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Abstract: Many researches are focused on the tribological performances of pure vegetable oil in order
to replace the conventional mineral engine oils. This work investigates the influence of local moringa
oil (noted VO) on the performances of lubricants formed from a blend of dodecane and graphite
particles at ambient temperature. In a first part, a reduction of about 50% of friction properties of
dodecane is observed when adding small amounts of moringa oil (VO), which is intended to be
used as a bio-base performance additive in lubricant formulations. The friction properties of their
blends with graphite, generally employed as solid lubricant additive, showed an adsorption effect of
fatty acid molecules. The more promising results were obtained for the blend containing 2 w% of
VO. Physicochemical characterizations of the tribofilms evidence the good antiwear properties of
the lubricant.

Keywords: vegetable oil; graphite; additive; mixed lubrication

1. Introduction

Green lubrication presents an increasing interest in world industrial and economic
development. Indeed, commercial lubricants being petroleum-based are the subject of nu-
merous studies due to the progressive depletion of the world reserves of fossil fuels but also
owing to concern on their environmental impact. Conventional lubricants are composed of
base oil and additives conferring specific properties to the lubricant. Friction reduction ad-
ditives are used to ensure the lubricating properties in the friction boundary regime [1–5].
Other additives act on the oiliness of the lubricant [6–9]. Natural oils developed with
vegetal or animal biomass, and fats present better friction and wear performances than
mineral oils. If the use of vegetable oils as lubricant base oil is not economically possible,
the addition of vegetable oils to conventional mineral oils is interesting to improve the
tribological performances of the lubricants and to reduce its environmental impact.

Indeed, the amphiphilic properties due to the presence of fatty acids in vegetable
oils improves lubrication and antiwear performances compared to mineral or synthetic
lubricant oils. Due to their adhesion to metallic surfaces, the long chain of polar fatty
acids constituting the structure of the triacylglycerol is responsible for the interest of using
natural oils in boundary lubrication by creating a protective thin monolayer, which allows
us to reduce friction and wear of the sliding surfaces [10]. Numerous studies have been
focused on vegetable oils as surfactant molecules added to engine oils to reduce friction
in the boundary lubrication regime [11–14]. In 2018, Bahari et al. experimented with
the tribological response of vegetable oils (palm oil, soybean oil) and their blends with
mineral engine oil in a reciprocating sliding contact running in severe conditions [15].
The presence of the vegetable oil strongly influences the lubrication performances of the
mineral oil/vegetable oil blends. In 2020, Fry et al. studied the adsorption of organic
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friction modifier additives (octadecylamine, oleylamine, oleic acid and glycerol) in hexane
with a rubbing contact formed by stationary glass ball and a rotating silicon disk under
the boundary lubrication regime [16]. They showed the impact of the layer thickness and
the surface coverage depending of the molecular structure of organic friction modifier.
In 2013, Pereira et al. analyzed the natural biodegradable oils (sunflower oil, high oleic
sunflower oil, castor oil and ECO-350 recycled oil) as an alternative to traditional canola
oils used for minimum quantity of lubrication [17]. The tribo-rheological performances and
investigations of lubricants evidences that high oleic sunflower oil improves tool life and
is a feasible alternative to walk towards a total ecofriendly machining process. Moringa
oil presents a high oleic concentration, which allows it to improve oxidation stability over
many other natural oils [18]. Salaheeden (2014) and Tulashie (2019) have shown that
moringa oil is a potential source for bio-fuel due to its high concentration in oleic acid and
low concentration of polyunsaturated fatty acids [19,20]. Kerni et al. (in 2019) evaluated
the effect of nanoparticles (CuO and hBN) in different concentrations on the friction and
wear behavior of epoxidized oil; olive oil consists of 85% unsaturated fatty acids [21]. They
observed that the addition of 0.5 w% concentration of nanoparticles in olive oil results in
the exhibit minimum friction coefficient.

