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Abstract: Knowledge of the role of ants in many agroecosystems is relatively scarce, and in temperate
regions the possibility to exploit ants as biocontrol agents for crop protection is still largely unexplored.
Drawing inspiration from mutualistic ant–plant relationships mediated by extrafloral nectaries (EFNs),
we tested the use of artificial nectaries (ANs) in order to increase ant activity on pear trees and
to evaluate the effects on the arthropods, plant health and fruit production. While EFNs secrete
a complex solution mainly composed of sugars and amino acids, ANs were filled with water and
sucrose only. The results suggest that ANs can be used as manipulative instruments to increase ant
activity over long periods of time. High ant activity was significantly linked to lower incidence of the
pathogen fungus Venturia pyrina (pear scab) on pear leaves, and of the presence of Cydia pomonella
(codling moth) caterpillars on pear fruit production. These results further encourage exploring
underrated possibilities in the development of new tools for conservation biological control (CBC).

Keywords: Integrated Pest Management (IPM); Conservation Biological Control (CBC); ant-plant
relationships; multitrophic interactions; applied myrmecology; agroecology; mutualism; indirect
defense; Pyrus orchard; plant health; pear trees

1. Introduction

Plants have evolved very complex relationships with ants, and have been fundamental to the rise
of many modern lineages of these insects [1–4]. Some of these relationships are strictly antagonistic,
revolving around herbivory in a few New World species and more commonly around seed predation [5].
Many of the other relationships are beneficial to plants, and encompass several different aspects from
seed dispersal and soil processing to rare cases of pollination [6,7], while the vast majority are based on
an ant’s appetite for sugary liquids [1], which is produced in the form of honeydew by sap-feeding
insects (mainly heteropterans) or directly by plants in the form of nectars. Ants may protect sap-feeding
insects in exchange for honeydew [8–11]. Although ants may indirectly damage plants through this
relationship, its cost–benefit ratio may still be beneficial overall for the plant if ant presence displaces
more damaging herbivores [12]. Some plants produce nectars, other food rewards or offer shelter to
ants in exchange for protection against herbivory, competing plants or even pathogens [13–17]. These
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rewards may also be aimed at distracting ants from tending sap feeders [18–21]. Several cases of these
ant-plant mutualisms are mediated by extrafloral nectaries (EFNs), which have been described for
4017 plant species of over 450 evolutionary lineages (21% of vascular plant families), and are expected
to be found in about 8000 species [22,23]. EFNs are both a food reward for ants and manipulative tools
to maximize plant advantages in the ant–plant relationship [24–26]. They produce complex solutions
in which sugars and amino acids are the main components, while less abundant constituents such
as secondary metabolites may also play an important role [25,26]. Moreover, in some plants EFNs
can be an induced defense in response to herbivory [27]. However, plant defense by ants against
herbivores can also be mediated by other adaptations, such as certain volatiles [28–32]. Although the
latter mechanism has only been documented in a few cases, it is easy to speculate that ants may act as
plant defenders by attacking herbivores much more often than currently reported.

An urgent need to develop more-sustainable agriculture is widely recognized, and Integrated Pest
Management (IPM) should reduce the use of pesticides by favoring biological control techniques [33–35].
The use of ants as biocontrol agents is overlooked in comparison to other insect groups, and their use
has been limited mainly to equatorial and tropical regions. Nonetheless, the oldest case of biological
control mediated by insects (304 A.D.) attests to the use of the ant genus Oecophylla Smith, F., 1860
as a biocontrol agent [36]. Today, Oecophylla spp. are still used in more than 20 countries of Africa,
Asia and Oceania to control about 50 different pest species [37,38]. Although they are considered
bioindicators of soil function and habitat quality in rural environments [39,40], both their distribution
and their role in most agroecosystems are still insufficiently documented. However, ants have several
characteristics that make them good candidates for biocontrol agents [5,38,41–46]. First, they may
be generalist predators, whose polymorphism often enhances their polyphagy. Second, many ants
are often territorial and aggressive, thus chasing away intruders unsuitable as prey. In addition,
recruitment allows a quick reaction to increases in prey. Moreover, colonies can withstand periods
of food shortage and without becoming particularly susceptible to satiety because they build food
stocks and rear immature stages. Finally, ant activity in agroecosystems can be easily manipulated, for
example, by transferring colonies or offering additional food sources and nest sites (e.g., [47,48]). In
addition, the manipulation of ant foraging pathways may redirect foragers towards target pests, and
can be conducted using plants with EFNs [49].

Ant–sap feeder interactions are usually the main cause of concern about the role of ants in some
agroecosystems. For example, in vineyards and citrus orchards, a number of studies have shown that
ant presence increases populations of mutualistic aphids and coccids and decreases those of some
of their natural enemies (e.g., [50–56]). As a result, additional research has focused on the control of
ant populations in these agroecosystems, either by employing chemical substances (e.g., [57–64]) or
distracting tending ants by providing sugary substances (e.g., [21]). The latter method may allow the
positive effects of ant presence (see [12]). Nevertheless, other studies have found that the presence
of ants in citrus and vine groves was weakly related or not related at all to the presence of sap
feeders [21,65]. In addition, some natural predators of aphids and coccids may even increase under ant
presence in vineyards [51]. Moreover, not all economically important sap-feeding pests are mutualists,
and many ant species are not mutualists either. Even in citrus and vine groves where the phenomenon
has attained particular attention, only a small proportion of ant species has been linked to pest
outbreaks. In fact, of the 123 ant species inhabiting South Africa citrus orchards, only about 25 tend
aphids and only three or four are considered responsible for pest outbreaks [66,67].

