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Abstract: This study highlights how the results from an artificial engine oil aging method compare
to used engine oil samples collected from a vehicle fleet. Additionally, this paper presents the effect
of contaminating the oil during aging with synthetic fuel alternatives on the physical and chemical
properties of artificially aged engine oil samples. A laboratory-scale artificial thermo-oxidative aging
experiment was conducted on multiple samples of commercially available formulated fully-synthetic
SAE 0W-30 engine oil. The goal of the experiment was to establish the validity of the artificially aged
samples as well as the validity of the underlying process in reproducibly fabricating small batches of
aged engine oil with comparable chemical and physical properties to real-life used oils. Eight samples
were subjected to distinct load cases (temperature, air flow rate, sample volume and aging time). Six
additional samples were subjected to an intermediate load case, with five of them contaminated with
selected conventional fuels and novel automotive fuel candidates. Conventional oil analysis was
conducted on each sample to determine oxidation, residual additive content, kinematic viscosity
and total base number. Additionally, analysis results were compared to in-use engine oil samples
through PCA. The resulting oil condition after aging is in accordance with independently published
results in terms of zinc dialkyldithiophosphate content and kinematic viscosity. Contaminated aging
with OME 3-5 resulted in a drop in antioxidant content and elevated kinematic viscosity. Based on
the comparison with in-use samples, artificial aging of 200 mL engine oil at 180 ◦C with 1 L/min air
flow for 96 h can produce similar oil conditions as mixed vehicle use for 7000 km.

Keywords: engine oil; artificial aging; method development; oil analysis

1. Introduction

Electrification in the automotive industry is a globally emerging tendency, with more
and more automakers committing to introducing an increasing amount of electric power-
trains in their commercial line-up in the near future [1–3]. However, existing vehicle fleets
and special applications (e.g., off-road, off-grid and heavy-duty) still rely heavily on inter-
nal combustion engines, which require appropriate lubrication throughout their service life.
Reaching set targets [4] for the global reduction of harmful emissions requires a systematic
approach, which incorporates novel fuel technologies that are backwards compatible with
current internal combustion powertrains. Lubricants in general are manufactured from a
base oil and a tailor-made additive package, which ensures long-term functionality and
stable lubrication properties. Modern engine oils are predominantly fully synthetic lubri-
cants, which use a poly-alpha-olefin as a base fluid and a selection of property-enhancing
functional additives, e.g., antioxidants, corrosion inhibitors, viscosity modifiers, antifoam-
ing agents, biocide agents, pressure tolerance modifiers, friction modifiers and antiwear
additives [5,6]. The complex chemical system of an engine oil continuously changes during
operation, with certain compounds oxidizing due to the elevated operation temperature,
or cracking under the high shear load between bearing surfaces [7]. Fuel dilution and
combustion by-products can also contribute to an expedited deterioration of the lubricant
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by reacting with certain additive compounds [8]. Hence, a comprehensive methodology for
testing and assessing alternative combustion fuels in terms of tribological compatibility is
necessary to ensure long-term operation and avoid damage and down-time of high-value
machinery. A previous study established the applicability of the developed equipment [9]
as well as the reproducibility of the aging process [10] for artificial aging of ultra-low
viscosity engine oil samples. This study aims to show the validity of the artificially aged
samples in terms of viscosity and oxidation properties compared to oil samples from a
fleet experiment. Additionally, this paper also presents the effect of contaminating the oil
during aging with synthetic fuel alternatives on the physical and chemical properties of
artificially aged engine oil samples.

2. Materials and Methods

An artificial lubricant aging system was developed in order to simulate engine oil
degradation. The system consists of an aging rig and corresponding methodology for
thermo-oxidative degradation. A detailed description of the system is presented in [10].
Details of the aging experiments are presented in Section 2.1. Engine oil samples were
collected and sent for chemical analysis to determine the effect of artificial aging on key
oil properties. Analysis methods are presented in Section 2.2. A comprehensive field
experiment was conducted on a passenger car fleet of 12 vehicles in order to gain a better
understanding of in-use engine oil aging. Detailed findings regarding used engine oil
chemistry have been published in an extensive research article [11], therefore will only be
presented very briefly. The fundamentals of the fleet study are described in Section 2.3.

