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Abstract: Technical thermoplastic materials (e.g., PEEK, PPA and POM) are widely used for tribo-
logical applications combined with different filler systems (e.g., glass- or carbon fibres) because of
their excellent mechanical properties. The friction and wear behaviour of thermoplastics can be
specifically improved by solid lubrication systems such as graphite, PTFE and MoS2. Besides these
systems, others such as WoS2 and MnS are becoming scientifically interesting. This work investigates
the influence of different solid lubricants—alternative metal sulphides and polymer-based—in com-
bination with different glass fibre contents on the tribological behaviour of unfilled PEEK and glass
fibre-filled PPA. For this purpose, compounds were produced and injection-moulded into tribological
test specimens that were subsequently tested. It is particularly evident for both matrix materials that
the solid lubricant SLS 22 shows a 25% wear rate reduction when compared to MoS2 and, in addition,
the proportion of fibre content in PPA shows an additional wear rate reduction by a factor of 10.
The friction level could be kept at a similar level compared to the usually utilised solid lubricants.
The investigations showed the potential use of metal sulphide filler systems in high-performance
thermoplastic with enhanced tribological properties as alternatives to the well-established solid
lubricants.

Keywords: metal sulphide; PEEK; PPA; glass fibre; solid lubricant; friction and wear

1. Introduction

The occurrence of friction remains mostly unnoticed, but it has a huge impact on
our daily life. In the private sector as well as in industry, friction can be either a pleasant
or an unwelcome factor. For moving parts in furniture or bearings made of polymers,
high friction is undesired, whereas, for instance, in emergency brake cases high friction is
absolutely required [1–4]. An undesired friction level for a certain application can cause
high energy consumption as, for example, in requiring cooling systems due to the generated
frictional heat. Further problems can occur in the case where high friction causes high
wear, resulting in unavoidable maintenances to replace components [1–3]. Therefore, an
optimized material selection for a specific tribological application will result in a product
with better performance and a longer lifetime.

One possible way to achieve both desired friction values and low wear is the usage of
filler or reinforcing materials [1–3,5–9]. In the beginning of “filler history”, by-products
or cheap materials were used as fillers, which, by coincidence, had a reinforcing effect in
polymers. After more detailed investigations on the aspect ratio and on the structure of
fillers, it turned out that these were major influence factors for good or bad performance
of the filler [7,9–12]. Besides the possibility of using liquids as lubricants, nowadays it is
also common to use solid lubricants, which are incorporated in the material [2,6–9]. In
1986, Friedrich et al. discussed in detail the influence of fillers and fibres on the wear [1].
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Their studies are the basis for recent developments in tribologically optimized material
compounds. The most well-known solid lubricants in polymers are PTFE, MoS2 and
graphite, which consist of a layered structure with strong intralayer but weak interlayer
bonds. During an applied shearing force, the layers separate and form sliding layers
on both components with low friction [1–3,5,6,8,9]. A common way to improve overall
properties is to compound a mixture of fillers, such as fibres (glass or carbon) and solid
lubricants (PTFE, MoS2 and graphite). However, the combination of two or more fillers
does not always show the desired effect of enhancing properties [13–19].

Furthermore, material processing plays an important role when tribological behaviour
is considered. For fibre-reinforced materials, a parallel or perpendicular arrangement of
the fibres is ideal for mechanical and tribological properties. Injection moulding causes no
clear orientation of the fibres because of the fountain flow of the molten material, which
flows between frozen-edged surfaces. Due to the rapid cooling of edge layers, the fibres
are oriented in an unfixed angle or, in some cases, a layer with a very low fibre content can
occur [1,7,20–23]. Nevertheless, there is still an observable difference in the arrangements
of the fibres depending on sampling position of the specimen, which indeed has an impact
on the friction and wear behaviour.

The objective of this work is to investigate the general tribological performance of
metal sulphides and study in detail the interaction between solid lubricant, glass fibres and
matrix material. Filler systems do not work properly with every matrix material, which
has to be considered if new compounds are produced [18,19,24].

2. Materials and Methods
2.1. Matrix Materials and Filler Systems

The matrix materials Polyetheretherketone (PEEK, VESTAKEEP 4000G, Evonik In-
dustries AG, Essen, Germany) and Polyphthalamide (PPA, Zytel, DuPont de Nemours,
Wilmington, Delaware., USA) with 15% and 30% glass fibre content, were compounded
with seven different solid lubricants. The basic mechanical and thermal properties for
the reference materials are listed in Table 1. These data were gathered from the supplier
datasheets and should act as basic indicators.

