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Simple Summary: Aedes aegypti, the mosquito species that transmits dengue virus among others,
is fully adapted to thrive in urban areas. Their activity, however, varies in time and space and this
might imply different transmission risk. We hypothesize that the temporal differences in mosquito
activity are determined by local environmental conditions. Hence, we explore the existence of groups
of temporal patterns in weekly time series of ovitraps records and we associate those patterns to envi-
ronmental variables derived from remote sensing data and also to dengue incidence. We found three
groups of temporal patterns that showed association with land cover diversity, heterogeneity and
variability in vegetation and humidity indices estimated over 50-m radius buffer areas surrounding
ovitraps. Dengue incidence on a neighborhood basis showed a weak but positive association with
the percentage of pixels belonging to one of the patterns detected. The understanding of the spatial
distribution of temporal patterns and their environmental determinants might then become relevant
to guide the allocation of prevention and monitoring interventions.

Abstract: Aedes aegypti, the mosquito species transmitting dengue, zika, chikungunya and yellow
fever viruses, is fully adapted to thrive in urban areas. The temporal activity of this mosquito,
however, varies within urban areas which might imply different transmission risk. In this work,
we hypothesize that temporal differences in mosquito activity patterns are determined by local
environmental conditions. Hence, we explore the existence of groups of temporal patterns in weekly
time series of Ae. aegypti ovitraps records (2017–2019) by means of time series clustering. Next, with
the aim of predicting risk in places with no mosquito field data, we use machine learning classification
tools to assess the association of temporal patterns with environmental variables derived from satellite
imagery and predict temporal patterns over the city area to finally test the relationship with dengue
incidence. We found three groups of temporal patterns that showed association with land cover
diversity, variability in vegetation and humidity and, heterogeneity measured by texture indices
estimated over buffer areas surrounding ovitraps. Dengue incidence on a neighborhood basis
showed a weak but positive association with the percentage of pixels belonging to only one of the
temporal patterns detected. The understanding of the spatial distribution of temporal patterns and
their environmental determinants might then become highly relevant to guide the allocation of
prevention and potential interventions. Further investigation is still needed though to incorporate
other determinants not considered here.
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1. Introduction

Aedes aegypti is the main vector of dengue, zika, chikungunya and yellow fever viruses
worldwide. In recent decades, aided by global warming, urbanization, trade and human
migration, Ae. aegypti has invaded many temperate areas of the world [1,2], reaching
latitudes as south as 40° S [3]. This mosquito species is highly anthropophilic and it is fully
adapted to thrive in urban areas, where it can fulfill all its ecological needs. Its success
is mainly due to its behavior and survival ability, which includes egg laying in natural
and man-made water containers associated with domestic and peridomestic settings and
eggs’ resistance to desiccation [4]. These characteristics, plus a wide distribution and high
densities of breeding sites, constitute the key factors that mainly determine the circulation
and transmission of dengue and related viruses in urban areas [5].

Dengue fever causes the greatest human disease burden, with an estimated 10,000 deaths
and 100,000 million symptomatic infections per year in over 125 countries (53% of the global
population at risk) [6]. The incidence of dengue has grown dramatically in recent decades,
with a concomitant increasing frequency of outbreaks, especially in South America during
the past 10–12 years. Two of the most important dengue outbreaks in Argentina occurred
in 2009 and 2016, affecting more than 25,000 and 40,000 people, respectively, and reaching
temperate cities such as Córdoba and Buenos Aires [7–10]. During 2020, in the midst of
COVID-19 pandemic, Argentina experienced the largest dengue outbreak to date, with
more than 58,000 confirmed cases, and near 3000 in the city of Córdoba [11].

Given the lack of a well established and accepted vaccine, dengue control and preven-
tion is traditionally based on vector control and entomological surveillance to estimate the
potential risk for virus transmission and disease [12]. Prevention programs are therefore
typically focused on removal of Ae. aegypti breeding sites in order to eliminate vector larval
stages, treatment of larval habitats and insecticidal spraying to reduce adult density [13].
The latter being usually applied as a reactive measure once cases appear.

In this context, understanding the determinants of mosquito spatial distribution and
temporal variations in abundance is key [14,15]. Indeed, many studies have focused
on mapping vector hotspots and disease clusters, as well as understanding the causes
of spatial heterogeneity at different scales as key tools for decision making regarding
prevention programs and control actions [16–20]. Others have addressed the prediction of
temporal changes in mosquito abundances, either through mechanistic [21] or empirical
models [22–24] with the aim of forecasting risk. In most cases, Earth Observation (EO) data
of different spatial and temporal resolution were used as the main source of environmental
information to relate to mosquito data and yield predictions [14]. In a different path but
with the same aim, various clustering techniques have been used, i.e., spatiotemporal
clustering was applied to identify clusters of human cases during outbreaks [8,9], co-
clustering techniques were used to identify favorable space-time conditions triggering
outbreaks [25], spatial clustering was used in the identification of different cover types or
groups of neighborhoods [26].