Many researchers have reported that the addition of graphite nanoparticles can im-
prove the tribological properties of pure oil [9,22–25]. Graphite is well known for its friction
properties due to its lamellar structure, in which carbon atoms are strongly bonded (co-
valent bonds) in graphene sheets, the layers are separated by weak Van der Waals forces.
The good friction properties of graphite are due to alignment of graphene layers parallel
to the sliding direction [26–28]. In 2015, Su et al. investigated the tribological properties
of graphite nanoparticles as LB2000 vegetable-based oil additive with a pin-on-disk fric-
tion and wear tester [29]. They show that the smaller particles allow for a lower friction
coefficient and reduce the wear volume of the disk.

The objective of this work is to investigate the possibility to use local biomass to
improve the performances and reduce the environmental impact of petroleum-based lubri-
cants. The effect of the addition of moringa oil (noted VO) as base additive, and graphite
as friction reducer is studied. Dodecane is used as base oil. In the first part, the influence of
small amounts of moringa oil (VO) in base oil has been studied. Then, three formulations of
lubricants containing different percentages of moringa oil (VO) mixed with a blend of dode-
cane and fixed weight percentage of graphite particles have been investigated. The second
part is focused on the physicochemical characterizations of the lubricant presenting the best
friction properties. Infrared spectroscopy and thermogravimetric analyses are performed
on a VO/dodecane blend before friction experiments, then Raman spectroscopy and SEM
experiments are carried out on a graphite/VO/dodecane blend in order to identify key
parameters for friction reduction.

2. Materials and Methods

Dodecane ReagentPlus 99% used in this study as base oil was provided by Sigma-
Aldrich. Vegetable oil is local moringa oil (VO) extracted by Phytobokaz Laboratory
(Guadeloupe, France). The fatty acids composition of moringa oil is presented in Table 1
(industrial analysis of Phytobokaz). VO is mainly composed with monounsaturated fatty
acid. Exfoliated graphite particles is used as a solid friction reduction additive (Timcal
Society). Graphite particles thickness is about 100 nm with an average size of 40 µm. The
ratio between size and thickness is about 400.

Blends containing 0.5, 1, 1.5 and 2 w% of VO in dodecane were prepared. The mixture
preparation consists of simply weighing with a precision of 0.01 mg. Three lubricants’
compositions were prepared by adding 1 w% of graphite in base oil composed of 1, 2 and
3 w% of VO in dodecane by the same weighing technique. The dispersion of the different
blends was obtained in ultrasonically bath during 5 min.
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Table 1. Composition of moringa oil.

Fatty Acid Methyl Ester % Mole Fraction

Palmitic C16:0 6.09
Palmitoleic C16:0 1.94

Stearic C18:0 3.77
Oleic C18:1 75.33

Linoleic C18:2 0.90
Linolenic C18:3 0.29
Arachidic C20:0 2.47
Behenic C22:0 5.67

Lignoceric C24:0 1.01

The friction properties of materials were measured at room temperature (25 ◦C) with a
reciprocating ball-on-plane tribometer consisting of a AISI 52100 steel ball rubbing against
a static AISI 52100 steel plane (Figure 1). The ball with a diameter of 1 cm was brought
in contact of the plane with a normal load of 10 N. The alternative motion of the ball
was performed with a sliding speed of 4 mm·s−1. The frequency is 1 Hz. The tangential
force FT was estimated with a computer-based data acquisition system. The friction
coefficient value was calculated as µ = FT

FN
. Two thousand friction cycles were performed,

a cycle corresponding to an alternative motion of the ball. According to Hertz theory, such
tribological conditions lead to maximum contact pressure of 1 GPa and a contact diameter
of 140 µm. The generation of multidirectional stripes favors the adherence of graphite
particles on the sliding surfaces. For all experiments, the initial roughness of the steel ball
is about 50 µm. Before friction experiments, both steel materials were successively cleaned
in ultrasonic acetone and ethanol baths. A drop of selected mixture was deposed on the
plane before the friction experiment. The blends with VO and dodecane are referred to
as liquid conditions, and the friction coefficient measured is noted µw%VO+dodecane. For
mixtures containing graphite particles, the notation is µGraphite+w%VO+dodecane.
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Figure 1. Picture of reciprocating ball on plan tribometer with a schematization of friction experiment.
SEM image of the multidirectional stripes generated on the steel plane in order to assure the presence
of solid particles in the sliding contact.