In Europe, the use of ants in biological control has mostly developed around wood ants (Formica
rufa group). These have usually been employed in forest ecosystems [68,69], and much more rarely
in agroecosystems, to which they had to be transported [48,70]. Only a few studies have dealt with
ants in Italian agroecosystems (e.g., [71–77]). However, native ant species common in Italy and in the
Mediterranean basin could be effective control agents against highly problematic pests such as the
exotic brown marmorated stink bug Halyomorpha halys (Stål, 1855) [78], fungi and other herbivores [79].
In some cases, common harvester ants may have a positive role in the control of weeds [80]. Many
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of the above-mentioned ant characteristics considered promising for biological control were also
documented for Italian ants (e.g., [7,68,74,75,81–84]).

Our paper reports on the role of ants and their use in conservation biological control (CBC) [85,86],
and our experiment was carried out in a pear agroecosystem. Pear trees have been cultivated for at
least 3000 years, and currently continue to be important for fruit production in wide regions of the
planet, from Eurasia to North America [87]. Moreover, in Italy, a remarkable diversity of wild and
cultivated forms has been documented [88], none of which possess EFNs or other structures aimed at
attracting ants. Finally, pear orchards host a rich community of pest insects, whose control costs about
USD 14 million each year worldwide, and does not usually employ ants [89]. However, ant presence
in pear agroecosystems is not commonly associated with pest outbreaks. Conversely, Crematogaster
subdentata Mayr, 1877 was reported to suppress a population of the San Jose scale Quadraspidiotus
perniciosus Comstock, 1881 [90]. Moreover, Formica neoclara Emery, 1893 was considered to be a
promising biocontrol agent of the pear psylla, Cacopsylla pyricola (Foerster, 1848) [91–93]. Although
other authors suggest some ants may instead favor the latter [94,95], no clear evidence was provided.
Finally, there is other evidence suggesting that Cacopsylla spp. primary parasitoids are even favored
when ants are present, because they are more effective at keeping away the hyperparasitoids [96].

We introduced artificial nectaries (ANs) to study the impact of ants in a pear agroecosystem.
Inspired by EFNs, ANs are manipulative tools designed to increase ant activity on trees by dispensing
a liquid made of water and sugar to attract ants. Although a few studies have already tested the use of
ANs or other food sources to attain agroecological benefits (e.g., [20,21,97–100]), none of them have
studied ant effectiveness in defending plants, focusing instead on distracting ants from mutualistic sap
feeders. Thus, the aim of our study was to evaluate both the functionality of ANs and the impact of
different levels of ant activity on arboreal arthropodofauna, plant health and fruit production.

2. Materials and Methods

2.1. Study Area

Sampling was conducted in a 1-hectare organic orchard located near Pontescodogna, Parma, Italy
(44.7378, 10.1954) and part of the Regional Natural Park “Boschi di Carrega”. The orchard consisted of
430 fruit trees (mainly pear, but also apple, apricot, cherry, fig, peach and plum trees), arranged in
15 rows and partially surrounded by a deciduous broadleaved forest. The orchard management was
limited to periodical lawn mowing.

2.2. Artificial Nectaries (ANs)

The artificial nectary used in the experiment was made of a 1l plastic bottles (nectary tank)
connected to an infusion set (Figure 1). Two holes were drilled in the bottle: one on its basal surface,
later used to add or refill the liquid, and one on its cap, to connect the infusion set consisting of a flow
controller and a dispenser releasing the liquid at the AN distal end. The AN created a direct slow,
steady and adjustable flux of artificial nectar (set at 15–20 drops per minute) to a focus area on the
plant (Nectar-releasing points). The content of the ANs consisted of a liquid solution made of 10g of
sucrose in 1l of water and was refilled whenever needed (usually once a week) in order to provide an
uninterrupted operation.
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Figure 1. Artificial nectary (AN) installed on a pear tree. In pictures (a) and (b), the main components 
of the artificial nectary are shown: the tank (1) and the infusion set (2). The infusion set is made of the 
flow controller (2a) and the dispenser (2b). In (b), two Lasius niger workers are seen drinking at the 
nectar released by the dispenser. 

2.3. Treatments 

A total of 20 adult pear trees, homogenous in size (tree height: 2.5–3 m; trunk Ø: 30–40 cm), were 
selected for the experiment from two pear rows. They were chosen from among those plants standing 
far enough away from neighboring trees in order to avoid any contact and eventual passage of ants 
between them. Four treatment groups, each made up of five randomly selected trees, were then 
created. On each tree, two of the main branches departing from the trunk were selected as focal 
branches and used for data collection. Treatment groups differed according to the presence/absence 
of two different manipulations: ANs and ant-exclusion. Six ANs were placed in each tree in order to 
create six different release points: three points each per focal branch, one proximally to the trunk, one 
in the middle of the branch and the last distally to the trunk (Figure 2). Ant-exclusion consisted of the 
placement of sticky barriers at the base of the trunk in order to prevent soil-nesting ant access to the 
tree. Sticky barriers are a common system used for ant exclusion in field experiments [20,101,102]. 
Given the almost complete absence of arboreal-nesting species in the orchard, sticky barriers were 
expected to be effective in eliminating ants from targeted trees. 