Time series clustering is a special type of clustering that handles dynamic data and has
recently received more attention [27]. Examples in the literature commonly include the use
of Dynamic Time Warping (DTW) distance combined with a clustering method to assess
patterns in economic time series [28], crop classification [29], hydrodynamic behavior of
ground water level [30] and phenological regions delineation [31]. Remarkably, only once
has clustering been applied to time series of vector data in an attempt to understand if
there might be different temporal patterns that could explain the spatial differences usually
observed in timing of cases occurrence and transmission risk [32].

In this contribution, we explore a novel approach that combines time series clustering,
EO data, machine learning and dengue incidence, to assess the existence and spatial distri-
bution of Ae. aegypti oviposition temporal patterns and their relationship with environment
and dengue incidence in the city of Córdoba. Under the hypothesis that local environmen-
tal features might determine differences in female mosquitoes oviposition patterns and that
different temporal patterns might be related to different risk levels of dengue transmission,
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we use time series clustering to group time series of eggs’ counts. Furthermore, since our
ultimate goal is to enhance operational tools and predict risk in places where we do not
have data, we then assess the relationship between temporal patterns and environmental
variables extracted from the analysis of high resolution (10 m) EO data in the surroundings
of each ovitrap. This allows us to predict types of temporal patterns over space, which
in turn facilitates the characterization of neighborhoods according to oviposition activity
pattern and evaluate the relationship with dengue occurrence in the last outbreak.

2. Materials and Methods
2.1. Study Area

Córdoba is the second largest city in Argentina with a population of 1,330,023 in-
habitants in 2010 [33]. It has a surface of 576 km2 and it is located at 31°24′ S, 64°11′ W,
450 m.a.s.l. The urban area is surrounded by agricultural fields and small forest patches.

Córdoba city has a temperate climate, with mean annual precipitation of 800 mm.
The winter is markedly dry and most precipitation occurs in the summer months. The rainy
season spans between October and March, with the highest precipitations from December
to February. The mean annual temperature is 21 °C (range 12–38 °C). Winters are temperate,
with several frost days in June and July.

The Suquía River, its tributary La Cañada and numerous additional water channels
run through the city. Human activities have resulted in a landscape characterized by a
highly developed urban core represented by buildings and green areas in the form of
urban parks. Suburban areas are characterized by residential neighborhoods, primarily
single-family houses with yards, interspersed with parks and other green spaces.

2.2. Mosquito Data

Entomological data consisted of 300 ovitraps distributed in 150 houses over 5 different
areas of the city (Figure 1). Houses with ovitraps were at least 150 m apart, with an average
distance of 350 m.

Figure 1. Distribution of ovitraps in Córdoba city (Argentina).



Insects 2021, 12, 919 4 of 18

Two ovitraps were placed in the front yard of each house, usually in shaded places
and below or close to bushes or pots with plants. The possibility of trap installation
depended on householders’ written consent. Each ovitrap consisted of a black 1000 mL
plastic container filled with 250 mL of water and a wooden tongue depressor (15 × 2 cm)
held vertically to serve as substrate for mosquito oviposition [34]. Eggs laid in each wooden
paddle were counted under magnifying glass. All ovitraps were replaced every week, from
October 2017 to December 2019. Since the two ovitraps per house are not discriminated in
the field, i.e., they are not labeled distinctively, we use the average count of eggs per house
per week as the input for further analysis. We performed temporal linear interpolations
when data were missing for different reasons. We removed houses (i.e., time series) with
more than 10 consecutive missing values to avoid artifacts in temporal interpolations
arising from not enough valid data points.

2.3. Remote Sensing Data

We used Sentinel 2 data for 3 different periods covering the core mosquito seasons
in the area during our study period: November 2017 to March 2018, November 2018 to
March 2019, and November 2019 to March 2020. A detail of the scenes processed can be
found in Table S1 of the Supplementary Materials. Sentinel 2 imagery consists of 12 bands
(3 visible and near infrared at 10 m, 3 red-edge at 20 m, 1 near infrared at 20 m, 2 short wave
infrared at 60 m, among others). It has a revisit time of around 5 days, given that there are
2 satellites, Sentinel 2A and Sentinel 2B. We selected level 1 scenes with no clouds, one per
month, in similar dates, for the 3 periods described above. All bands were atmospherically
corrected by means of the Atmospheric and Radiometric Correction of Satellite Imagery
(ARCSI) software and imported into GRASS GIS 7.8 [35] where all further remote sensing
processing was done.

Common vegetation and water indices such as the Normalized Difference Vegetation
Index (NDVI) and the Normalized Difference Water Index (NDWI) were derived for each
image. Then, they were temporally averaged to obtain a single summary index image per
season. We also estimated a synthetic panchromatic band for each season by temporally
aggregating red, green and blue bands using the median (RGB composites for each season
are shown in Figure S1 in the Supplementary Materials), and then, averaging them.