Fourier transform infrared spectroscopy (FTIR) analyses were performed to iden-
tify the functional groups in the blends using a PerkiElmer Spectrum Two spectrometer
(Waltham, MA, USA) with a range of 4000 to 50 cm−1 wave numbers and a resolution of
4 cm−1. Thermogravimetric experiments were carried out with Setaram (Caluire-et-Cuire,
France) device under argon at a heating rate of 2 ◦C/min from room temperature to 700 ◦C
of about 20 mg of sample. The same conditions were used for all the tests. The onset
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temperature (Tonset) and the maximal temperature (Tmax) were reported. The viscosity
parameter of the blends without particles was measured by a modular compact rheometer
(Anton Paar, Graz, Austria) at ambient temperature with a cone/plane contact. The cone
has a diameter of 50 mm and angle of 2◦. The plane has a diameter of 50 mm. The share
rate is 0.01 to 1000 s−1. Scanning electron microscopy (SEM) using secondary electron
imaging characterized the particles and their corresponding tribofilms with a FEI Quanta
250 microscope (Hillsboro, OR, USA). Both samples were analyzed by Raman spectroscopy
performed with a HR 800 Horiba multi-channel spectrometer (Kyoto, Japan) using a Peltier-
cooled CCD detector for signal recording. The exciting line was 532 nm wavelength line
(ND YAG laser). The steel planes were rinsed before Raman analysis in order to eliminate
the residual particles.

3. Results and Discussion
3.1. Influence of the Presence of VO as Bio-Additive

Figure 2 presents the friction coefficient obtained at 1000 cycles, and wear scar diame-
ters were measured on the ball for pure moringa oil (VO) and as a function of the percentage
of VO added in dodecane. The comparison of the wear traces diameter to the theorical one
(Hertz’s theory) allows us to evaluate wear of the ball and in consequence the antiwear
properties of the tested lubricants. The friction and wear values obtained for pure dodecane
are high; µpure dodecane = 0.18 ± 0.02 and ∅pure dodecane = 280 ± 10 µm characterizing severe
wear and friction conditions. Contrary to dodecane, the tribological properties of pure VO
are weak µpure VO = 0.070 ± 0.005 and ∅pure VO = 150 ± 10 µm confirming the excellent
properties of vegetable oils. For the VO/dodecane blends, the friction coefficients are not
as low as the one obtained for pure VO, but the influence of the presence of VO strongly
improves the tribological properties of dodecane. We observe a progressive reduction then
a stabilisation of the friction coefficient value according to the percentage of VO added
in dodecane. The friction coefficient, µ0.5w%VO+dodecane = 0.13 ± 0.010, decreases down to
0.1 ± 0.005 from the blend with 1.5 w% of VO. The wear diameter is reduced from 180 to
145 ± 5 µm as a function of the w% of VO added. These results lead us to conclude about
an excellent tribological influence of the presence of VO. Our results are in good agreement
with the literature. Bahari et al. (2018) showed that the presence of vegetable oils improves
and dominates the tribological properties of minerale/vegetable oil blends [15]. In 2021,
Ponomarenko et al. found that when sunflower oil is added to mineral transmission oil,
strong boundary layers are formed during friction reducing wear and friction [12]. At
ambient temperature, Reeves et al. (2015) demonstrated that natural oils with high oleic
acid concentration present better friction performances [30]. Fry et al. (2020) have demon-
strated that the properties of organic friction modifer (oleylamine, oleic acid . . . ) adsorbed
layers govern the friction by forming an adsorbed layer with critical thickness necessary
to provide low friction [31]. Our results also suggest a benefical effect of adsorbed film of
fatty acid molecules on the friction performances of dodecane.