As a result, the following treatments were created: 

• Treatment 1 (ANs+/Ants+): ANs were installed and ants were free to climb the tree 
• Treatment 2 (ANs−/Ants+): no ANs were installed and ants were free to climb the tree (trees with 

no manipulations) 
• Treatment 3 (ANs+/Ants−): ANs were installed and ants were not free to climb the tree since 

sticky barriers were installed 
• Treatment 4: (ANs−/Ants−): no ANs were installed and ants were not free to climb the tree since 

sticky barriers were installed 

Figure 1. Artificial nectary (AN) installed on a pear tree. In pictures (a) and (b), the main components
of the artificial nectary are shown: the tank (1) and the infusion set (2). The infusion set is made of the
flow controller (2a) and the dispenser (2b). In (b), two Lasius niger workers are seen drinking at the
nectar released by the dispenser.

2.3. Treatments

A total of 20 adult pear trees, homogenous in size (tree height: 2.5–3 m; trunk Ø: 30–40 cm),
were selected for the experiment from two pear rows. They were chosen from among those plants
standing far enough away from neighboring trees in order to avoid any contact and eventual passage
of ants between them. Four treatment groups, each made up of five randomly selected trees, were
then created. On each tree, two of the main branches departing from the trunk were selected as focal
branches and used for data collection. Treatment groups differed according to the presence/absence of
two different manipulations: ANs and ant-exclusion. Six ANs were placed in each tree in order to
create six different release points: three points each per focal branch, one proximally to the trunk, one
in the middle of the branch and the last distally to the trunk (Figure 2). Ant-exclusion consisted of
the placement of sticky barriers at the base of the trunk in order to prevent soil-nesting ant access to
the tree. Sticky barriers are a common system used for ant exclusion in field experiments [20,101,102].
Given the almost complete absence of arboreal-nesting species in the orchard, sticky barriers were
expected to be effective in eliminating ants from targeted trees.

As a result, the following treatments were created:

• Treatment 1 (ANs+/Ants+): ANs were installed and ants were free to climb the tree
• Treatment 2 (ANs−/Ants+): no ANs were installed and ants were free to climb the tree (trees with

no manipulations)
• Treatment 3 (ANs+/Ants−): ANs were installed and ants were not free to climb the tree since

sticky barriers were installed
• Treatment 4: (ANs−/Ants−): no ANs were installed and ants were not free to climb the tree since

sticky barriers were installed
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Figure 2. Positioning of the experimental apparatus on the trunk and the two focal branches of the 
tree. Ant-flux counting spots were present in all the trees (n = 20), whereas nectar-releasing points and 
sticky barriers were present only according to treatments: ANs+ for nectar-releasing points and Ants− 
for barriers. 

2.4. Data Collection  

Data were typically collected from 09:00 to 12:00 once a week during a two-month period from 
the beginning of July to the end of August 2018 (nine weeks). Data recording started one week after 
the beginning of manipulations. 

2.4.1. Ant Activity 

Data were collected with the aim of monitoring both abundance and diversity of ants active on 
the trees according to the four treatments. In order to avoid specimen collection during data 
sampling, a checklist of ant species in the orchard was compiled before the beginning of the 
experiment (see Table S1). In June 2018, ants were collected by direct sampling and identified under 
a ZEISS Stemi 508 stereoscopic microscope. Measurements were taken with the aid of an Axiocam 
Erc 5 s mounted on the microscope and ZEISS Zen core Software. Taxonomic identifications were 
mainly made following Radchenko and Elmes [103] and Seifert [104]. 

For each tree, five ant-flux counting spots were selected to record ant activity: on the trunk (50 
cm above the ground) (1), on each focal branch between the first and second (2, 3) and between the 
second and the third nectar-releasing points (4, 5). At each spot, the species and number of ants were 
recorded during one-minute samplings (ant flux: N ants/min). Ants were counted if crossing (both 
directions) an imaginary circumference of the trunk/branch at each spot (Figure 2). 

2.4.2. Arthropod Abundance 

In order to evaluate the effect of the presence of ants and ANs on the arthropod fauna, the 
number of all non-ant arthropods (herein simply “arthropods”) was recorded. When possible, 
individuals were identified at species rank, and, if necessary, a few individuals were collected from 
adjacent trees (not involved in the samplings) in order to minimize any possible influence on the 
experiment. Taxonomic aids to identification were Chinery, Leraut and the website Araneae—
Spiders of Europe [105–107]. Arthropods were counted and identified on both focal branches of each 
tree through direct observation, by inspecting each branch from side to side. We decided to 
concentrate on focal branches since the maximum effect of ANs was expected at this location. 

In addition, in order to produce a checklist of the arthropods of the area, data from focal branches 
were integrated with other direct observations on arthropod presence recorded by chance while 
working on the experiment. 

Figure 2. Positioning of the experimental apparatus on the trunk and the two focal branches of the
tree. Ant-flux counting spots were present in all the trees (n = 20), whereas nectar-releasing points and
sticky barriers were present only according to treatments: ANs+ for nectar-releasing points and Ants−
for barriers.

2.4. Data Collection

Data were typically collected from 09:00 to 12:00 once a week during a two-month period from
the beginning of July to the end of August 2018 (nine weeks). Data recording started one week after
the beginning of manipulations.

2.4.1. Ant Activity

Data were collected with the aim of monitoring both abundance and diversity of ants active on
the trees according to the four treatments. In order to avoid specimen collection during data sampling,
a checklist of ant species in the orchard was compiled before the beginning of the experiment (see
Table S1). In June 2018, ants were collected by direct sampling and identified under a ZEISS Stemi 508
stereoscopic microscope. Measurements were taken with the aid of an Axiocam Erc 5 s mounted on
the microscope and ZEISS Zen core Software. Taxonomic identifications were mainly made following
Radchenko and Elmes [103] and Seifert [104].