Following [20], a k-means unsupervised classification with 15 different classes was cho-
sen as to identify different spectral covers (see Figure S2 in the Supplementary Materials).
Buffers of≈50- and 100-m radius from each ovitrap were overlaid upon bands and different
statistics and texture measures were obtained, i.e., number of classes, the most common
class, class diversity, mean and standard deviation (sd) NDVI, mean and sd NDWI, contrast,
entropy, interspersion, etc. Buffer sizes were established according to the commonly used
100 m flight range of host-seeking female mosquitoes. All variables derived from remote
sensing data are defined and explained in Table S2 in Supplementary Materials.

2.4. Dengue Data

Locations of imported and autochthonous dengue cases for the 2019–2020 season were
provided by the Health authorities of Córdoba province. In total, there were 2755 dengue
cases in Córdoba city in the 2019–2020 season, 28 were imported and 2727 autochthonous
out of which we recovered 2491 coordinates (see Section 3).

2.5. Data Analyses
2.5.1. Time Series Clustering

We tested different partitional time series clustering algorithms and different dis-
tance measures with number of clusters (k) ranging from 3 to 10 (Table 1) [27]. We ran
10 repetitions of maximum 100 iterations for each combination of k, distance, and centroid
extraction method. For the case of Dynamic Time Warping (DTW) clustering, there were
other parameters considered such as vector norm (i.e., Manhattan and Euclidean distances,
L1 and L2, respectively) and window size (from 1 to 5, in steps of 1). Since the shape-based
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distance (SBD) requires data normalization, we applied this pre-processing step in all cases
for the sake of consistency, and we tested configurations both with and without centering.

Table 1. Combinations of distances and centroid extraction methods tested and compared. References:
DTW, Dynamic Time Warping; DTW_LB, Dynamic Time Warping Lower Bounds; DBA, DTW
Barycenter Averaging; PAM, Partition Around Medoids; SBD, Shape Based Distance.

Distance Centroid Pre-Processing Configurations

DTW DBA Normalization 1600
DTW_LB DBA Normalization 1600

DTW PAM Normalization 1600
DTW_LB PAM Normalization 1600

SBD PAM Normalization 160
SBD Shape extraction Normalization 160

Since clustering is an unsupervised method, we used internal cluster validity indices
(CVI) to evaluate the results. These indices only consider the partitioned data and try to
quantify cluster purity. Each index defines its range of values and whether they are to
be minimized or maximized to assign a vote to a certain configuration within a set [36].
Several CVIs were estimated for each combination of settings and majority vote was used
to decide on a final result. The CVIs used were: Silhouette (Sil), Dunn (D), COP index
(COP), Davies–Bouldin (DB) and Modified Davies–Bouldin (DB*) [36]. We compared all
6 combinations from Table 1 for 3 different periods: the full study period (117 weeks,
October 2017–December 2019), season 2017–2018 (October 2017–September 2018) and,
season 2018–2019 (October 2018–September 2019). We then performed majority vote among
the 6 configurations per subset to select one best configuration for further comparisons. For
time series clustering and evaluation of results, we used the dtwclust package [37] in the
R software [38]. The results of the best configurations were then compared using different
similarity measures from the clue package [39].

2.5.2. Association with Environmental Features

To understand if local environmental variables derived from remote sensing in 50-
and 100-m radius areas could explain the clustering of ovitraps time series obtained,
we ran random forest (RF) classifications for each period. The dependent variable or
outcome was the cluster number. These analyses were run with the package caret [40] in
the R software [38]. In all cases, we split the data into training and test sets (70 and 30%,
respectively). Given that clusters were unbalanced, we used an up-sample approach before
RF training to increase n in smaller groups. Furthermore, we centered and scaled variables
in the training sample to avoid that differences in values might affect variable importance.
We used repeated cross-validation for hyper-parameter tuning in the training phase, with
5 folds and 10 repetitions. We performed variable selection by means of anova scores filter.
This method uses anova p-values as weights to decide which variables or features are to be
used in the classification step and we estimated variable importance to infer relationships
with clusters. Finally, we evaluated the classification’s results with the 30% test dataset that
was left aside at the beginning. Overall accuracy was used as performance measure both
for training and validation.

Since the ovitrap sampling could not continue given the control activities that had to
be performed because of the dengue outbreak starting in January 2020 all over the province,
and the COVID-19 pandemic afterwards, we do not have complete ovitrap records for
2019–2020 as to carry out the analysis. Therefore, we used 2018–2019 RF model to predict
the time series pattern over centered and scaled remotely sensed data for 2019–2020.