2.1. Artificial Aging

An oil aging experiment including 8 distinct thermo-oxidative load cases was per-
formed on Shell Helix Ultra ECT C2/C3 0W-30 engine oil samples. A fractional-factorial
parametric study was set up using 4 variables at 2 levels each according to Table 1. Sample
temperature, air flow rate and sample volume were varied independently, with aging time
being confounded to temperature and flow rate. Sample names correspond to the levels of
independent variables. Samples were subjected to a cyclic thermal degradation process
composed of 12 h heating and 12 h accumulation phases. This cyclic thermo-oxidative ag-
ing procedure is based on a procedure developed by Singer et al. [12]. The system reaches a
stable set point temperature under 120 min and is able to keep sample temperatures within
±1.5 ◦C.

Table 1. Sample identifiers and corresponding parameter values for the parametric engine oil aging
experiment.

Sample ID Temperature Air Flow Rate Sample Volume Aging Time
(◦C) (L/min) (mL) (h)

A4.122 160 2.5 200 96
A4.121 160 2.5 100 96
A4.112 160 1 200 192
A4.111 160 1 100 192
A4.212 180 1 200 96
A4.211 180 1 100 96
A4.222 180 2.5 200 192
A4.221 180 2.5 100 192

A secondary study was carried out involving 5 contaminating agents (conventional
fuels and novel automotive fuel candidates) with an identical initial oil quality to the
parametric study. Contaminants were identified and selected based on a prior literature
review on alternative fuels [13]. Artificial aging was conducted on 200 mL samples at 160 ◦C
with 2 L/min air flow rate. After a 96 h preliminary aging procedure the samples were
contaminated with 5 mL of the corresponding fuels. An additional 96 h aging procedure
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was executed, where a further 15 mL of the corresponding contaminant was added to each
sample in three 5 mL doses after 24, 48 and 72 h. Sample identifiers and corresponding
contaminants are given in Table 2.

Both aging experiments were conducted in the Tribology Lab of the Department of
Internal Combustion Engines and Propulsion Technology at Széchenyi University in Győr.

Table 2. Sample identifiers and corresponding contaminants for the contaminated engine oil ag-
ing experiment.

Sample ID Contaminating Target Conc.
Agent v/v%

A3.NOC No contamination 0
A3.DMC Dimethyl carbonate (DMC) 10
A3.OME Oxymethylene dimethyl ether 3-5 (OME3-5) 10
A3.MTH Methanol (MTH) 10
A3.E25 EN228 gasoline with 25% ethanol (E25) 10
A3.R95 EN228 gasoline, RON 95 10

One major limitation of the presented experimental investigation is the lack of repeti-
tion of the artificial aging experiments. A previous study [10] has established a reproducibil-
ity with a relative deviation under 5% using the same reference oil, which was deemed to
be acceptable. Hence, to maximize the achievable gain of experience with the budgetary
constraints of the study, variety was chosen over repetition. A further limitation of the
presented methodology is the lack of mechanical shear load, and the absence of metallic
reagents during aging. These could contribute to a more realistic aging procedure, which
can also consider viscosity changes due to shear thinning and the depletion of additives
due to surface bonding and boundary layer development.

2.2. Engine Oil Analysis

Conventional oil analysis was performed on all samples after the completion of the
aging experiments. Chemical analysis was carried out by the Austrian Excellence Center
for Tribology (AC2T) in Wiener Neustadt. The following analytical methods and techniques
were utilized to determine the chemical properties of each sample:

• Oxidation and nitration were determined through Fourier-transformed infrared spec-
troscopy (FTIR) using a custom method of determining the absorption peak height at
1720 cm−1 for oxidation and at 1630 cm−1 for nitration [8].