For each tree, five ant-flux counting spots were selected to record ant activity: on the trunk (50 cm
above the ground) (1), on each focal branch between the first and second (2, 3) and between the second
and the third nectar-releasing points (4, 5). At each spot, the species and number of ants were recorded
during one-minute samplings (ant flux: N ants/min). Ants were counted if crossing (both directions)
an imaginary circumference of the trunk/branch at each spot (Figure 2).

2.4.2. Arthropod Abundance

In order to evaluate the effect of the presence of ants and ANs on the arthropod fauna, the number
of all non-ant arthropods (herein simply “arthropods”) was recorded. When possible, individuals were
identified at species rank, and, if necessary, a few individuals were collected from adjacent trees (not
involved in the samplings) in order to minimize any possible influence on the experiment. Taxonomic
aids to identification were Chinery, Leraut and the website Araneae—Spiders of Europe [105–107].
Arthropods were counted and identified on both focal branches of each tree through direct observation,
by inspecting each branch from side to side. We decided to concentrate on focal branches since the
maximum effect of ANs was expected at this location.
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In addition, in order to produce a checklist of the arthropods of the area, data from focal branches
were integrated with other direct observations on arthropod presence recorded by chance while
working on the experiment.

2.4.3. Leaf Damages

A preliminary assessment of the most common types of damage affecting the leaves in the study
area was conducted during June. These types of damage may be linked to herbivory or pathogens,
which are damage sources potentially affected by ant activity (e.g., [48]). As a result, four damage
categories were established and a damage scale was set for each category (also see Figure 3):

• Scab (S): presence of distinct black spots on the leaf surface, attributed to the fungus Venturia
pyrina Aderh. (1896). Scores: 1 = absent; 2 = low (less than half leaf surface interested); 3 =

medium (half of the leaf surface interested); 4 = high (more than half leaf surface interested)
• Necrosis (N): presence of extended necrotic areas on the leaf (surfaces larger than spots and with

different shapes). Scores: 0 = absent; 1 = present
• Holes (H): presence of holes due to missing parts of tissue far from the edges. Scores: 0 = absent;

1 = present
• Damaged Edge (DE): presence of altered leaf profile due to missing parts of tissue at the edges;

Scores: 1 = absent; 2 = low (less than half leaf edge interested); 3 = medium (half of the leaf edge
interested); 4 = high (more than half leaf edge interested)
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Figure 3. Pear leaves showing the main characteristics of the four damage categories used to evaluate
their condition: Scab—S (a), Necrosis—N (b), Holes—H (c), Damaged Edge—DE (d). Leaf in picture
(b) also shows signs of Holes and Damaged Edge.

The damage level of the leaf was always inferred by visual inspection. Prior to the beginning
of the sampling, 15–25 leaves per focal branch were selected and monitored for the duration of the
experiment recording for each sampling, damage category and score.

2.4.4. Fruit Damages

In order to describe fruit damage, four hypothetical damage categories were established:

1. Damage caused by sucking or chewing phytophagous insects (e.g., see [108] for H. halys)
2. Holes produced by codling moth Cydia pomonella (Linnaeus, 1758) caterpillars

(Lepidoptera, Tortricidae)
3. Damage caused by fungi (e.g., V. pyrina)
4. Other damage
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Immediately after being harvested, all fruits of each tree were counted and their statuses labeled
as damaged or not damaged for all categories.

2.5. Statistical Analyses

If not specified, data were analyzed using IBM SPSS Statistics software (Italian version 25).
Analyses and results are presented according to the nomenclature reported in [109].

In order to test the effect of treatments and time on ant activity, a mean ant flux (n = 5) was
calculated for each tree and week and was used as the dependent variable in a repeated measures
ANOVA (n = 180: 5 trees × 4 treatments × 9 weeks). Weeks 1–9 were considered a within-subjects factor
(repeated measures design) and treatments (ANs+/Ants+; ANs−/Ants+; ANs−/Ants−; ANs+/Ants−)
were used as a between-subjects factor (independent design). For the repeated measures, if assumption
for sphericity was violated (Mauchly’s test), Greenhouse-Geisser correction was used. A repeated
contrasts procedure was used to compare weeks and Tukey post hoc tests were used for treatments.

To test the effect of treatments on arthropods, and because of a data distribution clearly deviating
from normality, a non-parametric approach was chosen. For each recorded taxon, a Kruskal-Wallis
test on abundances was run (n = 360: 2 branches × 5 trees × 4 treatments × 9 weeks). All possible
pairwise comparisons (n = 6) with adjusted p-values (Bonferroni) were run only in cases of statistically
significant results. Taxa with a total number of less than 10 specimens were excluded from the analysis.

Data on leaf damage were treated as follows: for each leaf damage category (S, N, DE and H) a
mean score (n = 15–25) was calculated for each branch and week and used as a dependent variable in a
repeated measures ANOVA (n = 360: 2 branches × 5 trees × 4 treatments × 9 weeks). Weeks 1–9 were
considered as a within-subjects factor (repeated measures) and treatments (ANs+/Ants+; ANs−/Ants+;
ANs−/Ants−; ANs+/Ants−) were used as a between-subjects factor (independent design). For the
repeated measures, if the assumption for sphericity was violated (Mauchly’s test), Greenhouse-Geisser
correction was used. A repeated contrasts procedure was used to compare weeks and Tukey post hoc
tests were used for treatments.