Table 1. Summary of mechanical and thermal properties of the matrix materials PEEK, PPA GF15
and PPA GF30.

Property PEEK PPA GF15 PPA GF30
Tensile modulus (ISO 527), MPa 3500 6500 8700–11500
Tension at break (ISO 527), MPa 96 120 165–215
Ball impression hardness, MPa 253 200 225

Glass transition temperature, ◦C 152 135 125
Melting temperature, ◦C 340 300 320

Long-term service temperature, ◦C 260 140 150
Heat conductivity, W/mK 0.27 0.31 0.34

Density, g/cm3 1.3 1.3 1.42–1.45

In Table 2, the fillers are listed with their respective particle sizes (D50 & D90) and
densities. All solid lubricants based on metal sulphides were developed, measured and
kindly provided by Tribotecc GmbH (Arnoldstein, Austria). All metal sulphide solid lubri-
cants have a platelet structure forming a layered lattice structure as visible in the picture in
Table 2. The polymer-based solid lubricants (PTFE and PE-UHMWPE) were measured and
kindly provided by Avient (Gaggenau, Germany), and have a spherical shape.
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Table 2. Filler systems with their detailed description, particle size and density; SEM picture showing the principle lattice
structure of metal sulphide solid lubricants.

Filler System Description D50
[µm]

D90
[µm]

Density
[g/cm3]

MOS XF Natural molybdenum disulphide
grade 10 23 4.8

SLS 22
New synthetic lubricant system

based on phosphates and tin
sulphides

8 24 3.1

SLS 22F
New synthetic lubricant system

based on phosphates and tin
sulphides

3 9 3.1

WS 2 Pure synthetic tungsten disulphide
grade 3 7 7.5
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WS 31 New synthetic multiphase-sulphide
based on Mo and W 6 15 8

PTFE Polytetrafluorethylene - - 2.2

PE-UHMW Ultra-high molecular weight
Polyethylene - - 1.0

2.2. Sample Preparation

For the tribological investigations, injection moulded tensile test specimens were
further processed into tribological test specimens with a cross-section area of 4 × 4 mm2

using a CNC milling machine. To prevent contamination of the running surface, no
lubricants or coolants were used. In this work, the focus also lies on the influence of
the fibre orientation in the skin layer from the injection moulding process; therefore, two
different orientations were chosen for the samples, namely in processing direction (IPD)
and normal to the processing direction (NTPD) (see Figure 1).
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Figure 1. Sampling position of the tribological specimen at the tensile dumbbell (a) and machined
test specimen (b).

2.3. Thermal Properties

For selected materials (SLS 22 grades), the heat conductivity of the injection moulded
samples was measured with a Hot Disk instrument (Hot Disk TPS 2500S Thermal Constants
Analyzer, Hot Disk AB, Haar, Germany).

2.4. Tribological Properties

For this study, a Pin on Disc (PoD) test setup was chosen and performed with a
Universal Mechanical Tester UMT-2 from Bruker (Bruker Nano Surfaces Division, Campell,
CA, USA) (see Figure 2a). The counterpart discs for all tests were made out of 34CrNiMo6
steel with an average roughness of Ra 0.3 µm which was determined according to DIN
EN ISO 25178 using a confocal light microscope MicroProf® (Fries Research & Technology
GmbH, Bergisch Gladbach, Germany) [25]. All samples were investigated with the same
testing parameters, namely a normal load of 2 MPa with a rotational speed of 1 m/s for 4 h.
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This test duration ensures that the coefficient of friction plateau was reached and that the
running-in phase turned into a steady friction state. For all tests, at least 2 repetitions were
conducted and in Figure 2b, an example of the coefficient of friction (CoF) evolution and
data processing is described. The wear rate was calculated by the volumetric mass loss
(mass loss/density) in relation to the applied load and distance travelled.
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Figure 2. Tribological measurement system (UMT-2) with PoD setup (a) and an example for the
evolution of the CoF and data processing (b).

2.5. Damage Analysis

For all tested samples and the corresponding counterpart, a damage analysis of the
running surfaces was conducted with an Olympus SZX 12 light microscope (Olympus
IMS, Tokio, Japan). The samples were analysed with a magnification of 20×, 40× and
90× and a representative selection will be shown in the result section. For an in-depth
damage analysis, SEM (scanning electron microscope) and EDX (energy dispersive x-ray
spectroscopy) pictures were taken on a Tescan inaX-act microscope (EO Elektronenoptik
Service GmbH, Dortmund, Germany).

