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Simple Summary: The small brown planthopper (SBPH) Laodelphax striatellus is an economically
important pest in Asia, especially in China. Imidacloprid, a neonicotinoid insecticide, is commonly
applied in rice fields to control the planthoppers. However, the widespread application of imida-
cloprid also has led to the development of resistance and to other potentially negative effects on
crop protection. The sublethal effects of imidacloprid have been reported in many insects. Here,
we investigated the potential effects of different sublethal concentrations of imidacloprid on SBPH
and found that imidacloprid could affect the fecundity, apoptosis and virus transmission in the
viruliferous SBPH. The results indicated that sublethal concentrations of imidacloprid may increase
the fecundity of SBPH and the impact of insecticides on the transmission of plant viruses by insects
should be considered when insecticides are applied to manage insect pests.

Abstract: Laodelphax striatellus damages plants directly through sucking plant sap and indirectly
as a vector of rice stripe virus (RSV), resulting in serious losses of rice yield. It is one of the most
destructive insects of rice in East Asia. Insecticides are primarily used for pest management, but the
sublethal concentrations of insecticides may benefit several insects. The present research attempted
to explore the effects of sublethal concentrations of imidacloprid on the fecundity, apoptosis and
RSV transmission in the viruliferous SBPH. The results showed that the fecundity of SBPH was
significantly increased after treatment with the LC10 dose of imidacloprid, while the LC30 dose of
imidacloprid reduced the fecundity compared with the control. To further investigate the underlying
mechanism of increased fecundity after exposure to the LC10 dose of imidacloprid, we examined the
expression levels of vitellogenin (Vg), Vg receptor (VgR) and caspases in the ovaries of SBPH, and
observed the apoptosis by terminal deoxynucleotidyl transferase (TDT)-mediated dUTP-digoxigenin
nick end labeling (TUNEL). qRT-PCR results indicated that the expression levels of Vg, VgR and
four caspase genes were all significantly increased by the LC10 dose of imidacloprid, and TUNEL
assays suggested that the frequency of apoptosis was significantly higher in the SBPH treated by
the LC10 dose of imidacloprid, suggesting a potential correlation between the increased fecundity
and the apoptosis of SBPH ovarioles. Additionally, the expression levels of RNA3 and capsid
protein (CP) were both increased significantly by the LC10 dose of imidacloprid, whereas were
decreased by the LC30 dose of imidacloprid compared to the control. Therefore, this study clarifies
the mechanisms of sublethal effects of imidacloprid on viruliferous SBPH and could be used to
optimize pest control strategies.
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1. Introduction

The small brown planthopper (SBPH), Laodelphax striatellus (Fallén) (Hemiptera: Del-
phacidae) is one of the most serious pests in East Asian rice fields, which not only causes
direct damage via sucking rice sap and laying its eggs into rice tissues, but also acts as
a viral vector that transmits rice stripe virus (RSV) [1–3]. RSV is a typical persistent-
propagative plant virus, which is effectively transmitted by SBPH in a persistent and
circulative-propagative manner [3,4]. RSV is ingested when SBPH feed on the rice infected
by RSV, and it firstly establishes infection in the midgut epithelium, then spreads to midgut
visceral muscle tissues, and ultimately enters the salivary glands, ovaries and other sys-
temic tissues of SBPH under the transportation of hemolymph [3]. The virus entering the
salivary gland is transmitted to healthy rice plants together with saliva to complete the
horizontal transmission [5]. The virus binds to vitellogenin (Vg), a precursor of vitellin in
the hemolymph, attaches to the nurse cells via Vg receptor (VgR)-mediated endocytosis
and then is transovarially transmitted to offspring for vertical transmission in SBPH [4,6,7].