• Residual amounts of phenolic and aminic antioxidant (AO) as well as ZDDP antiwear
additive compared to the initial amounts in the reference sample were determined
through FTIR according to a custom method, based on absorption peak heights of
3650 cm−1 for phenolic AO and 1515 cm−1 for aminic AO as well as the highest
intensity within the range 1020 to 920 cm−1 for ZDDP [8].

• Kinematic viscosity at 40 ◦C was measured by an SVM 3000 Stabinger viscometer
according to [14] and calculation of the viscosity index according to [15].

• Total base number (TBN) values were determined according to [16] by potentiometric
titration with perchloric acid utilizing a titrator equipped with an autosampler.

2.3. Fleet Study

An investigation of in-use engine oil aging was performed on a passenger car fleet of
diverse models from a German manufacturer with 2-L four-cylinder turbocharged DISI
(9 out of 12) and CIDI (3 out of 12) engines of various performance classes. Vehicles were
grouped into two distinct categories regarding their range of usage:

• Vehicles categorized as short-range were restricted to be used solely inside the perime-
ter of a given controlled speed zone (i.e., a speed limit of 50 km/h).
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• Vehicles categorized as long-range were general-use passenger cars without any
special restriction.

A factory standard oil change was performed on each vehicle before the start of the
experiment. The vehicles were filled with a VW 504.00/507.00 compliant SAE 0W-30
grade fully synthetic engine oil, which has comparable properties and chemistry to the
Shell reference oil used for the artificial aging experiments. Oil samples were taken at
regular time intervals from every vehicle during the monitoring period. An intended
sampling period of 1 month and a sampling distance of 2500 km were defined for short-
and long-range vehicles, respectively. It should be mentioned that certain vehicles were
taken for excessively long trips, which led to missed or late sample collection. In other
cases, the driver ignored the request to bring the vehicle in for sample collection. A total of
46 in-use engine oil samples were collected throughout a 6 month time period. Collected
used oil samples were analyzed through conventional (see Section 2.2) and advanced
analytical methods.

Additional information regarding daily usage was collected through GPS vehicle fleet
tracking. Vehicle speed and mileage values were registered every 5 s during each trip. The
experiment was conducted with random ordinary drivers, who were not aware of their
involvement. To respect general data protection regulations, no GPS coordinates were
saved for analysis, nor was any other form of information collected that could be used to
identify individual drivers or to profile their behavior.

The aim of the fleet study was to create a baseline for engine oil aging in modern high-
performance vehicles under ordinary vehicle use conditions. Hence, a fleet comprising
various chassis types and differing engine-power classes was commissioned to facilitate
generalization of results. However, one main shortcoming of such an experimental design
is the low reproducibility. An investigation in a strictly controlled environment could
give better insight into the nuances of in-use oil aging and show how variations in, e.g.,
engine load, vehicle speed or environmental air temperature influence certain physical and
chemical properties of the lubricant.

As detailed in [11], principal component analysis (PCA) was utilized to identify the
main contributing factors and visualize relations between collected samples. A similar
approach was taken to incorporate artificially aged samples into the analysis and determine
the suitability of the aging procedure and apparatus for simulating in-vehicle engine oil
degradation. Since only conventional oil analysis was conducted on the laboratory-aged
samples, the following variables (features) were included in the PCA: oxidation, residual
antiwear additive content (ZDDP), residual antioxidant additive content (phenolic and
aminic), TBN, kinematic viscosity (@40 ◦C and @100 ◦C) and viscosity index (VI).

3. Results and Discussion

This section details findings regarding oil properties after each artificial aging experi-
ment, as well as a comparative analysis of artificially aged and in-use engine oil samples.
Results for the parametric and contaminated engine oil aging experiments are presented in
Sections 3.1 and 3.2, respectively. Results for the aging experiments and the fleet study are
compared and discussed in Section 3.3.

