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Supplementary Materials: The Influence of Mechanical
Deformations on Surface Force Measurements
Romain Lhermerout

1. Models of contact mechanics

In this section, we briefly recall the hypotheses and consequences associated to the dif-
ferent models of contact mechanics, that are used to analyze the measurements (reviews can
be found in [1–4]). All the models presented here rely on a common set of hypotheses or ap-
proximations. The two solid bodies in contact are supposed (i) semi-infinite, (ii) composed
of linear (no plasticity) homogeneous (no stack of layers) isotropic (not crystalline) and
purely elastic (no viscosity) materials, (iii) with perfectly smooth and frictionless surfaces
and (iv) in a regime where the contact radius is much smaller than their radius of curvature:
a� R. These models differ in the way adhesion is taken into account. In the following, we
consider the simple geometry of two cylinders of same radius of curvature R and material
that are crossed at 90 degrees (or equivalently a sphere of radius of curvature R and a plane
of same material), with the top solid controlled in position and the bottom solid mounted
on a spring of stiffness k (see sketch in Figure 1b).

In Hertz model [5], it is hypothesized that there are no attractive forces between the
surfaces (hard wall interaction, acting inside the contact area only). The normal force (or
load) F, contact radius a and indentation δ (defined positive for compression and negative
for dilatation) are related by: 
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R

, (1)

where K = 2
3

E
1−ν2 is the elastic modulus, with E the Young’s modulus and ν the Poisson’s

ratio. At lateral scale |x| � R, the distance z between the surfaces is given by:
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When moving up the top solid, the surfaces separate at Fs = 0, as = 0, δs = 0, with no
jump-out.

In Derjaguin-Muller-Toporov (DMT) model [6], attractive forces of finite range are
added (sticky hard wall interaction, acting inside the contact area and in a ring-shaped
zone outside the contact area), but adhesion is assumed not to deform the surfaces, leading
to a discontinuity of the normal stress at the edge of the contact area. The normal force (or
load) F, contact radius a and indentation δ are related by:

F =
Ka3

R
− 2πRW

δ =
a2

R

, (3)

where W is the adhesion energy (per unit area, taken positive) and the deformation pro-
file z(x) is the same than in the Hertz model. When moving up the top solid, the surfaces
separate at Fs = −2πRW, as = 0, δs = 0, with a jump-out over a distance 2πRW/k due to
the spring instability. Note that the relationship between the jump-out force and the adhe-
sion energy coincides with the one given by the Derjaguin approximation [1,7], because the
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surfaces are not deformed at the point of minimum force in the DMT model and supposed
undeformable in the context of the Derjaguin approximation.

In Johnson-Kendall-Roberts (JKR) model [8], attractive forces of zero range are added
(Baxter i.e., infinitely short range square interaction, acting only inside the contact area)
and adhesion can deform the surfaces, leading to a divergence of the normal stress at the
edge of the contact area. The normal force (or load) F, contact radius a and indentation δ
are related by: 
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. At lateral scale |x| � R, the distance z between the surfaces is
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When moving up the top solid, the surfaces separate at the point where dF
dδ = −k. If the

spring constant is low enough, this condition can be approximated by dF
dδ = 0 and the

surfaces separate at Fs = − 3
2 πRW, as =

(
3πR2W

2K

)1/3
, δs = −

(
π2RW2

12K2

)1/3
, with a jump-out

over a distance 3
2 πRW/k.

In Maugis model [3], attractive forces of finite range d are added (Dugdale i.e., square-
well interaction, acting inside the contact area and in a ring-shaped zone outside the contact
area) and adhesion can deform the surfaces, leading to a normal stress that presents no
singularity at the edge of the contact area. The normal force (or load) F, contact radius a and
indentation δ are related by implicit equations, together with a dimensionless parameter
here denoted as Ma:

Ma =

(
8RW2

πK2d3

)1/3

. (6)

Physically, Ma is the ratio between the elastic indentation due to adhesion and the range
of the attractive forces themselves. The three previous models are special cases of Maugis
model: Hertz limit corresponds to Ma = 0, DMT applies for Ma� 1 and JKR is recovered
for Ma� 1. In the transition regime Ma ∼ 1, none of the DMT and JKR models are valid
and the implicit equations from Maugis model have to be used to describe the contact
mechanics.