To test the effect of the treatments on fruit damage, two separate analyses were run: one on data
from focal branches, and the other on data from the rest of the whole tree. In the case of focal branches,
a generalized linear model (GLM) with binomial error structure (logistic regression) was run on the
status of the fruit (damaged vs not damaged) (n = 271 fruits with an average of 13.55 fruits per tree ±
1.92 SE). Treatments (ANs+/Ants+; ANs−/Ants+; ANs−/Ants−; ANs+/Ants−) were considered as a
fixed factor. For these analyses, the glm() function of the R statistical package was used [110]. The
analysis was repeated to include a random factor for Tree-id using the glmer() function of the lme4
R package.

The same logistic regression model was used for the analysis of fruit damage on the rest of the
whole tree (n = 7699 fruits with an average of 384.95 fruits per tree ± 81.97 SE). We found no evidence
of over-dispersion in either analysis.

3. Results

3.1. Ant Activity

A total of 19 ant species were recorded during the preliminary assessment (Table S1). Among these
species, 10 were observed on the experimental trees (Table 1). As concerns the total number of trees
where ants were allowed to climb (n = 10), Formica cunicularia, Camponotus piceus and Plagiolepis pygmaea
were respectively recorded in 100%, 90% and 70% of the trees. As concerns the ant flux observations
(n = 450, trunk + branches), the most frequently observed species were Lasius paralienus, Lasius niger
and F. cunicularia, which were observed in 22.44%, 16.44% and 12.89% of records, respectively. The
most widespread species were F. cunicularia, C. piceus and P. pygmaea, which were recorded in 100%,
90% and 70% of the trees where ants were allowed to climb (n = 10), respectively. The most abundant
species were L. paralienus, P. pygmaea and L. niger, with 553, 368 and 335 individuals were counted
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(n = 450), respectively. Only L. paralienus and P. pygmaea were sporadically able to climb trees despite
the sticky barriers (Figure 4).

Data on the “ant flux” revealed a significant main effect of weeks (F(3.77–60.28) = 4.24, p = 0.005).
Repeated contrasts revealed a general decrease from week 1 to week 9. There was also a significant
main effect of treatments (F(3–16) = 11.83, p < 0.001). Tukey post hoc tests revealed a decreasing gradient
of ant flux from ANs+/Ants+ to ANs+/Ants− treatments.

Results according to treatments and weeks are presented in Figure 4, where differences among
treatments are shown, including a decreasing trend from week 1 to week 9 that was mainly evident for
the treatments with no ant exclusion (ANs+/Ants+; ANs−/Ants+).

Table 1. List of the ant species most frequently observed on the trees during the experiment. For each
species, the percentages of visited trees and of presence records are provided for Ants+ treatments.

Taxon Subfamily, Tribe Trees
(n = 10)

Records
(n = 450)

Counted
Individuals

(n = 450)

Camponotus piceus (Leach, 1825) Formicinae, Camponotini 90% 11.3% 79
Camponotus vagus (Scopoli, 1763) Formicinae, Camponotini 30% 0.9% 4

Dolichoderus quadripunctatus (Linnaeus, 1771) Dolichoderinae, Dolichoderini 10% 6.4% 113
Formica cunicularia Latreille, 1798 Formicinae, Formicini 100% 12.9% 105

Lasius niger (Linnaeus, 1758) Formicinae, Lasiini 40% 16.4% 335
Lasius paralienus Seifert, 1992 Formicinae, Lasiini 60% 22.4% 553

Myrmica sabuleti Meinert, 1861 Myrmicinae, Myrmicini 50% 2.0% 21
Plagiolepis pygmaea (Latreille, 1798) Formicinae, Plagiolepidini 70% 9.1% 368

Tapinoma subboreale Seifert, 2012 Dolichoderinae, Tapinomini 10% 0.2% 1
Temnothorax italicus (Consani, 1952) Myrmicinae, Crematogastrini 10% 0.2% 1
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The most abundant species were Hyphantria cunea (Drury, 1773) (Lepidoptera, Erebidae) and 
Stephanitis pyri (Fabricius, 1775) (Hemiptera, Tingidae), but they were only recorded in high numbers 
during two single events and on trees where ants were not allowed to climb. Over 330 caterpillars of 
the fall webworm H. cunea eliminated almost all the leaves of one focal branch, while about 100 
individuals of the pear lace bug S. pyri were counted on another.  

Figure 4. Effects of treatments and weeks on ant flux. Bars represent the mean number of ants crossing
(both directions) an imaginary circumference of the trunk/branch at each spot during a single minute.
For each treatment, bars correspond to the nine weeks of the experiment (left to right). For each bar, the
SE interval is provided. Bars are lumped according to treatment and treatments with the same letter
are not statistically different (mixed-design ANOVA and Tukey post hoc tests were used on treatments,
see text for further details).

3.2. Arthropods Abundance

Arthropods found on the trees during the whole experiment were classified as belonging to 70
taxa: 23 species, 16 genera, 21 subfamilies/families and 10 orders (Table S2). The analysis of arthropod
abundance on focal branches revealed the presence of spiders (Arachnida, Aranea) and seven orders of
insects: Coleoptera, Dermaptera, Hemiptera, Hymenoptera, Lepidoptera and Neuroptera (Table 2).
The most abundant species were Hyphantria cunea (Drury, 1773) (Lepidoptera, Erebidae) and Stephanitis
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pyri (Fabricius, 1775) (Hemiptera, Tingidae), but they were only recorded in high numbers during
two single events and on trees where ants were not allowed to climb. Over 330 caterpillars of the fall
webworm H. cunea eliminated almost all the leaves of one focal branch, while about 100 individuals of
the pear lace bug S. pyri were counted on another.

Table 2. List of the arthropods scanned weekly on the two focal branches from the beginning of July
until the end of August 2018 (nine weeks). “Total” represents the total number of individuals recorded
during the whole sampling period. In p, statistically significant results are highlighted in bold. In
“Treatment”, treatments with the same letter are not statistically different. In “Mean” and “SE”, results
refer to n = 90.