3.1. Chemical Analysis Results—Parametric Aging Study

Oxidation based on absorption peak height (Figure 1a) shows a clear increasing ten-
dency with increasing temperature, aging time and air flow rate. Increasing the sample
volume causes a drop in specific thermal and oxidative load, which also leads to decreased
oxidation. As anticipated, no nitration or soot content was perceived by the FTIR measure-
ment. Residual zinc dialkyldithiophosphate (ZDDP) antiwear additive content (Figure 1b)
shows a significant drop in all cases compared to the reference sample (100%). All samples
exhibit a value of around 13–15% antiwear content aside from the ones with the highest
load (180 ◦C for 192 h). These extreme load cases appear to completely deplete the antiwear
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additive content of the samples, with no measurable amount of ZDDP left in the samples
after aging.

Figure 1. (a) Comparison of respective oxidation values after the parametric artificial aging exper-
iment. (b) Comparison of respective residual antiwear additive (ZDDP) content values after the
parametric artificial aging experiment. Reference: Shell Helix Ultra ECT C2/C3 0W-30.

Residual antioxidant content shows a gradual decrease compared to the reference
oil sample. The amount of phenolic antioxidant residue (Figure 2b) is in accordance with
the previous observation of overall oxidation and shows correlating tendencies for all
samples. Regarding aminic antioxidant residues (Figure 2a), a slightly different trend can
be observed. Sample volume and air flow rate appear to have less of an impact, while
aging time causes seemingly minor variance at 160 ◦C. At 180 ◦C aging time appears to be
a prominent influencing factor, with around a 40% drop in values compared to 160 ◦C and
another 30% variance between 96 and 192 h samples.

Figure 2. (a) Comparison of respective aminic antioxidant additive residues after the parametric
artificial aging experiment. (b) Comparison of respective phenolic antioxidant additive residues after
the parametric artificial aging experiment. Reference: Shell Helix Ultra ECT C2/C3 0W-30.

Regarding kinematic viscosity at 40 ◦C (Figure 3a) each sample displays an increased
value compared to the reference. Samples aged at 160 ◦C for 96 and 192 h show comparable
values. Samples aged at 180 ◦C for 96 h exhibit similar values, whereas samples aged at
180 ◦C for 192 h show 71% to 132% increases. At 100 ◦C (Figure 3b) most values lie slightly
below or around the reference oil’s viscosity, whereas the two samples with the highest
specific thermal load and longest aging time exhibit significant increases in kinematic
viscosity values. Regarding viscosity index (Figure 4a), a highly similar tendency to aminic
residual additives was established.



Lubricants 2021, 9, 63 6 of 15

Figure 3. (a) Comparison of kinematic viscosity at 40 ◦C after the parametric artificial aging experi-
ment. (b) Comparison of kinematic viscosity at 100 ◦C after the parametric artificial aging experiment.
Reference: Shell Helix Ultra ECT C2/C3 0W-30.

Figure 4. (a) Comparison of viscosity index after the parametric artificial aging experiment.
(b) Comparison of total base number (TBN) after the parametric artificial aging experiment. Refer-
ence: Shell Helix Ultra ECT C2/C3 0W-30.

Total base number values display a moderate decrease (Figure 4b), with the most
significant change of around −41% at 180 ◦C after 96 h. One aged sample shows an
interesting outlier regarding TBN, with the lowest comparable decrease in TBN after 192 h
at 180 ◦C.

3.2. Chemical Analysis Results—Contaminated Aging Study

Contaminant type appears to have little effect on general oxidation (Figure 5a), with
negligible differences between samples. Similarly to the previously presented results, no
nitration or soot content was perceived by the FTIR measurement. Residual ZDDP content
(Figure 5b) shows comparable values for all contaminated samples, which are in accordance
with the findings of the parametric aging experiment.

Aminic (Figure 6a) and phenolic (Figure 6b) antioxidant content dropped in all samples
during aging. A maximal difference of 5% phenolic antioxidant content can be established
between samples with contaminants OME3-5 and methanol, which is marginal. Interestingly,
contaminating the oil with OME3-5 during the experiment resulted in a significant drop in
aminic antioxidant content compared to other samples. Oxymethylene ethers are known
oxidizers and are investigated as diesel fuel additives [17,18] for their ability to reduce the NOx-
soot trade-off in CIDI engines. The oxidative nature of OME3-5 could lead to a faster depletion
of certain antioxidants in the engine oil. This phenomenon needs further investigation to
understand the reaction pathways and products of OME-antioxidant interactions.
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Figure 5. (a) Comparison of respective oxidation values after the parametric artificial aging exper-
iment. (b) Comparison of respective residual antiwear additive (ZDDP) content values after the
parametric artificial aging experiment. Reference: Shell Helix Ultra ECT C2/C3 0W-30.