On the basis of these first results, mixtures containing graphite particles in 1, 2 and
3 w% of VO/dodecane blends were prepared. Figure 3 presents the friction curves ob-
tained for the different mixtures containing 1 w% of graphite in pure VO, in pure dode-
cane and the three VO/dodecane blends. It can be interresting to note that the friction
coefficient value of pure graphite particles is µpure graphite = 0.12 ± 0.01 in our experi-
mental conditions. All the friction curves decrease during the first cycles down to a
stable value after 500 cycles, except for the mixture containing 3 w% of VO. This first
part of the friction curves can be attributed to an induction period during in which the
tribofilm is built. The curves are then quite stable until the end of the friction experi-
ment. Figure 4 recapitulates the friction coefficient values obtained with the different
mixtures containing graphite at 2000 cycles. The friction coefficient value obtained in the
presence of pure VO is µGraphite+pure VO = 0.09 ± 0.01, whereas in the presence of pure
dodecane, an important reduction is obtained, µGraphite+dodecane = 0.06 ± 0.005, imply-
ing a viscosity effect on friction properties of graphite. The friction coefficients of the
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graphite/1 w%VO/dodecane and graphite/2 w% VO/dodecane blends are closed to
the graphite/dodecane, whereas graphite/3 w% VO/dodecane presents a higher friction
coefficient. In previous studies (2021), we have demonstrated the influence of the presence
of liquid on the tribological performances of graphite [32]. Indeed, at the addition of
dodecane, an immediate and drastic reduction has been evidenced due to simultaneous
presence of liquid and particles in the sliding contact. This liquid effect is influenced by
its viscosity. An important reduction is observed in the presence of pure dodecane due to
weak viscosity υpure dodecane = 1.383 mPa·s, whereas the reduction is less with pure moringa
oil, υpure VO = 87 mPa·s. However, the viscosity of the different blends containing VO and
dodecane are similar υ1w%VO+dodecane ≈ υ2w%VO+dodecane ≈ υ3w%VO+dodecane ≈ 2.37 mPa·s
when the friction coefficient values are different in the presence of graphite. Consequently,
no specific action of viscosity can be supposed. The presence of liquid in the sliding contact
is not enough to explain the friction reduction differences. By using the Fry et al. demon-
stration about critical thickness of adsorbed organic molecules allowing low friction, we
can suppose an adsorption effect of fatty acid molecules thickness on the graphite particles
and steel surfaces. Our results suggest that the presence of weak amounts of fatty acid
molecules in dodecane governs the tribological properties of the blends.
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Moringa oil is mainly composed of unsaturated fatty acid molecules. Fatty acids
are amphiphilic molecules constituted of a hydrophilic polar part (carboxylic acid) and
a hydrophobic group (aliphatic chain). Hardy et al. (1922) showed that polar groups
adhere on the steel surfaces in contact, and the fatty acid molecules orientate vertically to
form close-packed monolayers [33]. Numerous studies in the literature are related to the
influence of friction performances of vegetable oils as a function of their fatty acid [34–37].
Sharma et al. (2009) have shown that low amounts of saturated fatty acid and high amounts
of unsaturated fatty acid result in low friction [18]. Reeves et al. (2015) have shown that
natural oils with a high percentage of oleic acid preserve low friction coefficient values and
low wear rates, because the oleic acid forms a denser and protective fatty acid monolayer
that minimizes the asperity contact [30]. Bahari et al. (2018), studying the friction and
wear responses of vegetable oil and their blends with mineral engine oils, showed that
saturated acids exhibit a lower friction coefficient than unsaturated acids, linoleic and oleic
acid [15]. All studies suggest that free fatty acids improve the lubrication properties of
vegetable oils. Moreover, Crespo et al. (2018) worked on adsorption, self-organization
and mechanical properties of different fatty acids layers under confinements states [10].
The molecule architecture of oleic acid presents one unsaturation, a double bond in cis
configuration. These results in a bent shape for the alkyl chain compared with stearic acid
in which alkyl chains are straight. On the base of our results, the thickness of the fatty
acid molecules adsorbed on the surfaces appear as a key parameter to explain the friction
properties of the lubricant. The adsorption of fatty acid molecules in the exfoliated graphite
surface has especially to be investigated. It would be investigating to add different type
of particles in VO/dodecane blends and compare the friction results. Nevertheless, the
most important point to note is that the addition of 2 w% of moringa oil to conventional
graphite/dodecane lubricant significantly improves the friction performances.

