency of MQL technology applied to machining
processes using traditional pure fluids and nanofluids. The author pointed out that the
effectiveness of the application of MQL with nanofluid in milling process significantly
reduced cutting forces, cutting temperature, tool wear, and lubricant usage, and also
enhanced the machined surface quality. N.A.C. Sidik et al. [26] also carried out an overview
study of the nanofluid application for MQL technology in metal cutting processes. The
study results also showed the improvement in the friction, abrasion, and lubrication
properties as well as the coefficient of thermal conductivity. However, the author also
recommends that it is necessary to have follow-up studies to further discover and optimize
the parameters of the nanofluids, thereby maximizing the efficiency of the cutting process.

Effective application of nanofluids requires researching and investigating some basic
parameters such as base fluid type, type of nanoparticle, nanoparticle concentration, of
nanoparticle size, and morphology of nanoparticles. Pasam et al. [27] studied the effect
of MQL using the base fluid containing nanoparticles and microparticles on cutting AISI
1040 steel. The obtained results indicated that the use of fluids containing microparticles
gives higher economic efficiency in rough cutting, but for finishing, the use of nanofluids
will be better. Hegab et al. [28] studied the effect of CNT nanofluid in MQL turning of
Ti-6Al-4V alloy and concluded that the surface quality improved and the tool wear reduced
due to the improvement in lubricating and cooling properties of nanofluid. Nanoparticle
concentration and feed rate are two parameters that greatly affect the machined surface
quality. Therefore, the authors also conducted the research on the machinability of the
tool and the chip morphology during turning Inconel 718 alloy with MQL technology
using CNT and Al2O3 nanofluids [29,30]. The study results indicated that the tool machin-
ability improved, and the chip thickness reduced due to better cooling and lubricating
performance of nanofluids. However, it is necessary to have more studies on the param-
eters of nano cutting fluids so that it can be effectively and widely applied in different
machining methods.

In recent years, to meet the increasing demand for productivity and quality in metal
cutting industry, especially in the field of processing difficult-to-cut materials. This raises
new requirements for lubrication and cooling in the cutting zone but still meets new strict
environmental standards, especially for heavy machining methods generating enormous
amount of heat like hard milling and grinding. Accordingly, a new trend in nano cutting
fluid applications is to use a combination of two different types of nanoparticles suspended
in the base fluid to form a hybrid nanofluid. Such use aims to take advantage of the
most outstanding properties of each type of nanoparticle, thereby further improving the
lubricating and cooling efficiency of the base fluid [31].

There have been a number of publications showing the effectiveness of the applica-
tion of hybrid nanofluids in machining, but mainly focused on the turning process with
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MQL technique [31–33], while the studies on hard milling process with minimum quan-
tity cooling lubrication (MQCL) technique is very little information [34–36]. Therefore,
the author conducted a study on the effect of Al2O3/MoS2 hybrid nanofluid on surface
roughness in hard milling of 500 Hardox steel under MQCL condition. This type of steel
produced by SSAB company, SWEDEN [37]. Commercial hardox steel has been com-
pletely heat-treatment by the supplier, so it has the fairly high hardness, high strength,
and also high ductility as well as good wear resistance. Hence, Hardox 500 steel is widely
used in industrial practice and is grouped among the difficult-to-cut materials. Therefore,
the successful application of MQCL using Al2O3/MoS2 hybrid nanofluid to improve the
cutting efficiency of hard milling process play an important role in technical, economic,
and environmental characteristics. In this work, the investigation mainly focuses on the
effects of nanoparticle concentration, cutting speed, and feed rate on surface roughness
and surface microstructure.

2. Material and Method
2.1. Experimental Set Up

The design of experiment is shown in Figure 1. In this study, Mazak vertical center smart
530C (Yamazaki Mazak Corporation, 1-131 Takeda, Oguchi-cho, Niwa-gun, Aichi-Pref, Japan)
was used to conduct the experiments. Face mill head with the designation of SHIJIE BAP 400R-
50-22-4T was used. The TiAlN coated carbide inserts (LAMINA TECHNOLOGIES SA, Yverdon-
les-Bains, Switzerland, Available online: https://wix.laminatech.ch/img/catalog/1237.pdf
(accessed on 5 June 2019)) are APMT 1604 PDTR LT30 PVD.
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Figure 1. The experimental set up.