Class Order Family/Species Total H(3) p Treatment Mean SE

Arachnida Araneae 29 6.268 0.099

ANs+/Ants+ 0.04 0.02
ANs−/Ants+ 0.03 0.02
ANs+/Ants− 0.14 0.05
ANs−/Ants− 0.10 0.03

Insecta

Coleoptera 33 1.759 0.624

ANs+/Ants+ 0.07 0.03
ANs−/Ants+ 0.09 0.07
ANs+/Ants− 0.13 0.05
ANs−/Ants− 0.08 0.03

Dermaptera 1 - - - - -

Diptera 35 0.727 0.867

ANs+/Ants+ 0.07 0.03
ANs−/Ants+ 0.13 0.05
ANs+/Ants− 0.09 0.03
ANs−/Ants− 0.10 0.04

Hemiptera M. pruinosa 65 3.402 0.334

ANs+/Ants+ 0.03 0.02
ANs−/Ants+ 0.19 0.08
ANs+/Ants− 0.17 0.06
ANs−/Ants− 0.33 0.22

S. pyri 192 9.094 0.028

ANs+/Ants+ 0.00 0.00
ANs−/Ants+ 0.40 0.20
ANs+/Ants− 1.73 1.19
ANs−/Ants− 0.00 0.00

others 32 2.348 0.503

ANs+/Ants+ 0.08 0.03
ANs−/Ants+ 0.08 0.03
ANs+/Ants− 0.03 0.01
ANs−/Ants− 0.08 0.03

Hymenoptera Vespula sp. 37 37.749 <0.001

(A)ANs+/Ants+ 0.14 0.04
(B)ANs−/Ants+ 0.00 0.00
(A)ANs+/Ants− 0.27 0.06
(B)ANs−/Ants− 0.00 0.00

others 4 - - - - -

Lepidoptera H. cunea 631 9.050 0.029

ANs+/Ants+ 0.00 0.00
ANs−/Ants+ 0.00 0.00
ANs+/Ants− 0.00 0.00
ANs−/Ants− 7.01 4.92

others 4 - - - - -

Neuroptera

Chrysopidae 7 - - - - -

Chrysopidae (eggs) 40 6.642 0.503
ANs+/Ants+ 0.02 0.02
ANs−/Ants+ 0.10 0.04
ANs+/Ants− 0.11 0.04

As concerns the effect of treatments on arthropod abundances, a Kruskal-Wallis test was
performed on the following taxa: Araneae, Chrysopidae eggs, Coleoptera, Diptera, Vespula spp.
(Hymenoptera, Vespidae), Metcalfa pruinosa (Say, 1830) (Hemiptera, Flatidae), Stephanitis pyri (Fabricius,
1775) (Hemiptera, Tingidae), other Hemiptera and Hyphanthria cunea (Drury, 1773) (Lepidoptera,
Erebidae). The remaining taxa were excluded from the analysis due to their low abundances (Table 2).
The Kruskal-Wallis test found statistically significant differences in Vespula spp. (H(3) = 37.749, p <

0.001), S. piryi (H(3) = 9.094, p = 0.028) and H. cunaea (H(3) = 9.050, p = 0.029). For Vespula spp., pairwise
comparisons showed the presence of two groups that differed according to the presence of ANs, with a
higher abundance in treatments where ANs were present (Table 2). For S. piryi and H. cunaea, pairwise
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comparisons showed no significant differences between groups in all the possible comparisons. Finally,
the Kruskal-Wallis tests found no statistically significant differences in Coleoptera (H(3) = 1.759, p =

0.624), Araneae (H(3) = 6.268, p = 0.099), Diptera (H(3) = 0.727, p = 0.867), M. pruinosa (H(3) = 3.402;
p = 0.334), other Hemiptera (H(3) = 2.348, p = 0.503) and Chrysopidae eggs (H(3) = 6.642, p = 0.084)
(Table 2).

3.3. Leaf Damage

As concerns Scab, there was a significant main effect of weeks on damage scores (F(3.58–121.82) =

51.61, p < 0.001). Repeated contrasts revealed a general increase of scores from week 1 to week 9. There
was also a significant main effect of treatments (F(3–34) = 4.36, p = 0.011). Tukey post hoc tests revealed
that ANs+/Ants+ treatment had lower scores than both treatments with ant exclusion (ANs+/Ants−
and ANs−/Ants−), which did not differ from one another. ANs−/Ants+ treatment was associated with
scores in-between the two previous groups (Figure 5).
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Figure 5. Effects of treatments and weeks on leaf damage for the Scab category. Points represent the
mean score per week and treatment. For each point, whiskers show the SE interval. Lines with the
same letter are not statistically different (mixed ANOVA and Tukey post hoc tests, see text for further
details).

The analysis on the Necrosis category showed that there was a significant main effect of weeks
on damage scores (F(5.04–272) = 49.00, p < 0.001). Repeated contrasts revealed a general increase of
scores from week 1 to week 9. There was also a significant main effect of treatments (F(3–34) = 4.39, p =

0.010). Tukey post hoc tests revealed that ANs+/Ants+ treatment had lower scores than ANs−/Ants−
treatment. ANs−/Ants+ and ANs+/Ants− treatments did not differ from one another and had scores
in-between the two previous groups (Figure 6).