3.2. Physicochemical Characterization of the Best Mixture
3.2.1. VO/Dodecane Blends before the Friction Experiments

Physicochemical analyses of the blend with 2 w% of VO in dodecane without graphite
particles have been investigated by FTIR and TGA. FTIR technique allows us to identify
important functional groups in pure VO, which are capable to absorb metal ions. FTIR
measurement uncertainty is approximately ±3 cm−1. Figure 5 presents the FTIR spec-
trum of pure moringa oil with assignment of the different peaks [38]. Triglyceride is the
major component in moringa oil. Triglyceride functional groups can be observed around
2937 cm−1 (C–H stretching asymmetry), 2856 cm−1 (C–H stretching symmetry), 1749 cm−1

(C=O stretching), 1454 cm−1 (C–H bending scissoring), 1166 cm−1 (C–O stretching and
C–H bending) and 709 cm−1 (C–H bending rocking) [39,40]. FTIR peaks between 1400 and
1800 cm−1 are attributed to C–H bending, C=O stretching and C=C stretching groups and
are directly related to unsaturated C=C bonds: oleic and linoleic acids. In pure moringa
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oil used, the intensity of C=C peaks is very small or negligible and consequently hardly
detectable in the blend (Figure 6).
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Figure 6 shows a comparison between pure dodecane, pure VO and the blend con-
taining 2 w% of VO in dodecane. Due to low amount of VO added, the carboxylic peaks
characterizing fatty acid molecules have not been detected. FTIR spectra of the blend
is similar to that of dodecane. The VO peaks are not detectable, but the presence of
VO in dodecane have a beneficial action on the friction performances of the mixtures:
µ2w%VO+dodecane ≈ 0.1 and µGraphite+2w%VO+dodecane ≈ 0.05. The improvements are about
55% compared to performances of pure dodecane.

The influence of the presence of VO on the thermal stability properties of dodecane
has been investigated by thermogravimetry (TGA). The analyses were carried out in an
inert atmosphere of argon. Figure 7 displays the TGA curves for pure dodecane (Figure 7a),
pure VO (Figure 7b) and the blend of 2 w% of VO in dodecane (Figure 7c). Both TGA and
DTG curves reveal a high thermo-oxidative stability in pure VO. TGA curves confirmed
by the DTG curve show three distinct stages of mass loss for pure VO. The first stage is
associated with water desorption. From 30 ◦C to about 100 ◦C, only 2% of mass loss is
observed for the samples. In the case of pure dodecane, the main thermal degradation
takes place in a single continuous step with an onset temperature, Tonset-dodecane of 150 ◦C.
Dodecane boiling point is 216 ◦C. It vaporizes rapidly into the form of its gaseous species.
For pure VO, two other stages are observed in the temperature range from 300 to 500 ◦C.
These stages are related to the decomposition of the greater part of the oil components,
which probably includes fatty acids. For example, stearic acid presents a boiling point of
383 ◦C. At 500 ◦C, no residue was observed.