The management of SBPH mainly depends on chemical insecticides, including
pymetrozine, imidacloprid, buprofezin, chlorpyrifos, thiamethoxam, and nitenpyram [8].
However, widespread application of these insecticides has resulted in the development of
resistance and resurgence [9]. Besides, the application of neonicotinoid insecticides such
as imidacloprid has caused damages to important pollinators such as bees [10]. Some
studies demonstrated that SBPH has developed resistance to imidacloprid, buprofezin and
chlorpyrifos [8]. Additionally, the study showed that the application of validamycin and
triazophos increases the fecundity of SBPH in rice [11]. In the field, insecticides degrade
over time or via wind, photolysis and hydrolysis, the concentration of insecticides initially
used to control insects decrease until they reach the sublethal levels, resulting in sublethal
effects on insects [12,13]. The biological performances and physiological processes of
insects would be modified when exposed to sublethal doses of insecticides [14,15].

Imidacloprid, a systemic neonicotinoid, acts as on nicotinic acetylcholine receptor via
disrupting the neuronal cholinergic signal transduction, is widely used against Hemiptera
insects that damage plants via sucking sap [10,16]. Due to its low toxicity to mammals
and long-acting to target insects, imidacloprid has been used worldwide to control suck-
ing insect such as rice planthoppers [17,18]. Sublethal effects of imidacloprid have been
reported in many insects, e.g., affecting biological performances, changing enzyme activi-
ties or influencing gene expression [19–21]. Several studies suggested that the sublethal
concentrations of imidacloprid negatively affected fecundity in exposed insects, such as
Bemisia tabaci [22], Sogatella furcifera [23], Rhopalosiphum padi [20], Harmonia axyridis [24],
and Ceratomegilla undecimnotata [25]. However, exposure to low concentrations of imida-
cloprid could benefit several insects, including Aphis glycines [26] and Myzus persicae [27].
Meanwhile, Vg and VgR are essential proteins related to the fecundity of females in in-
sects, and mRNA expressions of Vg and VgR could be influenced by sublethal exposure to
imidacloprid [28,29].

Apoptosis, a programmed cell death process, which eliminates extraneous cells in
vertebrates and invertebrates, maintains the normal development and cell homeostasis to
reply to external stimuli [30–32]. The enzymes caspases are the main effectors of apoptosis
pathway, which are divided into initiators and effectors according to its biological functions.
Once the initiator caspases are activated, they will initiate the processes of apoptosis,
and then the effector caspases will cleave various cell substrates, eventually leading to
apoptosis [33–35]. In SBPH, four caspase genes have been identified, including caspase-Nc,
caspase-8, caspase-1a and caspase-1c [36]. Much external stress stimuli, including pesticides,
could induce apoptosis in insects [37]. Previous studies showed that a variety of pesticides
can induce apoptosis in the salivary glands, midguts, ovaries and other tissues of the
bees [37–39]. After exposure to imidacloprid, apoptosis was stimulated in the honey
bees [40,41] and bugs [42,43]. Apoptosis is closely related to the oogenesis of insects.
Nurse cells in the ovary provide nutrients for the growing of oocytes, and the apoptosis
of these nurse cells is crucial to the maturation of oocytes [44]. Notably, the fecundity of
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SBPH was increased by Wolbachia infection, which appeared to be at least partly regulated
through caspase-mediated apoptosis [45]. In addition to fecundity, apoptosis is also closely
related to the virus transmission of vector insects. A recent study showed that infection
with tomato yellow leaf curl virus induced the apoptosis pathway in B. tabaci, and the
virus-induced apoptosis could increase viral accumulation and transmission in vectors [46].

Though sublethal effects of imidacloprid have been investigated in many insects, the
effects of sublethal doses of imidacloprid on the viruliferous SBPH remains unclear. In the
present study, we assessed sublethal effects of imidacloprid on the fecundity, apoptosis,
and RSV transmission in SBPH. These results will contribute to understanding sublethal
doses of imidacloprid-mediated effects on SBPH and provide new insights on pest control.