As concerns the Damaged Edge category, scores were generally very low with very few records
encompassing a score of 2, meaning that damage was absent for less than half the leaf margin. There
was a significant main effect of weeks on damage scores (F(5.89–200.20) = 4.48, p < 0.001). Repeated
contrasts revealed no differences between week 2 and week 8, lower scores for week 1 compared to
week 2 and higher scores in week 9 as compared to week 8. No significant main effect of treatments
was found (F(3–34) = 0.23, p = 0.87).

The analysis on the Holes category showed generally very low scores with very few records
encompassing a score of 0.4, meaning that holes were usually absent. No significant main effects
were found on the damage scores of weeks (F(4.18–142.19) = 1.66, p = 0.16) and treatments (F(3–34) = 1.12,
p = 0.36).
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penetrate inside, often eating both the pulp and seeds (b,c), and may create favorable conditions for 
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3.4. Fruit Damage

As concerns fruit damage, only holes produced by caterpillars of the codling moth C. pomonella
were recorded and used for a statistical analysis (Figure 7). Only 3% of the fruits of the whole fruit
production from ANs+/Ants+ trees were damaged by C. pomonella, whereas this value increased for
the other treatments (ANs−/Ants+: 23%; ANs−/Ants−: 28%; ANs+/Ants−: 11%) (Table S3).
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Figure 7. Damage produced by caterpillars of the codling moth Cydia pomonella on pear fruits. A small
entrance hole (a) is usually visible on its side or near the stamen if the fruit is attacked. The larvae
penetrate inside, often eating both the pulp and seeds (b,c), and may create favorable conditions for
other organisms such as fungi to grow within the fruit (b).
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The logistic regression analysis showed a significant association between treatments and fruit
status (damaged vs not damaged) on the focal branches. Fruits from ANs+/Ants+ trees were 10 times
less likely to be damaged than the control group (ANs−/Ants+), whereas no differences were detected
between the control group and the other treatments (ANs+/Ants−; ANs−/Ants−) (see Table 3 and
Figure 8). The addition of the random factor Tree-id to the model did not change previous results.

Table 3. Logistic regression of treatments (ANs+/Ants+; ANs−/Ants+; ANs+/Ants−; ANs−/Ants−) on
fruit status (damaged vs not damaged). The coefficients of treatments are contrasts with the control
group (ANs−/Ants+). ** p < 0.01; *** p < 0.0001.

Variable B SE Odds Ratio Sig.

Constant −1.04 0.25 −4.18 <0.001 ***

ANs+/Ants+ −3.06 1.04 −2.95 0.003 **

ANs+/Ants− −0.80 0.41 −1.96 0.05

ANs−/Ants− −0.12 0.43 −0.29 0.76

χ2 22.18, df = 3, p < 0.001 ***
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Figure 8. Effects of treatments on fruit damage by C. pomonella for focal branches. Bars represent the
probability of a fruit to be damaged according to the treatment (logistic regression model). For each bar,
a confidence interval is provided.

The logistic regression analysis on data from the whole tree (focal branches excluded) showed
similar results to those on the focal branches, highlighting a significant association between treatments
and fruit status (damaged vs not damaged). Fruits from the ANs+/Ants+ trees were 3.47 times less
likely to be damaged than the control group (ANs−/Ants+). Given the higher number of fruits with
respect to the previous analysis, the differences between the control group and the other treatments
(ANs+/Ants−; ANs−/Ants−) were also significant (see Table 4 and Figure 9). Specifically, the fruits
from ANs−/Ants− trees, where ants were excluded, were 1.32 times more likely to be damaged than
the control group (ANs−/Ants+). The addition of the random factor Tree-id to the model did not
change the previous results.
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Table 4. Logistic regression of treatments (ANs+/Ants+; ANs−/Ants+; ANs+/Ants−; ANs−/Ants−) on
fruit status (damaged vs not damaged). The coefficients of treatments are contrasts with the control
group (ANs−/Ants+). * p < 0.05; ** p < 0.01; *** p < 0.0001.

Variable B SE Odds Ratio Sig.

Constant −1.93 0.08 0.15 <0.001 ***

ANs+/Ants+ −1.34 0.13 0.26 <0.001 ***

ANs+/Ants− −0.23 0.11 0.80 0.03 *

ANs−/Ants− 0.33 0.11 1.39 0.002 **

χ2 231.09, df = 3, p < 0.001 ***
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4. Discussion

Results demonstrated that ANs can be used to manipulate ant presence on pear trees. Moreover,
new data on the role of ants in pear agroecosystems and their impact as plant defenders were obtained.
To the best of our knowledge, the list of ant species observed and their relative abundances may
represent the first assessment of this kind in a pear orchard worldwide. The scarcity of arboreal-nesting
species in the orchard is noteworthy, including the almost complete absence of ecologically and
behaviorally dominant ants (see [104,111]) such as Crematogaster scutellaris (Olivier, 1792) (present in
about 2.5% of the orchard trees) or Lasius fuliginosus (Latreille, 1798) (absent in the orchard), which were
clearly more abundant in the surrounding areas. A lack of suitable nesting sites within the orchard
trees may have contributed to this difference. The most representative species we found in the orchard
are commonly recorded in the Padan Plain [112].

A fundamental result of this study is the success of ANs at attracting ants, helping to create a
gradient in activity of ants among treatments. The existence of different ant activity levels among
treatments through the use of ANs and sticky barriers was the fundamental premise to the success of
the rest of the experiment, allowing an evaluation of how varying rates result in varying effects on
other arthropods and on plants. Notably, these differences were successfully maintained throughout
the season. An interesting high peak of ant activity, correlated with the presence of ANs, was recorded
during the first week of monitoring (note that ANs were installed a week earlier). This could be
explained as the result of a “novelty effect”, or of a latency before some degree of saturation of the
colony “social stomach”, or by a change in dietary needs throughout the season (e.g., switching from
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carbohydrates to a protein-rich diet as more brood are produced) [113,114]. In any case, ANs should
be further studied as possible tools to direct ant activity toward target areas over significantly long
periods of time.