Lubricants 2021, 9, 65 8 of 11

Lubricants 2021, 9, x FOR PEER REVIEW 8 of 12 
 

 

Figure 6 shows a comparison between pure dodecane, pure VO and the blend con-
taining 2 w% of VO in dodecane. Due to low amount of VO added, the carboxylic peaks 
characterizing fatty acid molecules have not been detected. FTIR spectra of the blend is 
similar to that of dodecane. The VO peaks are not detectable, but the presence of VO in 
dodecane have a beneficial action on the friction performances of the mixtures: 𝜇ଶ௪%௏ைାௗ௢ௗ௘௖௔௡௘ ൎ 0.1 and 𝜇ீ௥௔௣௛௜௧௘ାଶ௪%௏ைାௗ௢ௗ௘௖௔௡௘ ൎ 0.05. The improvements are about 
55% compared to performances of pure dodecane. 

The influence of the presence of VO on the thermal stability properties of dodecane 
has been investigated by thermogravimetry (TGA). The analyses were carried out in an 
inert atmosphere of argon. Figure 7 displays the TGA curves for pure dodecane (Figure 
7a), pure VO (Figure 7b) and the blend of 2 w% of VO in dodecane (Figure 7c). Both TGA 
and DTG curves reveal a high thermo-oxidative stability in pure VO. TGA curves con-
firmed by the DTG curve show three distinct stages of mass loss for pure VO. The first 
stage is associated with water desorption. From 30 °C to about 100 °C, only 2% of mass 
loss is observed for the samples. In the case of pure dodecane, the main thermal degrada-
tion takes place in a single continuous step with an onset temperature, Tonset-dodecane of 150 
°C. Dodecane boiling point is 216 °C. It vaporizes rapidly into the form of its gaseous 
species. For pure VO, two other stages are observed in the temperature range from 300 to 
500 °C. These stages are related to the decomposition of the greater part of the oil compo-
nents, which probably includes fatty acids. For example, stearic acid presents a boiling 
point of 383 °C. At 500 °C, no residue was observed. 

Vecchio et al. (2008) have investigated the thermal breakdown of triglycerides con-
tained in olive oil [41]. They showed a single disintegration step between 160 and 370 °C 
on the TGA and DTG curves of saturated C18:0, whereas two overlapped steps occurred 
in the unsaturated chain. Different propositions were reported in the literature about the 
interpretation of the decomposition of vegetable oil in the temperature between 420 and 
495 °C. Garcia et al. (2007) observed that the mass loss step is due to oxidation of unsatu-
rated fatty acids in the 250 to 410 °C range, while it is attributed to the oxidation of the 
saturated fatty in the 410–480 °C range [42]. According to Santos et al. (2004), the polyun-
saturated fatty acids decomposition should occur in the 200 to 380 °C range, then the mon-
ounsaturated fatty acids decomposition between 380 and 480 °C and, finally, the saturated 
fatty acids thermal decomposition in the range of 480–600 °C [43]. The comparison of the 
FTIR spectrum of moringa oil within the literature suggest that our VO is mainly com-
posed of unsaturated fatty acid molecules. In the blend, a weak influence of the presence 
of VO is observed on the thermal degradation of dodecane. The first one is due to dodec-
ane degradation. The two other superimposed steps of mass loss were observed between 
approximately 315 and 460 °C with very weak loss of mass (between 1 and 2%) corre-
sponding to these thermal degradations of VO added. 

 
(a) (b) (c) 

Figure 7. Thermo-degradation analysis of (a) pure dodecane, (b) pure VO, (c) 2 w% of VO/dodecane blend. 

 

Figure 7. Thermo-degradation analysis of (a) pure dodecane, (b) pure VO, (c) 2 w% of VO/dodecane blend.