The MQCL nozzle named Frigid-X Sub-Zero Vortex Tool Cooling Mist System (made
by Nex Flow™, Richmond Hill, ON, Canada) was used with the rice bran oil based-
water-based Al2O3/MoS2 hybrid nanofluid. Al2O3 and MoS2 nanoparticles were made by
Soochow Hengqiu Graphene Technology Co., Ltd. (Suzhou, China) and Luoyang Tongrun
Info Technology Co., Ltd. (Luoyang, China) with the size of 30 nm (average), respectively.
To ensure the uniform suspension of Al2O3 and MoS2 nanoparticles with mixing ratio of
90:10 in rice bran oil, Ultrasons-HD ultrasonicator (JP SELECTA, Abrera, Spain) generating
600 W ultrasonic pulses at 40 kHz was used for 1 h and the obtained Al2O3/MoS2 hybrid
nanofluid was directly used for MQCL system.

https://wix.lamina tech.ch/img/catalog/1237.pdf
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SJ-210 Mitutoyo (Mitutoyo Corporation, Kawasaki, Kanagawa, Japan) was used for
measuring the surface roughness. KEYENCE VHX-6000 Digital Microscope (KEYENCE
Corporation, Osaka, Japan) was used to investigate the surface topography. In this research,
the workpiece samples of Hardox 500 steels with the dimensions of 150 ×100 ×15 mm
were used.

2.2. Experiment Design

Minitab 18.0 software (3rd floor, N03-T5 Embassy Garden, Vo Chi Cong Street, Xuan
Tao Ward, Bac Tu Liem District, Ha Noi, Vietnam) is used for the Box-Behnken experimental
design with three input machining variables and their levels are listed in Table 1. The levels
of nanoparticle concentration and feed rate were selected based on previous studies [37].
The cutting speed chosen with such a large interval is due to the following reasons. First,
Hardox 500 steel is a difficult-to-cut material because it possesses both high hardness and
ductility properties at the same time. Therefore, the cutting speed value of 80 m/min
is chosen according to the manufacturer’s recommendation and the cutting speed of
140 m/min is chosen for the purpose of investigating the cooling lubrication efficiency of
MQCL technique using Al2O3/MoS2 hybrid nanofluid as well as observing how much
improvement for productivity it is.

Table 1. Input machining variables and their levels.

Input Machining Variables Unit Symbol
Level

Low High

Nanoparticle
concentration wt.% NC 0.5 1.5

Cutting speed m/min Vc 80 140

Feed rate mm/tooth F 0.08 0.16

Table 2 summarizes the experiment design with test run order and the measured
values of surface roughness. The fixed parameters are the depth of cut of 0.12 mm, air
pressure of 0.6 MPa, flow rate of 30 mL/h. Each of the trials are repeated three times under
the same cutting condition and the average values are reported.

Table 2. The experiment design with test run order and the measured values of surface roughness.

Std
Order

Run
Order

PtType Blocks
Input Machining Variables Response Variables

NC
(wt.%)

Vc
(m/min)

F
(mm/tooth)

Ra
(µm)

1 10 2 1 0.5 80 0.12 0.162
2 2 2 1 1.5 80 0.12 0.177
3 1 2 1 0.5 140 0.12 0.136
4 18 2 1 1.5 140 0.12 0.126
5 16 2 1 0.5 110 0.08 0.118
6 22 2 1 1.5 110 0.08 0.099
7 4 2 1 0.5 110 0.16 0.156
8 24 2 1 1.5 110 0.16 0.182
9 30 2 1 1 80 0.08 0.129

10 12 2 1 1 140 0.08 0.085
11 29 2 1 1 80 0.16 0.196
12 27 2 1 1 140 0.16 0.173
13 15 0 1 1 110 0.12 0.174
14 6 0 1 1 110 0.12 0.157
15 11 0 1 1 110 0.12 0.166
16 14 2 1 0.5 80 0.12 0.167
17 5 2 1 1.5 80 0.12 0.146
18 28 2 1 0.5 140 0.12 0.159
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Table 2. Cont.