While a rich arthropod community was observed, most of the typical pests of pear orchards [89]
were either absent or only few individuals were present. The San Jose scale, Q. perniciosus, against
which the predatory activity of certain ants may be very effective [90], was absent. Similarly, Cacopsylla
sp., which ants may effectively control or, according to others, favor [91–93], were only present in low
numbers. Wasps (Vespula sp.) were the sole group showing significant differences in their presence on
trees according to treatments: they were very poorly represented overall, but slightly more common in
trees with ANs. This pattern seems to be the result of wasp interest in the artificial nectar (seldom
observed in European hornets, Vespa crabro Linnaeus, 1761, too), which apparently grew throughout
the period of the experiment. In a few instances, Lasius spp. were observed aggressively preventing
the wasps from landing to drink at the AN dispensers they had occupied, and wasps usually aimed to
land at dispensers without ants. Differences in the presence of other arthropod taxa were expected
(e.g., [101,102,115]), but perhaps they would have required a much heavier sampling effort to be
numerically appreciated. However, during the second month of the experiment, some cases of pest
outbreaks were noted on a few trees with sticky barriers preventing ant presence. The fact that no
increase in sap feeders was observed in conjunction with increased ant activity is notable. It is possible
that ANs also decreased the importance of honeydew producers as nectary sources for ants, thus
disrupting their protective tending behavior ([20,21,97–100]—but see also [116]). However, the ant–sap
feeder association did not appear relevant in the study area.

Interesting differences were found regarding leaves among different treatments. The first two
damage categories showed very similar trends, suggesting they both may be mainly attributed to the
same pathogen (V. pyrina). In both cases, trees with a high ant activity were significantly less affected,
which may indicate the role of ants in limiting the spread of this epiphytic fungus. Indeed, effects
on plants by ant antimicrobial secretions have already been documented in several cases, but the
ecological weight of these interactions—not to mention their possible applications in agriculture—is far
from being understood and in need of investigation [17,48,79]. The ability of ants to reduce the damage
by apple scab (Venturia inequalis (Cooke) G. Winter (1875)) was recently documented [48]. The other
two damage categories had no significance in relation to ant activity. However, leaves were already
quite damaged at the beginning of data sampling. As a consequence, an experiment specifically aimed
at further evaluating the effects of an increase of ant presence on pear leaves may benefit from starting
earlier in the season, in conjunction with the appearance of the first leaf gems.

Moreover, interesting data were obtained in relation to fruit production. Contrary to leaves, fruit
were still in an early stage of development and mostly intact at the beginning of the experiment. By
the time they were collected, a large percentage had been attacked by the codling moth (C. pomonella),
which is considered to be one of the most important pear pests worldwide [89]. Such attacks tend to
compromise both pulp and seeds, making fruit unsuitable for the food market and seed production,
and damaging plant fitness. However, in trees in which ant activity was increased by ANs, the attacks
were much less problematic. The two analyses carried out separately on focal branches and on the
rest of the fruit production depicted very similar results. This suggests that, although ANs were
placed on only two branches per tree, they increased ant activity on an unexpectedly larger area of
the plant. We can speculate that ant activity may have limited the action of the codling moth through
different, non-exclusive mechanisms, such as via a dissuasive effect on egg-laying activity (possibly
mediated by semiochemicals), or by direct predation on the moth eggs and/or caterpillars. Ants are
known to prey on both the eggs and larvae of different lepidopterans [48,71,117–119], and they also
prey on other frugivorous insect larvae such as those of fruit flies [120–122]. Moreover, they may
inhibit fruit fly egg deposition due to their secretions, and Tephritidae may even avoid landing on
fruit previously exposed to ants [123]. Predation on the pupal stage in the soil may also have occurred
(e.g., as concerns flies [124]). It is remarkable to note that none of the few biological control techniques
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currently employed against the codling moth are able to target eggs and larval stages [90,125–127].
Moreover, pesticide treatments against this pest face increasing difficulties due to the emergence of
resistance mechanisms [128,129]. Additional investigation should clarify in detail how ants can affect
the moths and their activity on plants, possibly leading to new control methods.

Both the ANs and nectar solution used during the experiment were very basic, and may be
improved in the future, perhaps by further drawing inspiration from natural systems such as more
elaborate nectar solutions with specific carbohydrates/nitrogen ratios or proteins, which could possibly
enhance ant predatory attitude (e.g., [20,26,130,131]). Moreover, in comparison with a recent experiment
of inoculation biological control employing ants in an apple orchard [48,71], we obtained somewhat
similar beneficial results by using the native ant-fauna, while we did not witness sap feeders outbreaks.

5. Conclusions

Although a relatively simple protocol was employed, very encouraging results on fruit production
and plant health were achieved, many of which solicit the need for additional investigation. Future
efforts may focus on the mechanisms eventually adopted by ants to contain V. pyrina and C. pomonella,
and on how the activity of different ant species may impact plants and their pests. Overall, significant
results were observed when ant activity was increased due to the ANs, while no significant differences
were detected between control trees in which ant activity was untouched and those where it was
artificially reduced. Moreover, no negative side effects of AN use were found. In conclusion, these
results further encourage studying the role of ants and the employment of ANs in agroecosystems
and suggest it is worth continuing to explore unchecked possibilities in the development of new tools
for CBC.
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