2. Materials and Methods
2.1. Insects

The SBPH strains were derived from a field population in Yangzhou, Jiangsu Province,
China, and continuously maintained in the laboratory. Rice seedlings Wuyujing 3, supplied
for SBPH, were grown in the soil at 26 ± 1 ◦C, 80 ± 5% RH with a 16:8 h (light: dark)
photoperiod in an incubator. SBPH were fed by fresh rice seedlings (5–6 cm high) in a glass
beaker [11].

The viruliferous (RSV-infected) and non-viruliferous (RSV-free) SBPH were used to
screen for RSV. When SBPH emerged about 24 h later, each pair of SBPH was mated and
put into the glass tube with fresh rice seedlings. Each pair was kept for 72 h to ensure the
fertilization of the female, and then the female was raised individually for oviposition. A
dot immunobinding assay (DIBA) [47] was applied to detect RSV when the females died.
When the female was RSV-infected, its offspring were regarded as viruliferous and then
used for subsequent experiments.

2.2. Bioassays

The rice seedling immersion method [11] was applied to evaluate the susceptibility
of viruliferous planthoppers to imidacloprid (95%, Jiangsu Changqing Agrochemical Co.,
Ltd., Yangzhou, China). Imidacloprid was dissolved with acetone, and diluted using
0.05% Tween-80 emulsifying water, then the preparation was diluted directly with water,
five serial dilutions (100, 50, 25, 12.5, and 6.25 mg/L) were made. Tap water without
organic solvent and surfactant was performed as a control. Rice seedlings were immersed
in the imidacloprid solutions for 30 s, their roots were enclosed with cotton to moisturize
and then put in the individual tube (3 cm diameter, 20 cm depth) with 5 mL nutrient
solution at the bottom after being air dried. Thirty third instar nymphs of SBPH were then
transferred into the tubes, and each treatment was replicated three times. After 72 h, we
counted the number of dead insects.

To evaluate the effects of different sublethal doses (LC10, LC20, and LC30) of imida-
cloprid on the viruliferous SBPH, approximately 500 third instar nymphs of SBPH were
transferred to the glass beakers with the rice seedlings exposed to sublethal concentrations
(LC10, LC20, and LC30) of imidacloprid, respectively. After 72 h exposure, the surviving
insects were transferred to fresh rice seedlings for subsequent experiments.

2.3. Effects of Imidacloprid on Fecundity in SBPH

Approximately 24 h after emergence, each pair of SBPH exposed to different sublethal
doses (LC10, LC20, and LC30) of imidacloprid was transferred to fresh rice seedlings in
glass tubes. Tap water without organic solvent and surfactant was used as a control. Each
treatment contained 30 pairs of SBPH. We changed rice seedlings every two days and used
the binocular stereomicroscope to count the eggs. The number of eggs were recorded until
the female died. If the male died, a new male was added until the experiment ended.
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2.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

After treatments with different concentrations of imidacloprid, 30 ovaries from 4-days
old female SBPH were dissected. Each treatment had three biological replicates. Tissues
were stored with the TRIzol solution (Invitrogen, Waltham, MA, USA) at −70 ◦C after
dissection, and Tissuelyser II (Qiagen, Hilden, Germany) was applied to homogenize the
samples to extract total RNA according to the manufacturer’s protocols. The NanoDrop
2000 spectrophotometer (Thermo Fisher, Waltham, MA, USA) was used to measure the
RNA concentrations and purity.

PrimeScript™ RT Master Mix (Takara, Tokyo, Japan) was used to transcribe the total
RNA (1 µg) into cDNA for qRT-PCR analysis, and the Primer 3 (http://bioinfo.ut.ee/
primer3-0.4.0/, accessed on 15 November 2021) was performed to design the primers for
qRT-PCR (Table S1). The qRT-PCR reaction was run in the CFX ConnectTM Real-Time
System (Bio-Rad, Hercules, CA, USA), with the final volume of 20 µL, containing 2 µL of
template cDNA, 10 µL of ChamQTM SYBR qPCR Master Mix (Vazyme, Nanjing, China),
0.8 µL of each primer (10 µM) and 6.4 µL of ddH2O. The procedure of qPCR was 50 ◦C for
2 min, 95 ◦C for 5 min, followed by 40 cycles of 95 ◦C for 15 s, 60 ◦C for 45 s with the step of
melt curve dissociation. The relative expression level of triplicate samples was calculated
using the 2−∆∆CT method [48], and the expression levels of target genes were normalized
to the reference gene β-actin [49].