3. Results and Discussion
3.1. PEEK + 10 wt.% Metal Sulphide Solid Lubricants

The results from the investigations of PEEK give a first insight for 10 wt.% metal
sulphide filler systems and their impact on an unfilled PEEK depending on the specimen
orientation. In Figure 3, the wear rates and the coefficients of friction (CoF) are given
parallel (in processing direction, IPD) and perpendicular (normal to processing direction,
NTPD) to the injection moulding direction.

Unfilled PEEK presented wear rate values for both positions into the range of 2.0 to
2.27 × 10−8 cm3/Nm and a CoF around 0.5. The small differences of the neat PEEK are
negligible. Comparing these values to the ones with metal sulphide filler systems, MOS XF,
SLS 22 and SLS 22F, an enormous decrease (1/3 to 1/10) in the wear rate is shown. The
extremely low wear rate for SLS 22 reaches a minimum for the samples NTPD with a value
of 0.12 × 10−8 cm3/Nm. The CoF of SLS 22 parallel sample is even higher than the one for
the unfilled PEEK. The finer version of SLS 22, namely SLS 22F, shows comparable values
for both sampling positions regarding the CoF value. This could be traced back to the finer
particle size (cp. Table 2) especially for D90 with a difference of 15 µm when compared
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to SLS 22. Smaller particles could be better distributed within the matrix and could also
reach the surface of the part more easily than bigger particles [12,26–28]. The observations
further indicate that both WS-types show a dependence on the sampling position for the
wear rate. Perpendicular samples (NTPD) wear more than the ones parallel to the injection
moulding direction (IPD). In Figure 4, both WS 2 and WS 31 running surfaces show a
different wear pattern for IPD compared to NTPD, namely similar to oil-stains-coloured
running tracks. This could be an indication of the lubricant, which was better distributed
over the surface compared to the NTPD sample.
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In general, the values for CoF and wear rate of metal-sulphide-filled samples seem to
correlate—a higher friction leads to higher wear rates. Nevertheless, for WS 31, the wear
rates differ even though the mean value of the CoF is the same but the standard deviation
is significantly higher in IPD.
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3.2. PPA GF15 with Different Filling Degrees of Metal Sulphide Solid Lubricants

After the promising results with PEEK, another matrix material was chosen to deter-
mine the influence of the filling degrees, i.e., 5 wt.% and 10 wt.%, on the tribological values
for a 15 wt.% glass-fibre-reinforced PPA. The specimens were tested parallel (IPD) and
normal to the processing direction (NTPD) and the results are summarized in Figure 5.
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different filling degrees in (IPD) and normal to the processing direction (NTPD).

The diagram (Figure 5) shows at first sight that a lower filling degree leads to higher
wear rates for almost all materials, besides SLS 22, which presents similar wear rates for
both filling degrees, and WS 31, which shows the exact opposite trend for a higher filling
degree and the perpendicular-to-processing samples. Investigating the 15 wt.% glass-fibre-
reinforced PPA without a solid lubricant, a dependence on the sampling position for the
wear rates is observed, but not for the friction coefficient. In general, the wear rates for
PPA samples are higher than for PEEK-matrix samples, which can be traced back to the
tribological behaviour of PEEK (cp. Figure 3). On the other side, the coefficient of friction
for all compounds is a bit lower than the values for PEEK. It appears that independent of
the filling degree or sampling position, the CoF is either the same as the neat PPA GF15 or
lower. For MOS XF, the CoF apparently depends on the sampling position for both filling
degrees, whereas for SLS 22, the CoF does not change to a noteworthy extent.

Considering the wear rate values below 3 × 10−8 cm3/Nm, the samples MOS XF
10%, both SLS 22, WS 2 10% and partly WS 31 show a comparable wear rate to PEEK (cp.
Figure 3 with the values of 2.0 to 2.27 × 10−8 cm3/Nm). The generally higher standard
deviations could be evoked by the glass fibre reinforcements, which have an influence on
the build-up process of the transferred film on the counterparts [1,5,29,30]. If the glass
fibres act more abrasively, the film will be removed more easily, which results in higher
wear due to new transforming processes. This can be seen in Figure 6, which compares the
damage pictures of the running surface and the wear track on the counterpart of WS 2 IPD
for both filling degrees.