Figure 6. (a) Comparison of respective aminic antioxidant additive residues after the parametric
artificial aging experiment. (b) Comparison of respective phenolic antioxidant additive residues after
the parametric artificial aging experiment. Reference: Shell Helix Ultra ECT C2/C3 0W-30.

A general increase in kinematic viscosity was measured at 40 ◦C (Figure 7a). The
sample contaminated with OME3-5 shows the highest value in comparison, with a rather
significant 30% increase over the reference sample. This difference is similarly pronounced
at 100 ◦C (Figure 7b), with a 10% higher value than the reference. A nearly identical
tendency can be observed with DMC contamination, with slightly lower absolute increase
over the reference. This increase in viscosity could be attributed to increased polymerization
due to the catalytic effect of OME3-5 and DMC.

Figure 7. (a) Comparison of kinematic viscosity at 40 ◦C after the parametric artificial aging experi-
ment. (b) Comparison of kinematic viscosity at 100 ◦C after the parametric artificial aging experiment.
Reference: Shell Helix Ultra ECT C2/C3 0W-30.

Regarding viscosity index (Figure 8a), all samples measured around 172 units, which
denotes a 15% decrease compared to the reference. There seems to be no distinguishable
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effect of contaminant type on viscosity index. TBN values show (Figure 8b) an identical
trend to residual aminic antioxidants. OME3-5 contamination leads to a noticeable reduction
in total base number compared to other fuel types.

Figure 8. (a) Comparison of viscosity index after the parametric artificial aging experiment.
(b) Comparison of total base number (TBN) after the parametric artificial aging experiment. Refer-
ence: Shell Helix Ultra ECT C2/C3 0W-30.

Overall, the aging study involving alternative fuels as contaminants in the oil during
aging yielded interesting results regarding the amount of residual aminic antioxidant and
kinematic viscosity values for the sample contaminated with OME3-5. The experienced drop
in antioxidant content and elevated kinematic viscosity at both 40 ◦C and 100 ◦C suggest
an underlying chemical reaction, which needs further attention and detailed analysis, but
exceeds the scope of the current study.

3.3. Comparative Oil Chemistry Analysis

The focus of this comparison is to show the similarities and differences between field-
aged and artificially aged oil samples, and to prove or disprove the validity of the artificial
aging methodology.

Figure 9 presents a clear separation of short-range and long-range vehicles in terms
of usage patterns as expected. Further analysis reveals that vehicles with similar charac-
teristics tend to exhibit similar usage profiles. Vehicles with a diesel engine or a 185 kW
gasoline engine are larger passenger cars (E-segment and J-segment according to [19]),
which show higher average speed and trip length values and a high mileage during the
sampling period. These vehicles have comparably more passenger and luggage space,
hence were taken for long (>100 km) trips involving highways more often. Vehicles with a
221 kW gasoline engine have a smaller chassis (C-segment [19]) and show mixed usage.
Vehicles of this group have a fairly high performance variant of the gasoline engine but
lack luggage space, and were therefore taken for short (<100 km) trips. Two outliers can be
identified based on Figure 9:

• Vehicle 3 is a long-range vehicle, which had to undergo maintenance during the fleet
study, hence it only registered a mileage of 1300 km.

• Vehicle 9 has the largest luggage space from the three C-segment cars, hence it was
taken for long trips for a comparable number of times to large vehicles.

Based on this graph it can be concluded that drivers preferred to take larger vehicles
for longer trips involving high-speed road infrastructure (i.e., highway), whereas high-
performance compact vehicles were used in urban areas and on main roads.
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Figure 9. A visual representation of vehicle properties and usage through the course of the fleet
study. Bubble size represents the mileage of each corresponding vehicle. Legend colors represent
engine type and power.