2.6. Oviposition Temporal Patterns and Dengue

In the attempt of uncovering potential associations among the occurrence of different
oviposition temporal patterns and dengue cases, we aggregated data by neighborhood. To
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estimate dengue incidence over 10,000 people per neighborhood, we first estimated popu-
lation count by adding up the 100-m resolution data UN adjusted produced by WorldPop
(https://www.worldpop.org/, accessed on 30 June 2021) for 2020 in each neighborhood of
the city of Córdoba. We then obtained the percentage of pixels belonging to different tem-
poral patterns in each neighborhood. Afterwards, we compared incidences and percentage
of each oviposition temporal pattern along all neighborhoods with at least 1 dengue case
by means of Spearman rank correlation analysis.

All GRASS and R scripts used to perform data processing, analysis and visualization
are available at: https://github.com/veroandreo/mosquito-ts-clust.

3. Results

Average egg counts varied markedly both in time and space (Figure 2). There was,
however, a seasonal pattern in oviposition with 2018–2019 season reaching generally much
higher egg counts. The average maximum egg count was 70 in 2017–2018 season, while it
reached 185 in the following season. Furthermore, the maximum egg count for a single
household was 236 in 2017–2018 (house 70) and 615 in 2018–2019 (house 59). The median
date of maximum egg count was only one week earlier in 2018–2019 compared to the
previous season, 21 January vs. 29 January , respectively.
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Figure 2. Time series plots of average egg counts as measured by 300 ovitraps distributed in 150 houses in Córdoba
(Argentina). Period: September 2017–December 2019. Numbers 1 to 150 represent the houses where ovitraps were placed.
Houses number 13, 19, 34, 60, 70, 131 and 139 were excluded of further analyses because they presented more than
10 consecutive time steps without records.

The earliest onset in oviposition was observed in week 42 (mid October) in 2017,
4 weeks earlier in 2018 (week 38, mid September) and in week 39 in 2019. On the other
hand, oviposition stopped as late as week 22 in 2018 (by the end of May) and by mid-late

https://www.worldpop.org/
https://github.com/veroandreo/mosquito-ts-clust
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June in 2019 (week 25). These onset and offset dates resulted in a reproductive season of
more than 7 months in the period 2017–2018, and ≈9 months in 2018–2019.

From all the clustering configurations tested, we obtained the best distance-centroid
combination for each period considered (Table 2). The selection of the best combination of
parameters within each distance-centroid combination and period was made according
to CVIs and majority vote. We then performed a second round of votes to obtain the best
clustering configuration per period. All the best configurations split the 143 ovitraps time
series in 3 groups (i.e., the minimum k tested). Two of the selected configurations are based
on DTW clustering and the third one corresponds to K-shape clustering (SBD distance
+ shape extraction centroid). Both cluster sizes and cluster spatial distribution differed
according to periods (Figure 3). Generally, however, the algorithms identified one large
group and the other two much less so (Table 2).

series_17_18 series_18_19 series_full Group
1
2
3

Figure 3. Spatial distribution of time series clustering results for the different periods studied. Left panel: season 2017–2018,
central panel: season 2018–2019 and, right panel: full period 2017–2019.

The median end date of oviposition was pretty constant for all groups in the different
clustering algorithms both in the period 2017–2018 and 2018–2019 (Table 3). Median starting
date, however, was a bit more variable, determining longer or shorter oviposition seasons
in each case. Remarkably, the median start date in 2018–2019 season was around one month
earlier than in the previous season (Table 3). Hence, the median duration of oviposition
season was ≈20–30 days longer in 2018–2019. The mean maximum number of eggs is 2 to
3 times higher in 2018–2019 than in the previous season, while the median date of the peak
is approximately the same.

The difference among seasons was also evident in the plots showing mean egg counts
and 10 and 90 percentiles for each cluster in the three time periods considered. Egg counts
were much higher in 2018–2019 than the year before (Figure 4). Statistically, however, only
in 2017–2018 were there significant differences among clusters in terms of egg counts.

Regarding the shape of the curves, both in 2017–2018 and 2018–2019, there seems to
be a temporal pattern with lower abundances and no clear peak (group 2 in 2017–2018
and group 1 in 2018–2019, Figure 4). In 2017–2018, among the groups with the highest
egg counts, group 1 appears to maintain higher abundances over a longer period than
group 3 (Figure 4b). In 2018–2019, meanwhile, group 2 reaches very high counts earlier
than group 3, though the curves are quite similar in their shapes (Figure 4c). This latter
difference is clear when observing the centroids that resulted selected. Centroids of clusters
1, 2 and 3 for each period studied are presented in Figure S3 in Supplementary Materials.
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Table 2. Results of the best clustering configurations per type of algorithm. References: rep, repetition, k, number of clusters, n, number of time series in each cluster, DTW, Dynamic Time
Warping; PAM, Partition Around Medoids; SBD, shape based distance, Sil, Silhouette; DB, Davies–Bouldin; DB*, Modified Davies–Bouldin; D, Dunn; COP, COP index.