The glass fibres seem to have an impact on lower filling degrees for WS-compounds.
It is possible to observe that glass fibres are visible only for the 5% filled samples (surface
specimen). Moreover, there is a remarkable material transfer to the counterpart for these
samples. Due to the dynamic formation of the material film, the track can be peeled off and
form long wear particles, as obviously shown in Figure 6 (bottom left). Comparing this
to the same material but with a higher filling degree, the solid lubricant forms a gliding
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layer which shows almost no glass fibres on the surface. Furthermore, the track on the
counterpart looks homogenous without accumulation of material.
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counterpart looks homogenous without accumulation of material. 
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Figure 6. Light microscopic analysis of the running surface (100×) and the counterparts (7×) for
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This clear trend in the damage analysis is also given for SLS 22, as exemplarily shown
in Figure 7. The sample with the 5% filler shows less material transfer to the counterpart
and also a lower deviation in the wear rate than the 10% sample. For this metal sulphide
lubricant, the glide layers are also visible in Figure 7.
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In order to have a closer look at the fibres’ orientation after the test, samples normal to
the processing direction with a 10% filling degree were investigated in SEM/EDX to gain
qualitative information about the fibres. In Figure 8, pictures with the stacked mapping of
the elements are shown.
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In the neat PPA GF15 reference EDX micrograph, the orientation of the fibres is not
entirely in one direction, but is mostly aligned parallel to the running surface. The detected
elements, such as aluminium (Al), calcium (Ca), silicon (Si), magnesium (Mg) and oxygen
(O), are typical for glass fibres [31–34]. For all EDX micrographs (see Figure 8), the colour
pattern of the fibres depicts worn glass fibres that accumulate in the area of the matrix-
incorporated fibres [15,17,35]. Moreover, Figure 8 shows a smooth distribution of fillers.
Interestingly, SLS 22 formed a kind of plateau with a destroyed area, which reveals many
glass fibres. A similar picture is given for WS 31, but here, the region on the right represents
an already worn material transferred back from the counterpart to the specimen surface.
An indication of this is the detected iron (Fe), which could only be attributed to the metallic
counterpart since the filler systems do not contain any form of iron.
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3.3. PPA GF30 with Different Solid Lubricants

Based on the promising results from SLS 22 for both filling degrees (see Section 3.2),
a PPA with 30 wt.% glass fibre reinforcement is compared to common polymeric solid
lubricants, such as PTFE and PE-UHMW. In order to investigate the influence of the SLS
22F filling degree, a third value, namely 8 wt.%, was tested in the same conditions as
the other previously discussed test series. The results are shown in Figure 9. Due to the
obtained information about test stability and standard deviations regarding the influence
on the sample direction in Section 3.2, for this test series the sample orientation was only
considered in processing direction.
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The CoF increases not only with the SLS 22F filler content, but also with the addition
of polymeric solid lubricants. In contrast, the wear rates can be reduced by all filler systems.
The wear rate decreases with the increase in the SLS 22F filling degree. Moreover, the
addition of the 15% PTFE causes an even lower (−10%) wear rate value when compared to
a 10% addition in SLS 22F. Nevertheless, it should be mentioned that PTFE is present with
15 wt.% and therefore more lubricant is available than for all the other samples. Figure 10
displays a visual analysis of the running surfaces by light microscopy.
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Two main observations in Figure 10 can be made: first, the high content (30%) of
glass fibres dominates in all six running surfaces after testing, and second, a clear colour-
based difference between the upper and lower row of pictures is visible. This difference is
attributed to the grey coloured SLS 22F solid lubricant. Furthermore, all six surfaces show
no severe wear process and quite comparable surface structures, which is in agreement
with the minimal wear rates represented in Figure 9. In general, all three solid lubricants
(PTFE, UHMWPE and SLS 22F) are based on the same lubrication mechanism, namely
the slipping of the layers. This is caused by the strong intralayer forces but comparably
weak interlayer bonding strength which results in a slipping evoked by shear forces. The
investigated solid lubricants differ in the bonding mechanism which, for metal sulphidic
fillers, count as structural lubricants due to the lattice structure and polymer-based solid
lubricants belonging to mechanical lubricants. This is due to the weak van der Waals forces
without a lattice structure [5,12,36].

To obtain in-depth information about the qualitative distribution of the glass fibres and
solid lubricants at the running surface of the samples, SEM/EDX analyses were performed.
Stacked mappings of the elements are shown in Figure 11.