Results of the PCA are presented in Figure 10. The contribution of each feature to the
principal components is shown on a loading plot (Figure 10a). Samples from the fleet study
are shaded by mileage (Figure 10b) and power (Figure 10c) on the respective score plots.
Artificially aged samples are marked with upward (parametric study) and downward
(contaminant study) facing triangles (Figure 10d). Reference oil samples are marked for
both the fleet (circle) and artificial aging (triangle) experiments. A total explained variance
of 87.56% was established, with the 1st principal component (PC1) contributing to 64.61%
of the explained variance. The 2nd principal component (PC2) explains 22.95% of variance
in the measured values in this analysis. PC1 and PC2 are interpreted as linear combinations
of previously mentioned features.

A deeper insight into the nature of in-use and artificial oil degradation can be gained
by taking a look at the loadings for each feature and the corresponding loading plot
(Figure 10a). The direction of each plotted vector shows how the corresponding feature
correlates to the two principal components. The length of each plotted vector signifies the
strength of correlation between each feature and the principal components. For PC1 the first
three features in the order of strength of correlation are residual antiwear additive content
(ZDDP, r = 0.687), residual phenolic antioxidant additive content (pheAO, r = 0.475) and
residual aminic antioxidant additive content (amiAO, r = 0.424). The first three features for
PC2 in order of correlation strength are viscosity index (VI, r = 0.729), kinematic viscosity at
40 ◦C (V40, r = 0.429) and residual phenolic antioxidant additive content (pheAO, r = 0.389).

According to the loadings it can be concluded that PC1 corresponds to residual
additive content, whereas PC2 corresponds to the change in oil viscosity. Taking into
account the previously presented values of the reference sample as well as the artificially
aged samples, it is reasonable to assume that PC1 is inversely proportional to the amount of
antioxidant and antiwear additive residues, while PC2 is inversely proportional to viscosity.
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Figure 10. Score plot of the principal component analysis with the corresponding loadings for each
feature (a), displaying the results of the PCA on in-use (b,c) and artificially aged (d) engine oil
samples. The corresponding unadulterated reference oils are marked for both studies.

As anticipated, higher mileage (Figure 10b) contributes to a significant decrease in
additive content and a mild-to-moderate decrease in kinematic viscosity, which is in accor-
dance with overall expectations. Interestingly, short-range and long-range vehicles show a
clear separation in terms of chemical properties in the PCA. Samples from vehicles with low
average trip length and average vehicle speed (short-range, Figure 9) show distinct PC2 val-
ues from long-range vehicles. However, more nuanced differences between vehicles—e.g.,
engine power—seem to have negligible effects on the investigated parameters (Figure 10c).
The largest change in viscosity was registered by a 155 kW short-range vehicle with around
2000 km mileage, whereas the most significant drop in additive content was reported
from a 185 kW long-range vehicle with approx. 17,000 km mileage. Most reported values
scatter below these extrema, regardless of engine performance. This apparent discrepancy
of engine power affecting oil degradation can be attributed to the fact that every engine
derivate includes slight modifications to ensure long-term operation without failure. A 221
kW derivate in general has improved oil cooling and a slightly higher oil charge compared
to a 155 kW derivate, in order to avoid overloading the lubricant. It is known from [11]
that incorporating soot and wear metal content into the PCA leads to a clear separation of
diesel vehicles. These were ignored in the current study, since the presented aging method
is incapable of producing such properties.