Series Rep k n Dist Cent
Dist

Wind
Size

Norm
Dist

Cent
Wind
Size

Norm
Cent

Znorm
Cent Sil D COP DB DB* Votes

Full series 10 3 89,44,10 dtw_basic dba 4 L2 4 L2 0.095 0.311 2.026 0.581 0.581 1
10 3 89,44,10 dtw_lb dba 4 L2 4 L2 0.158 0.076 1.697 0.413 0.404 0
2 3 16,26,101 dtw_basic pam 5 L2 0.100 0.315 1.867 0.739 0.702 3
7 3 110,9,24 dtw_lb pam 3 L2 0.192 0.099 1.700 0.445 0.436 1
7 3 6,111,26 sbd shape TRUE 0.181 0.123 1.700 0.575 0.562 0
1 3 25,12,106 sbd pam 0.098 0.203 2.023 0.537 0.489 0

2017–2018 10 4 30,71,14,28 dtw_basic dba 4 L2 4 L2 0.058 0.233 1.889 0.615 0.612 1
1 3 54,37,52 dtw_lb dba 2 L2 2 L2 0.119 0.098 1.602 0.454 0.454 1
7 3 70,30,43 dtw_basic pam 5 L1 0.049 0.234 1.551 0.711 0.688 2
5 5 44,49,29,10,11 dtw_lb pam 1 L2 0.106 0.167 1.423 0.534 0.517 0
8 3 48,30,65 sbd shape TRUE 0.097 0.191 2.422 0.665 0.627 1
10 3 41,44,58 sbd pam 0.076 0.112 1.958 0.507 0.492 0

2018–2019 8 3 10,89,44 dtw_basic dba 4 L2 4 L2 0.140 0.301 1.985 0.692 0.663 1
3 4 37,42,13,51 dtw_lb dba 3 L2 3 L2 0.132 0.053 1.510 0.429 0.423 0
10 4 24,21,77,21 dtw_basic pam 5 L2 0.084 0.295 1.883 0.703 0.679 1
7 3 25,39,79 dtw_lb pam 5 L1 0.254 0.014 0.586 0.120 0.117 1
6 3 10,88,45 sbd shape TRUE 0.111 0.136 2.667 0.702 0.654 2
4 3 37,37,69 sbd pam 0.075 0.082 2.307 0.639 0.627 0

Table 3. Median start and end date of oviposition in the best clustering configurations for 2017–2018 and 2018–2019. References: n, number of time series in each cluster; MSD, median start
date; MED, median end date.

Series Cluster n MSD MED Duration
(Days) Max Eggs Mean

(Max Eggs)
Date of
Max (Eggs)

2017–2018 1 70 20 November 2017 7 May 2018 168 205 73 1 February 2018
2 30 4 December 2017 7 May 2018 154 155 55 15 January 2018
3 43 27 November 2017 30 April 2018 154 196 74 29 January 2018

2018–2019 1 10 25 October 2018 29 April 2019 186 274 127 11 February 2019
2 88 5 November 2018 29 April 2019 175 594 190 21 January 2019
3 45 29 October 2018 29 April 2019 182 615 206 4 February 2019
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Figure 4. Mean egg count (red line) of the clusters obtained for (a) the full series, (b) 2017–2018 and (c) 2018–2019. Clustering
groups are in columns. The gray area represents the 10th and 90th percentiles.
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Comparisons among clusterings for the different time periods showed that the most
similar groups are those from the full series and season 2018–2019 according to several
dissimilarity measures (see Table S3 in Supplementary Materials). Indeed, some houses are
grouped differently in different years. Figure S4 in Supplementary Materials shows the
flow among groups in different periods.

To try to understand if cluster type was related to any particular environmental condi-
tion surrounding ovitraps, we ran random forest classifications with the variables derived
from Sentinel 2 image analysis and predicted the results over space (Figure 5). In general,
results for 2018–2019 were better than those for 2017–2018 both in terms of overall accuracy
(Table 4) and number of variables selected (Figure 6). Diversity indices such as Shannon
and Simpson were among the five most important predictors for 2017–2018 models. On
the other hand, the texture measure Angular Second Moment (ASM) and NDWI standard
deviation were among the most important predictors in models for 2018–2019. The most
important variables in the RF model with the highest overall accuracy (Table 4, Figure 6c)
included several texture measures, such as entropy, ASM, contrast and inverse difference
moment (IDM), and the standard deviation of vegetation and water indices. Figure S5 in
Supplementary Materials shows the distribution of the five most important variables in the
models fitted with 50-m radius buffer areas in 2017–2018 and 2018–2019 with regards to
clustering groups.