Vecchio et al. (2008) have investigated the thermal breakdown of triglycerides con-
tained in olive oil [41]. They showed a single disintegration step between 160 and 370 ◦C
on the TGA and DTG curves of saturated C18:0, whereas two overlapped steps occurred
in the unsaturated chain. Different propositions were reported in the literature about
the interpretation of the decomposition of vegetable oil in the temperature between 420
and 495 ◦C. Garcia et al. (2007) observed that the mass loss step is due to oxidation of
unsaturated fatty acids in the 250 to 410 ◦C range, while it is attributed to the oxidation
of the saturated fatty in the 410–480 ◦C range [42]. According to Santos et al. (2004), the
polyunsaturated fatty acids decomposition should occur in the 200 to 380 ◦C range, then
the monounsaturated fatty acids decomposition between 380 and 480 ◦C and, finally, the
saturated fatty acids thermal decomposition in the range of 480–600 ◦C [43]. The com-
parison of the FTIR spectrum of moringa oil within the literature suggest that our VO is
mainly composed of unsaturated fatty acid molecules. In the blend, a weak influence of the
presence of VO is observed on the thermal degradation of dodecane. The first one is due
to dodecane degradation. The two other superimposed steps of mass loss were observed
between approximately 315 and 460 ◦C with very weak loss of mass (between 1 and 2%)
corresponding to these thermal degradations of VO added.

3.2.2. Graphite/VO/Dodecane Blend after Friction Experiments

The obtained tribofilms have been investigated by SEM and Raman spectroscopy
analyses. Figure 8 presents a SEM micrograph of the film formed with graphite/2 w% VO/
dodecane blend. We can see that the wear trace is not homogeneous, characterizing weak
adhesion with the steel plane. Some parts of the tribofilm are missing. The initial stripes are
still visible on the steel plane, evidencing weak wear and, as a consequence, good antiwear
properties of the lubricant.

Figure 9 displays a typical Raman spectrum recorded close to the tribofilm of the best
mixture (Figure 9a) and another one recorded on the middle of the tribofilm (Figure 9b).
The first one corresponds to the Raman spectrum of the initial graphite particles before
friction. Both spectra exhibit the characteristic G, D and D’ bands associated with the
presence of graphite domains. The G band (1580 cm−1) is attributed to the E2g vibration
mode of the graphite lattice, while the D (1350 cm−1) and D’ (1620 cm−1) bands are
associated with disorder [44]. No significant difference is obtained indicating that the
structure of graphite particles does not evolve during the friction test. In previous study,
we have shown that in liquid conditions, the crystallographic disorder of graphite induced
by the friction process is lower compared to the dry one [32]. In the presence of liquid
(pure dodecane), the crystallites size decreases during the sliding experiments, but this
reduction is less important than in dry conditions (pure graphite). In this study, the tribofilm
investigations demonstrated that the presence of fatty acid thickness seems to attenuate the
mechanical constraints limiting/avoiding the destruction of crystallites during the sliding
process. In addition to liquid influence, demonstrated previously, an adsorption effect
of fatty acid molecules has been evidenced on the tribological performances of graphite,
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forming an adsorbed protective film on the graphite particles and steel surfaces during the
tribological experiments.
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4. Conclusions

Moringa oil presents excellent friction influence as bio-additive for lubrication. By
studying the tribological performances of the different blends containing small amounts of
VO in dodecane, an important reduction in the friction and wear performances of dodecane
were identified. Dodecane was the synthetic base oil used. The friction reduction was
about 55% in the presence of 1 w% of VO added. This improvement is attributed to the
presence of fatty acid molecules. FTIR and TGA investigations of VO/dodecane blends
lead to the conclusion that no significant influence related to the presence of moringa oil is
observed on the physicochemical properties of dodecane. Despite the weak percentage
of VO, the presence of fatty acid molecules improves the tribological performances of
mineral-oil-based lubricant. A critical amount of VO and, consequently, a critical adsorbed
thickness is necessary to ensure low friction performances. Moringa oil as a bio-additive
also has an adsorption influence on the tribological performances of graphite particles. In
the presence of different percentage of VO, the best results are obtained for a lubricant
formulation containing 2 w% of VO. The hypothesis about the liquid effect is not enough
to explain the friction reduction. Raman results and SEM investigations of tribofilms does
not show significant change in graphite structure. Mainly constituted with unsaturated
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fatty acid molecules, the presence of VO protects surfaces in contact by removing mechan-
ical constraints due to sliding contact. These results show good antiwear properties of
the lubricant.
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