Std
Order

Run
Order

PtType Blocks
Input Machining Variables Response Variables

NC
(wt.%)

Vc
(m/min)

F
(mm/tooth)

Ra
(µm)

19 9 2 1 1.5 140 0.12 0.124
20 13 2 1 0.5 110 0.08 0.137
21 23 2 1 1.5 110 0.08 0.086
22 3 2 1 0.5 110 0.16 0.201
23 21 2 1 1.5 110 0.16 0.181
24 19 2 1 1 80 0.08 0.127
25 8 2 1 1 140 0.08 0.084
26 7 2 1 1 80 0.16 0.153
27 25 2 1 1 140 0.16 0.160
28 20 0 1 1 110 0.12 0.176
29 26 0 1 1 110 0.12 0.159
30 17 0 1 1 110 0.12 0.152

3. Results and Discussion
3.1. The Effects of Input Machining Variables on Surface Roughness

The ANOVA analysis with 95% confidence level is carried out, and the regression
model of surface roughness Ra with R2 equal to 87.76% is given below in Equation (1).
Table A1 (Appendix A) shows the result of ANOVA analysis.

Ra = −0.048−0.0046 ∗ NC + 0.00157 ∗ Vc + 1.819 ∗ F − 0.0155 ∗ NC ∗ NC

−0.000012 ∗ Vc ∗ Vc − 9.45 ∗ F ∗ F − 0.000325 ∗ NC ∗ Vc

+0.475 ∗ NC ∗ F + 0.00740 ∗ Vc ∗ F

(1)

The Pareto chart of the standardized effects with α = 0.05 for the output variable Ra,
exhibits the effects of the input machining factors shown in Figure 2. Feed rate (F) has the
strongest influence on Ra, followed by cutting speed (Vc) and nanoparticle concentration
(NC). The surface roughness value reflects the machined surface profile. These micro
peaks and valleys are the result of the cutting tool scratching over the machined surface.
Hence, as the toolpath increases, the spacing between peaks increases. In addition, Hardox
sheet also has extra-high toughness, which greatly influences on the plastic deformation of
the machined surface. Accordingly, when the toolpath increases, the plastic deformation
increases, so the surface roughness go up. That is why the amount of feed rate has the
greatest influence on the surface roughness value among the input cutting conditions.
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The quadratic effect CC (FF) shows the significant influence on the investigated
function of Ra, followed by the quadratic effect BB (VcVc). The other quadratic effects and
two-way interaction effects exhibit very little influence on Ra (Figure 3).
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Figure 3. Interaction plot of input machining factors on surface roughness Ra.

Figure 4 shows the plot of main effects of input machining factors on surface roughness
Ra. It can be seen that the feed rate has a great influence on the surface roughness values.
As the feed rate increases, the roughness values go up rapidly. Meanwhile, increasing the
nanoparticle concentration value and cutting speed helps to reduce the surface roughness.
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From the residual plots (Figure 5), it can be seen that the Normal Probability Plot
compares the probability of distribution of the residual values displayed in points with the
normal distribution displayed as a straight line. The residual values fit well to the normal
line. The histogram graph shows that the frequency of residual values centered around the
center of distribution, which can be considered according to the normal distribution law.
The versus fit graph represents the relationship between the residuals and their respective
values of the regression model. These points are distributed very randomly around the
0 line, which proves that the imported Ra data is not affected by any rule control factors
other than the input variables. The versus order graph represents the relationship between
the residuals and the order of data points. These points are distributed randomly around
the 0 line, which proves whether the imported Ra is not affected by the time factor.
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Surface and contour plots of the influence of the investigated variables on the surface
roughness values Ra are shown in Figures 6–8. For holding the feed rate of 0.12 mm/tooth,
it can be seen that using a high nano concentration of 1.5 wt.% and a large cutting speed of
140 m/min gives the minimum surface roughness (Figure 6). When keeping the cutting
speed of 110 m/min, a high nanoparticle concentration of 1.5 wt.% and a small feed
rate of 0.08 mm/tooth should be used for the minimum surface roughness (Figure 7). It
can be explained that the cutting speed is higher than the rate of plastic deformation on
the machined surface. Hence, the plastic deformation reduces, so the surface roughness
value decreases. On the other hand, using a high nanoparticle concentration means more
nanoparticles participate in the cutting zone, in which MoS2 thin film is formed and the
roller mechanism of Al2O3 nanoparticles is accelerated when increasing the cutting speed.
Accordingly, the lubricating effect is promoted, and the surface quality improves. When
keeping the nanoparticle concentration of 1.0 wt.%, the use of a large cutting speed of
140 m/min and a small feed rate of 0.08 mm/tooth bring out the minimum values of
surface roughness (Figure 8).
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Feed rate has the strongest influence on surface roughness. As it increases, Ra values
go up sharply. This result is also consistent with the general rule of the impact of feed
rate on other cutting machining methods. The concentration of nanoparticles has a great
influence on the machined surface quality. The surface quality improves with the increase
of nanoparticle concentration. The cutting speed has a little effect on the roughness Ra.
When it increases, Ra values decrease.