Figure 10d presents PCA score values for the artificially aged samples in relation
to the fleet study. This representation of the data gives a basic understanding of how
artificially aged samples compare to in-use samples. In terms of antiwear and antioxidant
additive residue (PC1) the artificially aged samples show comparable values, with a large
number of observations from both studies falling into the region marked by dotted lines.
Viscosity change (PC2), however, shows consistently higher values after the artificial aging
procedure. This can be attributed to the fact that in-engine oil aging is highly influenced by
fuel dilution, which was not considered in the case of the parametric aging experiments.
The elevated temperature during artificial aging contributes to the evaporation of lighter-
end hydrocarbons and results in an increase in kinematic viscosity. As for the contaminated
samples, the addition of fuels occurred at the start of each heating phase during the
second stage of the experiment. It is theorized that most of the contaminant evaporates
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during the high temperature phase, hence a dilution at the end of the experiment cannot
be measured by determining the viscosity of the sample. The mechanism of in-use fuel
dilution follows a different pathway, where contamination occurs continuously and under
moderate temperature (approx. 110 ◦C) inside the oil sump. Higher fuel dilution values
are reported when a shorter test cycle is applied to an engine in a cold (0 ◦C) environment,
while continuous operation for longer time periods yields equilibrium fuel dilution levels
around 4% [20–22].

Figure 11 presents viscosity index values plotted against residual antiwear additive
content. A similar separation to Figure 10 can be established, with artificially aged samples
showing a lower viscosity index. All artificially aged samples register slightly below the
in-use samples for antiwear additive content. This result is in accordance with the thermal
decomposition phenomenon of ZDDP antiwear additives reported by [23–25]. In-use
samples can exhibit temperatures well over 180 ◦C in an operating internal combustion
engine (e.g., piston ring and cylinder wall interaction in the TDC region [26]), however,
these circumstances affect a restricted amount of lubricant at a time. Oil is in constant flow
inside the engine between higher temperature (200–250 ◦C) load bearing regions (e.g., top
piston ring nut) and accumulates in lower temperature (<110 ◦C) relief regions (i.e., the oil
sump). According to the presented results the specific thermo-oxidative load during the
artificial aging procedure appears to be moderately higher as exhibited by the lubricant
under its common operating conditions.

Figure 11. Viscosity index plotted against residual antiwear additive content for both artificially aged
batches and samples from the fleet study.

A discernible variation in values and a better overall correlation of artificially aged and
in-use samples can be seen in Figure 12. Regarding residual phenolic antioxidant content,
all artificial aging samples exhibit values in the range of the in-use samples. Taking into
account viscosity as well, samples from the A3 series (contaminated) all scatter between
A4.111 and A4.112 (parametric). This further proves the reproducibility aspect of the
aging procedure, since these samples were exposed to nearly identical conditions in the
sense of temperature, air flow rate and initial sample volume during the corresponding
experiments. Furthermore, a strong resemblance can be found between A4.212 and multiple
in-use samples with around 7000 km mileage.
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Figure 12. Kinematic viscosity at 40 ◦C plotted against residual phenolic antioxidant additive content
for both artificially aged batches and samples from the fleet study.

As presented in [11], a fuel dilution of around 3.7 m% was found in selected samples
of short-range vehicles. Furthermore, it was shown in a simple dilution experiment [27]
that mixing 3.7 m% RON 95 gasoline into the reference oil results in comparable kinematic
viscosity and viscosity index values to the corresponding properties of a selected in-use
sample with identical dilution. This further suggests that the change in viscosity in the
case of field study samples can be partly attributed to fuel dilution. Hence, the differences
between in-use and artificial samples in terms of PC2, viscosity index and kinematic
viscosity can be explained by contrasting boundary conditions in the fuel dilution process
for the artificial and real-life scenarios. In order to simulate the accumulation of fuel in the
lubricant and the resulting change in viscosity, values of A4.112 and A4.212 were offset
by a factor of 1.1 [11] for viscosity index and 0.75 [11] for kinematic viscosity at 40 ◦C. The
resulting simulated values are plotted in Figures 11 and 12, labeled as SIM.112 and SIM.212.
The simulated higher permanent dilution—i.e., fuel administered after the aging, thus not
evaporated due to the thermal load—reduces viscosity and improves viscosity index. With
this consideration, both simulated samples present values that are close to the observations
of the fleet study in terms of viscosity index, with SIM.112 showing fairly good correlation
to short-range samples regarding phenolic antioxidants and kinematic viscosity as well.
This suggests that parameter set A4.112, with a post-aging fuel dilution of 3.7 m%, could
be utilized to create batches of artificially aged oil with similar properties to used oils from
short-range vehicles. Regarding oil aging in long-range vehicles, the parameter set A4.212
could be applicable for creating small batches of artificially aged lubricant samples from
SAE 0W-30 engine oils under laboratory conditions, which represent a used engine oil
condition of around 7000 km mileage in terms of kinematic viscosity @40 ◦C and residual
phenolic antioxidant content, and resemble used oil conditions regarding residual ZDDP
antiwear additive content.