Figure 5. Distribution of temporal clusters as predicted by random forest models for 2017–2018 and
2018–2019 using remote sensing variables taken at ≈50- and 100-m radii. City of Córdoba, Argentina.
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Figure 6. Variable importance from random forest classifications. (a) 2017–2018, 50-m radius, (b) 2017–2018, 100-m radius,
(c) 2018–2019, 50-m radius and (d) 2018–2019, 100-m radius. References: Sub-indices 9 and 19 represent window sizes in
Sentinel 2 pixels, i.e.,≈50 and 100 m radii; av, average; sd, standard deviation; ASM, angular second moment; Contr, contrast;
Entr, entropy; IDM, inverse difference moment; intersp, interspertion; EVI, Enhanced Vegetation Index; LSWI, Land Surface
Water Index; mode, most common land cover class; NDBI, Normalized Difference Built-up Index; NDVI, Normalized
Difference Vegetation Index; NDWI_x, Normalized Difference Water Index by Xu; NDWI_mf, Normalized Difference
Water Index by McFeters; Shannon, Shannon diversity index; Simpson, Simpson diversity index; rich, richness—number of
different land cover classes.

Table 4. Train and test overall accuracy for random forest classifications in different periods and
using buffers of 50- and 100-m radius.

2017–2018 2018–2019

Train 50 m 0.733 (0.083) 0.822 (0.051)
100 m 0.730 (0.080) 0.778 (0.090)

Test 50 m 0.381 0.524
100 m 0.476 0.500

Since the season 2019–2020 was rather similar to 2018–2019 in terms of weather and
environmental data (see Figures S6 and S7 in Supplementary Materials), we used 2018–2019
RF model to predict oviposition temporal pattern over remotely sensed data for 2019–2020,
the dengue outbreak season (Figure 7). Since the RF model trained with 50-m radius
buffer sizes had a higher training and testing OA and seems to relate better to the spatial
configuration of the city too, we used its prediction over space to draw further inferences.
The spatial predictions for season 2019–2020, similar to that of 2018–2019, showed a matrix
mainly composed of the second temporal pattern, with group 3 mostly within the urban
fabric and group 1 in the outskirts or border areas of the city as well as green areas within
the city like river banks and the park (Figures 4c and 7 for reference regarding the temporal
patterns).

The distribution of dengue autochthonous cases and incidence in the city of Córdoba
is shown in Figure 8. Though cases were recorded all over the urban area, there is a clear
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concentration in the south-west quadrant with some hotspots towards the east, which is
also reflected in the raw incidences. In order to relate dengue occurrence to oviposition tem-
poral patterns for the season 2019–2020, we estimated dengue incidence over 10,000 people
and we obtained the percentage of pixels belonging to different temporal patterns in each
neighborhood. The Spearman correlations among dengue incidences on a neighborhood ba-
sis and the proportion of pixels representing the three different temporal patterns found did
not show tight associations (Figure 9). Indeed, only the temporal pattern 3 (see Figure 4c)
appeared weakly but positively and significantly related to dengue incidence (ρ = 0.15).
Higher proportions of this pattern might eventually imply higher dengue incidence. The
other temporal patterns, namely 1 and 2 (Figure 4c), showed negative and barely negative
but non-significant correlation with dengue incidences (ρ = −0.13 and −0.03, respectively).
In any case, the second temporal pattern is the most commonly found and showed an
earlier peak with higher mean egg counts.

Figure 7. Distribution of temporal clusters for 2019–2020 based on the random forest models for 2018–2019 using remote
sensing variables taken at 50- and 100-m radii. City of Córdoba, Argentina.

Figure 8. Distribution of autochthonous dengue cases (left) and incidence in 10,000 people by neighborhood (right) during
2019–2020 season in the city of Córdoba, Argentina.
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Figure 9. Dengue incidence (number of cases per 10,000 inhabitants) as a function of the percentage of pixels of different
temporal patterns per neighbourhood. (a) Percentage of the neighbourhood covered by temporal pattern 1; (b) Percentage of
the neighbourhood covered by temporal pattern 2 and; (c) Percentage of the neighbourhood covered by temporal pattern 3.

4. Discussion

This contribution presents a novel approach that combines time series clustering of
vector data, remote sensing data and, machine learning to relate oviposition temporal
patterns with occurrence of dengue cases. For the different time periods studied, we found
three groups of temporal patterns that showed association with environmental features
derived from remote sensing data such as land cover diversity, variability in vegetation and
water/humidity indices and, heterogeneity as measured by texture estimated over buffer
areas of 50- and 100-m radii surrounding ovitraps. Dengue incidence on a neighborhood
basis showed however weak association with the percentage of pixels belonging to different
temporal patterns.

Consistently with several other studies, we found that oviposition was highly variable
though a seasonal pattern was still evident in all cases even with marked differences among
periods regarding egg counts and length of seasons [41–44]. Within this variability, our
time series clustering approach, allowed us to identify 3 different temporal patterns over
the city in all 3 periods considered (full period, 2017–2018 and 2018–2019). Most algorithms,
however, identified one large group and two smaller ones, similarly to the preliminary
results presented in [32].