2.5. Effects of Imidacloprid on Vertical Transmission of RSV by SBPH

Forty mating pairs treated by different concentrations of imidacloprid were prepared
for each treatment. Tap water without organic solvent and surfactant was used as a control.
Each pair was mated for 72 h to ensure that the female was fertilized. The DIBA [47]
was used to detect whether the females were RSV-infected, after they died. The offspring
of viruliferous females were regarded as viruliferous individuals, while the offspring of
non-viruliferous females were removed. When the nymph hatched about 24 h later, they
were transferred into glass cups containing new rice seedlings. When the nymphs grew to
the third instar, they were used for RSV detection, and the vertical transmission rate refers
to the proportion of viruliferous individuals in the total number of offspring [50].

2.6. TUNEL Assay

The greatest fecundity of SBPH appears at 4 days post-emergence, while after 10 days
almost all reproductive ability is lost [45]. Therefore, after imidacloprid treatment, the
ovaries from viruliferous SBPH at 4 and 10 days after emergence were dissected for observ-
ing the apoptosis via TUNEL staining. TUNEL preferentially labels relatively late apoptotic
cells during apoptosis and helps to independently identify apoptotic cells in ovaries [51].
According to the manufacturer’s instructions [45] with a little modification, the TUNEL
assay and experimental procedures were performed with the Dead EndTM Fluoromet-
ric TUNEL System kit (Promega, Madison, WI, USA). For apoptotic cell death analyses,
ovaries of SBPH fed on rice seedlings treated with tap water and LC10 of imidacloprid
were dissected. After hybridization, the samples were washed two times and then fixed
on a glass slide using the DAPI-containing mounting Vectashield (Vector Laboratories,
Burlingame, CA, USA). Finally, an ultra-high resolution laser scanning microscope (Leica,
Heidelberg, Germany) was applied to analyze the samples. Cells stained with TUNEL and
DAPI fluorescences were regarded as apoptotic cells.

Due to the difficulty of maintaining integrity of ovaries under staining, we counted the
TUNEL-positive tropharia and expressed them as a percentage of the examined tropharia.
The frequency of apoptotic tropharia was compared between the control and treated females.

2.7. Statistical Analysis

The probabilistic unit (Probit) regression in SPSS version 16.0 software (SPSS Inc.,
Chicago, IL, USA) was used to determine the bioassay results of imidacloprid, including
LC10 to LC30 values with 95% confidence limits. GraphPad Prism version 8.0.0 (GraphPad

http://bioinfo.ut.ee/primer3-0.4.0/
http://bioinfo.ut.ee/primer3-0.4.0/
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Software, San Diego, CA, USA) was used to analyze and visualize the data. The data of
vertical transmission rates and TUNEL-positive rates were analyzed by a Chi-squared (χ2)
test. The differences between the two groups were compared using the Student’s t-test.

3. Results
3.1. Effects of Imidacloprid on the Fecundity of SBPH

The bioassay results of imidacloprid on third instar nymphs of viruliferous SBPH are
shown in Table 1. After treatment with the LC10 dose of imidacloprid, the fecundity of
viruliferous SBPH was significantly increased compared to the control, while the fecundity
of SBPH treated by the LC30 dose of imidacloprid was significantly lower than the control,
and LC20 had no obvious effect (Figure 1A).