4. Conclusions

This study aimed at presenting the applicability of the previously developed aging
equipment and implemented procedure for laboratory-scale artificial engine oil aging, as
well as the validity of resulting artificially aged samples in terms of oil condition compared
to in-use engine oil samples. An SAE 0W-30 grade commercially available fully synthetic
engine oil from Shell was used as the basis of aging experiments. Numerous artificially
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aged samples were produced with varying aging parameters and contaminant types and
analyzed through conventional FTIR spectroscopy, viscosimetry and titration. Results
were compared to the reference in terms of oxidation, residual antioxidant and antiwear
additive content, total base number, kinematic viscosity and viscosity index. Artificially
aged samples were also compared to in-use engine oil samples from a previous study using
PCA analysis. The following observations were made based on the presented results:

• The parametric aging study showed that the main contributor to engine oil oxidation
is aging temperature, followed by aging time. Sample volume, therefore specific
thermal load, also has a discernible effect; however, air flow rate during aging appears
to have only a minor impact.

• Both temperature levels of the parametric aging study appear to cause nearly identical
degradation of ZDDP antiwear additives, with comparable levels of residual content
at 160 ◦C and 180 ◦C after 96 h of aging. Samples still showed similar values after
192 h at 160 ◦C, whereas no residual antiwear additive content was found after 192 h
at 180 ◦C. This can be explained with the lack of temperature stability above 120 ◦C of
ZDDP [28] as an engine oil additive.

• Kinematic viscosity increased during the parametric aging experiment, which could
be a result of polymerized oxidation products and/or thermal polymerization of the
engine oil. This observation is in accordance with [29], and is briefly mentioned in [30].
However, a more detailed analysis is necessary to prove this assumption.

• The contaminated aging study yielded interesting results regarding the amount of
residual aminic antioxidant and kinematic viscosity values for the sample contam-
inated with OME3-5. The experienced drop in antioxidant content and elevated
kinematic viscosity at both 40 ◦C and 100 ◦C suggest an underlying chemical reaction,
which needs further attention and detailed analysis, but exceeds the scope of the
current study.

• Compared to in-use engine oil samples, both artificial aging studies show comparable
results in terms of residual phenolic antioxidant content. Based on the presented
results the parameter set A4.212 (180 ◦C, 1 L/min, 200 mL, 96 h) can be recommended
for small-scale artificial aging of engine oils. This aging procedure can create an oil
condition similar to an in-use engine oil sample after 7000 km of mixed on-road usage
in terms of kinematic viscosity at 40 ◦C, residual phenolic antioxidant content and
residual ZDDP antiwear additive content.
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Abbreviations
The following abbreviations are used in this manuscript:

SAE Society of Automotive Engineers
PCA Principal component analysis
OME Oxymethylene dimethyl ether
DMC Dimethyl carbonate
MTH Methanol
RON Research octane number
FTIR Fourier transform infrared spectroscopy
AO Antioxidant
ZDDP Zinc dialkylditiophosphate
TBN Total base number
DISI Direct injection spark ignition
CIDI Compression ignition direct injection
NOx Nitrogen oxides
PC1 Principal Component 1
PC2 Principal Component 2
VI Viscosity index
V40 Kinematic viscosity at 40 ◦C
V100 Kinematic viscosity at 100 ◦C
Oxi Oxidation
pheAO Phenolic antioxidants
amiAO Aminic antioxidants
TDC Top dead center
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