Comparing clusters’ features among seasons (2017–2018 and 2018–2019), we observed
that the main differences laid in length of the mosquito season, given by a 20–30 days
earlier onset in 2018–2019, and mean egg counts that was two to three times higher in
2018–2019. In terms of time series curve shapes, both seasons displayed a less abundant
temporal pattern of low activity and no marked peak (group 2 and group 1, in 2017–2018
and 2018–2019, respectively), and groups with higher egg counts that mainly differ in
peak timing, length and height. These latter patterns deserve some attention since they
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might indicate higher risk if we consider that more oviposition might imply a higher biting
rate [45]. The temporal patterns named group 1 in 2017–2018 and group 2 in 2018–2019 are
the most common patterns (i.e., higher frequency) and given their characteristics would
represent the riskiest conditions in their respective seasons. Indeed, 2018–2019 group 2
implies 2–3 times more oviposition that group 1 in 2017–2018. Group 1 for 2017–2018
displays the highest peak, with oviposition increasing early and fast and the longest period
with high egg counts. Similarly, group 2 for 2018–2019 denotes the highest egg counts and
the steepest slope (especially evident from Figure S3 in Supplementary Materials). In both
seasons, there is a third group which represented a sort of intermediate state, but still more
similar to riskier patterns and with similar egg counts. Importantly, the percentage cover
of this pattern was the only one that showed a positive relationship with dengue incidence
by neighborhood. The temporal groups might then provide guidance on where and when
to prioritize epidemiological surveillance actions and promotional campaigns to eliminate
mosquito breeding sites.

The spatial distribution of temporal patterns over the city was also variable, with all
3 patterns appearing in different areas of the city. This suggests that they might indeed
be explained by local factors, i.e., the landscape around the ovitrap. Notably, despite the
interannual difference in terms of oviposition activity, the predictions denote a spatial
dominance of the temporal patterns representing potentially higher or intermediate risk
conditions, especially in 2018–2019 when temporal pattern 2 covers ≈ 75% of the city.
In 2017–2018, group 1 is mostly within the city and covers between 22 and 34% of the city.
Meanwhile, the temporal pattern representing lower oviposition activity appears either
scattered over the city in 2017–2018 or mostly associated to the outskirts and greener areas
in 2018–2019 (Figure 5). The spatial predictions for season 2019–2020 showed a spatial
distribution of temporal patterns similar to 2018–2019, most likely because of similar
weather and environmental conditions during both periods (Figure 7). The dominance of
what we have identified as the riskiest pattern is indeed more widespread when weather
conditions are favorable as in 2018–2019 and 2019–2020, posing a challenge to health
authorities in terms of surveillance and breeding sites elimination. This might also imply a
much higher risk of dengue outbreak if there are imported cases to trigger virus circulation.

Several studies have attempted to uncover the landscape variables determining breed-
ing hotspots within cities by means of remote sensing data of different spatial resolution.
Some have found that heterogeneity and vegetated/urbanized cover are highly relevant
to explain Ae. aegypti infestation levels [18–20,46–48]. Importantly, it appears that high
environmental variability and heterogeneity in the surroundings of ovitraps might be good
predictors of suitability. This can be related to the possibility of finding more potential
breeding sites options for females to lay eggs, more places to hide and rest and/or more
biting opportunities. Indeed, the best results in terms of train and test overall accuracy,
pointed to texture measures and variability in vegetation and water/humidity indices
in a radius of 50 m as the most important predictors of oviposition temporal patterns in
2018–2019. In fact, the surroundings of ovitraps belonging to groups 2 and 3 in 2018–2019
were characterized by higher entropy values implying more complex variability, lower IDM
and ASM that stand for homogeneity and uniformity, respectively and, higher standard de-
viation in water and vegetation indices (see Figure S5). Furthermore, results for 2017–2018
season pointed to several diversity measures and average conditions in vegetation and
water/humidity indices but OA were much lower, especially for the testing set.

Both in terms of weather and environment, seasons 2018–2019 and 2019–2020 were
similar; hence, we used 2018–2019 models to predict oviposition temporal patterns for
the season of dengue outbreak. Indeed, predictions were very similar. The relationship
among dengue incidence and percentage of different temporal patterns per neighborhood
resulted inconclusive. There is however a weak and positive association of incidence and
proportion of the 3rd oviposition temporal pattern that would require further refinement
with other modeling approaches that were out of the scope of this contribution. Indeed,
previous studies reviewing the relationship between dengue and vector indices report
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highly variable results [12,49]. Still, Cromwell et al. found that entomological information
from temporal studies was related to dengue seroconversion while data from cross-sectional
studies were not. Hence, sustaining vector surveillance in space and time will likely be
beneficial in understanding the vector-disease relationship.