At first sight, the EDX analysis shows a clear difference between the 15% and 30%
glass fibre content samples and their visible fibre orientation at the running surface (cp.
Figures 8 and 11). The fibre structure is, in all variants, prominently visible, except for SLS
22F 10% also compared in the light microscopic pictures (see Figure 10). A fine phosphor
(P) mapping dominates, indicating the presence of SLS 22F. This element-based information
gives a good added value to the basic light microscopy pictures.
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3.4. Comparison of SLS 22 in Different Matrices

For a better analysis of the metal sulphide filler influence, i.e., both variations of SLS
22 with different filling degrees (5 and 10%), on the tribological properties, the results from
the different matrix materials are given in Figure 12. All results show the investigations in
processing direction. As discussed previously in Section 3.3, SLS 22 evokes a decrease in
the wear rate for all matrix materials in processing direction.
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Considering only the matrix materials, the filling degree seems to only have an
influence on the wear rate for PPA GF15, which results from slide layers which can evolve
more easily with more solid lubricant available in the sample. PEEK shows no considerable
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change in the wear rate with a finer filler particle size, but a decrease in the CoF is observed,
evoked by a better distribution of the filler particles. PPA GF30 shows, similar to PEEK,
a wear rate independent of the filling degree, but an increase in CoF with higher filling
degrees. It is interesting to mention that CoF increases for a rising SLS 22F filling degree in
a PPA GF30 matrix. One possible explanation could be the higher heat conductivity due to
the higher filling degree (see Table 3).

Table 3. Material combinations, respective filling degrees (FD) and heat conductivity (HC).

Material FD
[w%]

HC
[W/mK] Material FD

[w%]
HC

[W/mK] Material FD
[w%]

HC
[W/mK]

PEEK 0.287 PPA GF15 0.312 PPA GF30 0.332
SLS 22 10 0.289 SLS 22 5 0.322 SLS 22F 5 0.386

SLS 22F 10 0.289 SLS 22 10 0.334 SLS 22F 10 0.410

Since the PPA GF30 glass transition temperature (125 ◦C) is easily reached during
friction contact due to frictional heating, a higher heat conductivity would lead to faster
heat dissipation. This means that the sample with higher heat conductivity would not
soften (or soften less) due to the glass transition; hence, the solid lubricant would not be
exposed (or would be less exposed) by such a softening effect [3,37].

These overall results of the friction coefficient can be traced back to the hardness of the
materials. Since PEEK and PPA with 30 wt.% glass fibres are harder than PPA with 15 wt.%,
these matrix systems are able to bear more load than the solid lubricant itself (cp. Table 1).
This would result in less lubricating effects of the harder samples, namely PEEK and PPA
GF30, which therefore represents a CoF of the matrix and not in combination with the solid
lubricant [38,39]. For both PPAs, the content of the glass fibres also has an impact, but for
the 30 wt.% filling degree, the stiffening effect seems to be more dominant than the abrasive
effect caused by exposure to solid lubricants. The higher stiffness can be correlated to the
heat deflection temperature, which increases with fibre reinforcement [7,40,41].

Comparing the CoF of PPA GF15 and GF30, it could be considered that the fibre
content has a significant impact. Yet, taking only the wear height into account, PPA GF15
was worn more than the surface layer. This is the same for PEEK, where the wear rate
indicates a wear height of approximately 300 µm. With this wear height, no gliding film
can be formed, which therefore results in higher CoFs than PPA GF15 and a wear height
of approximately 1000 µm. The difference in the wear height is also visible in Figure 13
where only PPA GF15 shows the typical gliding layers and the other two matrix materials
are hardly worn.
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4. Conclusions

The tribological properties of PEEK and PPA-based compounds and the influence
of alternative metal sulphide solid lubricants in combination with different glass fibre
contents were investigated in this study. A beneficial effect of adding metal sulphide
filler systems to different matrices on tribological performance is shown. Specifically,
both variations of SLS 22 showed a constant enhancement with low scattering. In this
case, a 25% reduction in the wear rate compared to MOS XF was reached for PEEK
compounds. The investigations highlighted that this filler system is independent of the
sampling position and, furthermore, almost independent of the filling degree of the matrix.
In addition, analysis of PPA reveals that the increase in glass fibre content shows an
additional improvement in wear properties and that SLS 22 works well with glass fibres.
It should be kept in mind that every tribological system has an optimum point, and in
this study, the results are presented for a model PoD setup. In general, too high filling
degrees will lead to an unstable matrix and an insufficient dispersion of the agglomerates
within the matrix [12,26–28]. Furthermore, the matrix-filler-bonding has a crucial impact
on tribological behaviour and it is also influenced by the processing. Nevertheless, this
solid lubricant system seems to be a promising alternative to common solid lubricants,
such as MoS2 or PTFE, and it paves the way for new applications.
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