In Al2O3/MoS2 hybrid nanofluid, Al2O3 nanoparticles contribute to increase the
thermal conductivity of the base fluid and these particles play an important role in creating
ball roller effect [19], while MoS2 nanoparticles have the effect of increasing viscosity and
forming tribo film, which reduces the friction in the cutting zone [35,38]. In the investigated
range of nanoparticle concentration, when the nano concentration of hybrid nanofluid
increases, the concentration of MoS2 nanoparticles also rises, thus increasing the ability to
create the tribo film on the machined surface. In detail, for the concentration of the hybrid
nanofluid of 1.5 wt.%, the corresponding MoS2 nanoparticle concentration is 0.15 wt.%, so
the creation of a “thin film” on the surface is the most obvious and agrees with the previous
study [35].
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3.2. Investigation of Surface Microstructure

Figure 9 shows the microstructure of the machined surface with the MQCL condition
using two different types of base fluids including: (a) 1.5 wt.% Al2O3 nanofluid, (b) 1.5 wt.%
Al2O3/MoS2 hybrid nanofluid. It can be clearly seen that by using 1.5 wt.% Al2O3/MoS2
hybrid nanofluid, there exists a “thin bubble film” on the machined surface due to the
effect of MoS2 nanoparticles in Figure 9b, while this layer is absent when using 1.5 wt.%
Al2O3 nanofluid as shown in Figure 9a. In this study, when the concentration of the hybrid
nanofluid increases to 1.5 wt.%, the corresponding MoS2 nanoparticle concentration will
be 0.3 wt.%. Since the concentration of MoS2 particles of 0.15 wt.% is not the optimal
concentration [35], as shown in Figures 6 and 7, the surface roughness graphs continue to
decrease with the rise of nano concentration. This result is consistent with the previous
studies [35] because when the concentration of MoS2 nanoparticles increases to over 0.5
wt.%, it will adversely affect the machined surface [35,37].
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The effect of the nanoparticle concentration for using hybrid nanofluids is different
from that using only MoS2 nanofluid. MoS2 nanoparticles are effective in improving
lubricating performance, but they adversely affect the cutting process in case of using
inappropriate concentration.

The use of MoS2 nanoparticles in the Al2O3/MoS2 hybrid nanofluid with the appro-
priate ratio will benefit from the advantages and limit the disadvantages of each type of
nanoparticle. Specifically, the improvement of thermal conductivity and ball roller effects
caused by Al2O3 nanoparticles as well as the lubrication ability of MoS2 nanoparticles will
be promoted with only a small ratio in the base fluids.

On the other hand, nanoparticles suspended in cutting fluids in oil mist form will be
threats for human health, so the use of exhaust fans and a ventilation system are suggested
to remove the oil mist when applying this technique.