2. Method for the determination of surface deformations

In this section, we explain in details the procedure of analysis of the FECO to deduce
the apical distance D and the geometry of the surfaces, i.e., the radius of curvature R and
the contact radius a (defined in Figure 1b). In general, the glue used to prepare the surfaces
is heterogeneous in thickness, leading to a local radius of curvature of mica that is different
from the radius of curvature of the supporting glass lens and differs from one surface to
the other (by typically ∼ 10%); therefore crossing the two cylinders at right angle results in
a contact zone of elliptic symmetry. During the experiments, we observe the FECO along
only one direction x parallel to the axis of symmetry of one lens (typical FECO images for
N2 and [C4C1Pyrr][NTf2] cases shown in Figure 2a,c), that is why to interpret the data we
approximate the contact zone as a disk, i.e., we suppose that the surface deformation is the
same in the perpendicular direction y.
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In (wavelength λ)-(lateral distance x) space first, we measure the shape λp(x) of fringe
of odd order p. For each line, the fringe position is detected by calculating the center of
mass of the doublet (due to mica birefringence) after applying a threshold on the image
(when the intensity is smaller than the threshold, it is set equal to the threshold). The
threshold is chosen just above the intensity fluctuations of the background, to reduce the
noise on the signal. Provided that the mica thickness is constant and known, the separation
profile between the mica surfaces z(x) can then be deduced (typical profiles for N2 and
[C4C1Pyrr][NTf2] cases shown in Figure 2b,d) [9]. The separation profile is measured up to
a maximum scale zmax ∼ 50 nm � R ∼ 1 cm, that is why the undeformed shape (when
the surfaces are far from contact), circular in theory, is here observed locally and very well
described by a parabola. There, a fitting procedure is used to extract D, R and a. On one
hand, a parabolic fit is done at small scale close to the apex (green curve in Figure 2b,d),
with 3 free parameters, giving the apical distance D (negative in the present cases shown
in the Figures, as explained in details in the main text). On the other hand, R and a are
obtained with different methods, depending whether the solid surfaces are separated by
N2 or by [C4C1Pyrr][NTf2].

In the case of [C4C1Pyrr][NTf2], the mechanical deformations are limited to a scale z�
zmax and the separation profile matches the undeformed shape at large measurable dis-
tances z ∼ zmax. A second parabolic fit is done at large scale only (blue curve in Figure 2d),
with a function of the form:

z = z0 +
(x− x0)

2

2R
, (7)

where x0 and z0 are 2 free parameters controlling the position of the parabola and R =
0.92± 0.01 cm is the radius of curvature that is adjusted using one image when the surfaces
are far from contact and then kept fixed. By definition, the contact radius is the lateral
distance |x− x0| at which the extrapolated undeformed profile crosses the contact plane
at z = D and is simply given by a =

√
2R(D− z0). To do this parabolic fit at large scale

only, the points associated to values |x− x0| < a are excluded from the fit and the fitting
procedure is repeated iteratively: on first iteration no point is excluded and a value a1
is deduced, on second iteration a1 is used to exclude some points from the fit and a2 is
deduced, etc. In practice, 3 iterations are enough for the value of a to converge, as additional
iterations lead to insensitive changes.