The approach we propose here is aimed at contributing to the understanding of
mosquito activity patterns within urban areas in contrast to other studies that aggregate
both mosquito and environmental data and consider cities as homogeneous packs and
predict mean oviposition or abundance values [22,23,43,50,51]. In this regard, the only
studies assuming differences within cities regarding different temporal patterns are [24,32].
The former, however, does not use time series clustering but a regular k-means in order to
group data before training deep learning LSTM networks and forecasting adult mosquito
abundance by group. Meanwhile, in our previous contribution [32], we raised some
potential pitfalls that have been addressed to some extent here. In fact, we used different
buffer sizes, we used aggregated remote sensing data instead of just one scene and we
performed the analysis with effectively two years of data instead of only one. Furthermore,
given the occurrence of a dengue outbreak, we were able to somehow relate the oviposition
pattern distribution with dengue cases occurrence, though we were not able to assess any
thresholds. This would still require further investigation because given the COVID-19
pandemic and suppression of many activities, we could not have simultaneous oviposition
and dengue data. In any case, a similar analysis in places with usual circulation of dengue
virus would be relevant as to understand if there are thresholds that might indicate risk
and how different groups identified by clustering relate to risk.

It is important to remark that there might be some limitations to our approach that
could influence the results. Indeed, since the first step in our workflow can be considered a
data driven analysis, we do not have ground truth data to validate the groups obtained.
Moreover, because of the limited amount of time series per cluster we used up-sampling
before training random forest classification in order to have somehow balanced groups.
This might have influenced model’s fit as seen in the comparison among training and test
accuracy. Similarly, the lower proportion of surface predicted for the lowest activity groups
(2 in 2017–2018 and 1 in 2018–2019) might be related to the limited number of time series
that were clustered together in these groups. In this sense, the distribution of monitoring
ovitraps over the city of Córdoba has changed for season 2020–2021, and those data could
be used in further analysis as an independent set to assess predictions. Importantly, because
our study focuses on land cover influences, weather variables such as temperature and
precipitation were not included. We do not discard, however, that micro-climate differ-
ences between ovitraps locations could be relevant to explain the variations in temporal
patterns. However, while we might obtain land surface temperature from Landsat at 30 m
every 16 days at best, there is not yet a ready-to-use gridded precipitation product with
such resolution, and still, better temporal revisit would be needed anyway. Furthermore,
our analysis as well as most other studies, cannot account for human behavior in the
surrounding of monitoring stations, i.e., plant watering/container re-filling, availability of
other containers inside and outside the dwelling, breeding sites removal, pets tipping over
containers, etc. However, we pledge that to be able to intervene in a timely manner, we
need to study within city variations and micro-habitat mosquito preferences, especially in
large cities such as Córdoba and in the face of limited resources. In an attempt to go into
this direction, we are currently analyzing the environmental variability at very high spatial
resolution (50 cm) in order to suggest a distribution of trapping stations that accounts for
such within city variations.

5. Conclusions

In the present work, with the ultimate goal of predicting risk in places with no
mosquito field data, we have explored a novel approach that combines time series clustering
of weekly ovitrap records, satellite imagery and machine learning classification tools to



Insects 2021, 12, 919 16 of 18

assess the association of temporal patterns with environmental variables and finally test
the relationship between oviposition and dengue incidence.

The temporal patterns found denoted differences regarding egg counts, peak existence,
timing, length and height. The temporal clusters showed association with environmental
features, such as land cover diversity, variability in vegetation and water/humidity and
texture indices estimated from remote sensing data. Dengue incidence on a neighborhood
basis showed a weak but positive association with the percentage of pixels belonging to
a temporal pattern occurring only within the urban area and with the highest average of
maximum egg counts.

The understanding of the spatial distribution of temporal patterns and their envi-
ronmental determinants becomes highly relevant to guide the timing and allocation of
interventions, especially if we consider that more oviposition might imply higher female
biting rates in previous days within a buffer area of a certain ovitrap. Further investigation
is still needed though to incorporate other determinants (especially related to human be-
havior) not considered here. In any case, sustaining long term vector surveillance programs
is key for a better understanding of the vector-environment-disease system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects12100919/s1: Table S1: List of Sentinel 2 scenes used. Table S2: Variables derived
from satellite image analysis used for modeling the cluster type in Córdoba (Argentina). Table S3:
Clustering comparisons by means of dissimilarity measures. Figure S1: Natural color Sentinel 2
band combinations for years 2017–2018 (A), 2018–2019 (B) and 2019–2020 (C) for Córdoba city and
surroundings (RBG 4,3,2). Figure S2: Unsupervised classification for years 2017–2018, 2018–2019
and 2019–2020 for Córdoba city and surroundings. Figure S3: Centroid time series of the clusters
obtained for (a) the full series, (b) 2017–2018 and (c) 2018–2019. Values are normalized. Figure S4:
Clusters flow among different periods. Figure S5: Comparison clusters in terms of the five most
important variables for models fitted with 50-m radius buffer areas in 2017–2018 (a, c, e, g, i) and
2018–2019 (b, d, f, h, j). Figure S6: Time series of precipitation, LST day and night, EVI, NDVI and
NDWI for the period 2017–2020 in Córdoba city, Argentina. Figure S7: Comparison of precipitation,
LST day and night, EVI, NDVI and NDWI for the core mosquito season (November to March) in the
periods 2017–2018 and 2018–2019 and 2019–2020 in Córdoba city, Argentina.
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