4. Conclusions

In this study, the effect of the Al2O3/MoS2 hybrid nanofluid with the base fluid of rice
bran oil on cutting performance and surface roughness in hard milling of Hardox 500 steel was
investigated by using ANOVA analysis applied for the Box-Behnken experimental design. The
effects of nanoparticle concentration, cutting speed, and feed rate on surface roughness has
been studied and evaluated. The initial obtained results show that, by using the Al2O3/MoS2
hybrid nanofluid, the advantages of each type of nanoparticle have been promoted.

The surface and contour plots were formed to evaluate the interacting effects of input
machining parameters on surface roughness. From these, the technical guides for machining
Hardox 500 steel were provided and led to the research direction for further investigations.
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The microstructure of machined surface under Al2O3/MoS2 hybrid nanofluid MQCL
condition was studied and compared to that under Al2O3 nanofluid MQCL condition. The
formation of thin tribo film from MoS2 nanosheet will be a very interesting finding. This
finding will be supported by the trend of using hybrid nanofluids.

Furthermore, the successful application of MQCL technology using Al2O3/MoS2
hybrid nanofluid for hard milling of Hardox 500 steel, a difficult-to-cut material, is a new
solution, which can replace dry and wet machining. Experimental results have shown
the outstanding lubrication and cooling effects which will contribute important technical
information for the machining industry.

From the obtained results, the cutting speed can be risen from 80 m/min to 140 m/min
under Al2O3/MoS2 hybrid nanofluid MQCL condition to improve the productivity while
retaining the good surface quality, which is a little bit better than that of grinding. Moreover,
the cutting speed of 140 m/min can be effectively used for hard milling of Hardox 500 steel,
which is about 2.55–2.80 times higher than those of manufacturer’s recommendations [38],
which bring out the economic and technological effectiveness.

From an environmental point of view, the application of MQCL, which uses a very
small amount of cutting oil combined with rice bran oil, a type of natural biodegradable
oil, reveals a promising solution for sustainable production.

In further work, more investigation is needed to focus on the effects of Al2O3/MoS2
hybrid nanofluid on tool wear, tool life, and cutting temperature. In addition to this, the
ratio of Al2O3/MoS2 nanoparticles will be studied.
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Appendix A

Table A1. Results of the ANOVA analysis of surface roughness Ra.

Source DF Adj SS Adj MS F-Value p-Value

Model 9 0.025516 0.002835 15.93 0.000

Linear 3 0.021606 0.007202 40.46 0.000

NC 1 0.000827 0.000827 4.64 0.044

Vc 1 0.002756 0.002756 15.49 0.001

F 1 0.018023 0.018023 101.26 0.000

Square 3 0.002368 0.000789 4.44 0.015

NC*NC 1 0.000111 0.000111 0.62 0.439

Vc*Vc 1 0.000814 0.000814 4.57 0.045

F*F 1 0.001689 0.001689 9.49 0.006
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Table A1. Cont.

Source DF Adj SS Adj MS F-Value p-Value

2-way interaction 3 0.001542 0.000514 2.89 0.061

NC*Vc 1 0.000190 0.000190 1.07 0.314

NC*F 1 0.000722 0.000722 4.06 0.058

Vc*F 1 0.000630 0.000630 3.54 0.075

Error 20 0.003560 0.000178

Lack-of-Fit 3 0.000045 0.000015 0.07 0.974

Pure Error 17 0.003515 0.000207

Total 29 0.029076
* represents the interactions between the factors.

References
1. Cappellini, C.; Attanasio, A.; Rotella, G.; Umbrello, D. Formation of white and dark layers in hard cutting: Influence of tool wear.

Int. J. Mater. Form. 2010, 3, 455–458. [CrossRef]
2. Davim, J.P. Machining of Hard Materials; Springer: London, UK, 2011.
3. Duc, T.M.; Long, T.T. Investigation of MQL-employed hard-milling process of S60C steel using coated-cemented carbide tools. J.

Mech. Eng. Autom. 2016, 6, 128–132.
4. Hassanpour, H.; Sadeghi, M.H.; Rasti, A.; Shajari, S. Investigation of surface roughness, microhardness and white layer thick-ness

in hard milling of AISI 4340 using minimum quantity lubrication. J. Cleaner Prod. 2016, 120, 124–134. [CrossRef]
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