In the case of N2, the mechanical deformations turn to be present at all measurable
scales z ≤ zmax and the undeformed region of the profile cannot be observed. That is why
the general definition of the contact radius a cannot be used and a model is needed to fit
the deformation. A fit of the separation profile is done at all measurable scales (blue curve
in Figure 2b), with a function derived from the JKR model (Equation (5)):
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for |x− x0| ≥ a
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, (8)

where the contact radius a and the center of the contact zone x0 are 2 free parameters, the
apical distance D is known from the small scale parabolic fit, the radius of curvature R =
0.92± 0.01 cm is adjusted using one image when the surfaces are far from contact and then
kept fixed and the contact radius at the jump-out point as = 10.23 µm is adjusted using the
image just before the jump-out of the surfaces and then kept fixed (see the corresponding
FECO image and separation profile in Figure S1a and Figure S1b).

It is clearly visible in Figure 2b that the JKR model doesn’t fit well the deformed profile
at the edge of the contact zone, as it predicts a corner at right angle while the data exhibit a
much smoother profile. The angular shape given by the JKR model is in fact non-physical
and is associated with the divergence of the normal stress at the edge of the contact zone.
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This discrepancy was already mentioned in the seminal work by Horn, Israelachvili and
Fribac [2], where the smooth measured profile was thought to be dominated by the flexural
stiffness of the mica layer. This non perfect flattening is therefore well known, but is
highlighted here compared to previous studies (see for example [10]) because of the use
of a substantially thicker mica and of a sub-pixel-detection technique to characterize the
fringe profile. Nonetheless, we keep the JKR fit as a first order determination of the contact
radius and we see in the main text that this provides a variation of the contact radius
with the force that is consistently well described by the JKR model and an effective elastic
modulus describing the layered solid surfaces.

In order to obtain a reliable characterization of the geometry, note that all the images
had to be rotated by the same angle (of the order of the degree) before this analysis, due to
the fact that the camera is not perfectly aligned with the entrance slit of the spectrometer
and so the raw image is not ideally symmetric. One image, corresponding to a situation
when the surfaces are far from contact, is rotated by a given angle and the separation
profile is fitted at all scales with a parabola. The values of rotation angles are scanned and
the optimum angle corresponds to the fit associated with the minimum sum of squared
residuals.

Finally, a is measured with a precision of 0.03 µm given by the standard deviation
of the signal and an accuracy of 1 µm due to the uncertainty on the value of R (mainly
caused by the fact that the separation profile is observed up to a maximum scale zmax ∼
50 nm � R ∼ 1 cm). This means that this method doesn’t provide reliable values of a
when a . 1 µm, which is typically the case for [C4C1Pyrr][NTf2] under low loads.

In the literature, the measured force F is generally rescaled by the radius of curvature R
to compute an equivalent surface energy F/R, considering that mechanical deformations
are negligible and that the Derjaguin approximation applies. In the opposite case when the
surfaces are strongly flattened, it is reasonable to assume that the total force F is mainly
due to the interaction in the flattened region and so to rescale it by the contact area πa2

to compute the mean local pressure F/(πa2). In this study, we explore a broad range of
situations from non measurable deformation to strong deformations, that is why we have
chosen to simply use the force F without any rescaling in the plots.

References
1. Israelachvili, J.N. Intermolecular and Surface Forces, Third Edition; Academic Press: San Diego, CA, USA, 2011. doi:10.1016/B978-0-

12-375182-9.10010-7.
2. Horn, R.G.; Israelachvili, J.N.; Pribac, F. Measurement of the Deformation and Adhesion of Solids in Contact. J. Colloid Interface

Sci. 1987, 115, 480–492. doi:10.1016/0021-9797(87)90065-8.
3. Maugis, D. Adhesion of spheres: The JKR-DMT transition using a dugdale model. J. Colloid Interface Sci. 1992, 150, 243–269.

doi:10.1016/0021-9797(92)90285-T.
4. Grierson, D.S.; Flater, E.E.; Carpick, R.W. Accounting for the JKR-DMT transition in adhesion and friction measurements with

atomic force microscopy. J. Adhes. Sci. Technol. 2005, 19, 291–311. doi:10.1163/1568561054352685.
5. Hertz, H. Ueber die Berührung fester elastischer Körper. J. für die Reine und Angew. Math. 1882, 19, p. 156. doi:10.1515/crll.1882.92.156.
6. Derjaguin, B.V.; Muller, V.M.; Toporov, Y.P. Effect of Contact Deformations on the Adhesion of Particles. J. Colloid Interface Sci.