The effects of imidacloprid on the transcript levels of Vg and VgR were measured using
qRT-PCR. The transcript level of Vg was increased significantly by 62% after treatment
with LC10 of imidacloprid compared with the control, whereas not significantly influenced
by LC20 of imidacloprid. Treated by LC30 of imidacloprid, the transcript level of Vg was
significantly suppressed by 71% (Figure 1B). The transcript level of VgR was significantly
up-regulated by 78% by LC10, but not significantly affected by the LC20 and LC30 dose of
imidacloprid (Figure 1C).

Table 1. Toxicity of imidacloprid on the third instar nymphs of viruliferous SBPH.

Insecticide N Regression Equation
Dose, 95% Confidence Limits (mg/L)

χ2 (df ) p
LC10 LC20 LC30

imidacloprid 540 Y = 1.5256 + 2.2602X 9.34
(7.32–11.90)

14.62
(12.02–17.77)

20.19
(16.95–24.06) 0.770 (3) 0.857
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(Figure 2). The percentage of tropharia that were TUNEL-positive in SBPH females ex-
posed to imidacloprid (52.8%) (p = 0.0055) was significantly higher than the control at 4 
days after emergence (31.5%) (Figure 3). The percentage of apoptotic cells had a slight 
increase at 10 days after emergence, but no significant difference occurred (p = 0.5143). 

Figure 1. Sublethal effects of imidacloprid on the fecundity of the viruliferous SBPH. (A) The number of eggs laid in the
viruliferous SBPH exposed to sublethal concentrations of imidacloprid. The transcript levels of Vg (B) and VgR (C). Data
were analyzed by Student’s t-test. The asterisk in (B,C) indicates significant differences between the treatment and the
control (* p < 0.05).

3.2. Effects of Imidacloprid on Apoptosis in Ovaries

Apoptotic nurse cells in the tropharium were observed in both control and treated
ovaries from viruliferous SBPH at 4 and 10 days after emergence, but the number of
apoptotic cells was significantly more in SBPH females treated by imidacloprid than the
control (Figure 2). The percentage of tropharia that were TUNEL-positive in SBPH females
exposed to imidacloprid (52.8%) (p = 0.0055) was significantly higher than the control at
4 days after emergence (31.5%) (Figure 3). The percentage of apoptotic cells had a slight
increase at 10 days after emergence, but no significant difference occurred (p = 0.5143).
The results indicated that exposure to imidacloprid increased the number of nurse cells
undergoing apoptosis.
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Figure 2. Images of DAPI- and TUNEL-stained SBPH tropharium cells after treatment with LC10 of imidacloprid. Mor-
phology of the organization and structure of the developing tropharia from 4-day-old control (A) and imidacloprid-treated
(B) female SBPH, and the aged tropharia from 10-day-old control (C) and imidacloprid-treated (D) female SBPH. The DAPI-
and TUNEL-positive cells were stained with blue (A1,B1,C1,D1) and green (A2,B2,C2,D2), respectively. (A1,B1,C1,D1) and
(A2,B2,C2,D2) are merged as (A3,B3,C3,D3), respectively.
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Figure 3. TUNEL quantification. TUNEL-positive tropharia were recorded and presented as a
percentage of the examined tropharia both in the control and treatment group of ovaries from
viruliferous female SBPH at 4 and 10 days after emergence. The data were analyzed by Chi-square
(χ2) test. White numbers within bars at the bottom show the total number of examined tropharia.

3.3. Effects of Imidacloprid on the Expression Levels of Four Caspase Genes in SBPH

We measured the transcript levels of four caspase genes via qRT-PCR, and all four
caspase genes were significantly increased by LC10 of imidacloprid, but not significantly
affected by LC20 and LC30 of imidacloprid compared with the control (Figure 4). The
transcript levels of caspase-Nc, caspase-8, caspase-1a and caspase-1c were up-regulated by
0.58-fold (Figure 4A), 0.48-fold (Figure 4B), 0.40-fold (Figure 4C) and 0.52-fold (Figure 4D)
after treatment with LC10 of imidacloprid, respectively. The results further demonstrated
that sublethal doses of imidacloprid induced apoptosis in the ovaries of SBPH.
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3.4. Effects of Imidacloprid on RSV Transmission by SBPH