1975, 53, 314–326. doi:10.1016/0021-9797(75)90018-1.
7. Derjaguin, B. Untersuchungen über die Reibung und Adhäsion, IV. Kolloid-Zeitschrift 1934, 69, 155–164. doi:10.1007/BF01433225.
8. Johnson, K.L.; Kendall, K.; Roberts, A.D.; Tabor, D. Surface energy and the contact of elastic solids. Proc. R. Soc. A 1971, 324,

301–313. doi:10.1098/rspa.1971.0141.
9. Israelachvili, J.N. Thin Film Studies Using Multiple-Beam Interferometry. J. Colloid Interface Sci. 1973, 44, 259–272.

doi:10.1016/0021-9797(73)90218-X.
10. Israelachvili, J.N.; Perez, E.; Tandon, R.K. On the adhesion force between deformable solids. J. Colloid Interface Sci. 1980, 78,

260–261. doi:10.1016/0021-9797(80)90520-2.

https://doi.org/10.3390/lubricants9070069


Lubricants 2021, 9, 69. https://doi.org/10.3390/lubricants9070069 S5 of S6

-40

-20

0

20

40

0.080.060.040.020

-40

-20

0

20

40

0.080.060.040.020

Figure S1. (a) Picture of the FECO when the two solid surfaces are in contact across N2, observed in (wavelength λ)-(lateral
distance x) space. (b) Corresponding profile of the distance z between the surfaces along the lateral coordinate x (in red).
A parabolic fit at small scale close to the apex (in green) allows to measure the apical distance D, while a fit with the JKR
profile (Equation (5) in main text) at all measured scales (in blue) is used to extract the contact radius a. (c) Picture of the
FECO when the two solid surfaces are in contact across [C4C1Pyrr][NTf2], observed in (wavelength λ)-(lateral distance x)
space. (d) Corresponding profile of the distance z between the surfaces along the lateral coordinate x (in red). A parabolic
fit at small scale close to the apex (in green) allows to measure the apical distance D, while a parabolic fit at large scale (in
blue) is used to extract the contact radius a. The two particular cases shown here correspond to the jump-out points reached
in Figure 3 in main text.
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Figure S2. Force profile measured with [C4C1Pyrr][NTf2] between mica surfaces when approaching or retracting the top
surface with the piezoelectric tube at v = 0.5 nm/s, showing structuring with 5 distinguishable layers labeled by i. The
different colors stand for approach up to a given layer and retraction from this layer: i = 1 in red, i = 2 in green, i = 3 in
orange, i = 4 in purple and i = 5 in yellow.
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Figure S3. Force profile measured with [C4C1Pyrr][NTf2] between mica surfaces when approaching or retracting the top
surface with the piezoelectric tube at v = 0.5 nm/s, showing structuring with 5 distinguishable layers labeled by i. For
clarity, only the full approach is shown (in red), together with retractions from layers i = 1 (in blue), i = 2 (in green),
i = 3 (in orange), i = 4 (in purple), i = 5 (in yellow). The gray curve is an exponentially decaying harmonic oscillation
(Equation (10) in main text) with parameters F0 = Fmax

0 , D0 = Dmax
0 , ζ = ζmax and λ = λmax obtained from the fits of the

points of maximum force. The black curve is an exponentially decaying harmonic oscillation (Equation (10) in main text)
with parameters F0 = Fmin

0 , D0 = Dmin
0 , ζ = ζmin and λ = λmin obtained from the fits of the points of minimum force (see

Equations (11) and (12) and Figure 4b,c in main text).
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