The RSV vertical transmission rate was not increased significantly, whereas partial
stimulation was noted with LC10 concentration of imidacloprid (91.4%), compared with the
control (87.1%) (Figure 5A). Additionally, the transcript levels of RNA3 and CP were signif-
icantly up-regulated by LC10 of imidacloprid. The expression level of CP was increased by
144% after treatment with the LC10 dose of imidacloprid (Figure 5B), and the expression
level of RNA3 was increased by 63% compared to the control, respectively (Figure 5C).
LC20 of imidacloprid did not have effects on CP mRNA expressions, though the expression
level of RNA3 was decreased by the LC20 dose of imidacloprid compared to the control.
Treated by the LC30 dose of imidacloprid, the transcript level of RNA3 and CP were both
significantly suppressed.
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4. Discussion

Imidacloprid, a neonicotinoid insecticide, is one of the most widely applied insec-
ticides [20], particularly efficacious against sucking pests such as planthoppers in rice
fields [10]. Over time and in the wind, insecticides initially used to kill insects will become
sublethal doses, which lead to sublethal effects on insects, including modifying physiolog-
ical and cellular processes of insects [12,13]. Thus, this study investigated the potential
sublethal effects of imidacloprid on SBPH.

Reproduction-related characters are the most essential sublethal parameter studied in
the pesticide toxicology of arthropods [52]. Our study showed that, after treatment with the
LC30 dose of imidacloprid, the fecundity of SBPH was significantly reduced compared to
the control. In contrast, the LC10 dose of imidacloprid stimulated the reproduction of SBPH.
These results are known as hormesis, which is a biphasic dose-response characterized by
high-dose inhibition and low-dose stimulation during or following exposure to toxic [53].
This phenomenon has been found in several sucking insects when exposed to sublethal
concentrations of imidacloprid, such as M. persicae [27,54], A. glycines [26], and Podisus
maculiventris [55]. In Frankliniella occidentalis [15], Cyrtorhinus lividipennis [28,56], and
Tryporyza incertulas [57], the fecundity was also stimulated by the lower concentrations of
imidacloprid. Additionally, sulfoxaflor [58], triazophos and validamycin [11] could also
enhance the fecundity of SBPH with low sublethal concentrations.

We examined the mRNA expressions of Vg and VgR, and found that Vg mRNA ex-
pression was significantly up-regulated by the LC10 dose of imidacloprid and suppressed
by the LC30 dose of imidacloprid, which was consistent with the fecundity of SBPH medi-
ated by imidacloprid. Moreover, VgR mRNA expression was also significantly increased
by the LC10 dose of imidacloprid. Previous studies showed that the transcript level of
Vg and VgR was up-regulated in insects exposed to sublethal doses of insecticides. In
SBPH, Vg and VgR mRNA expressions were increased in the females exposed to sublethal
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doses of triazophos [50]. In Nilaparvata lugens, the transcript level of Vg was significantly
increased by low doses of deltamethrin and triazophos [59]. In C. lividipennis, Vg mRNA
expression was significantly up-regulated by sublethal doses of triazophos, deltamethrin
and imidacloprid [28]. These results suggested that Vg and VgR mRNA expressions partly
reflect reproductive changes induced by the sublethal concentrations of insecticides.

The previous study showed that sublethal concentrations of imidacloprid induced the
caspase-dependent apoptotic pathway in the honey bees via increasing the expression level
of caspase-1 and activating caspase-3 [41]. TUNEL staining showed that the frequency of
apoptosis in 4-day-old SBPH ovarioles significantly increased after exposure to LC10 of
imidacloprid. Meanwhile, we found that four caspase genes were significantly increased
by LC10 of imidacloprid, which were generally consistent with the increased fecundity, Vg
and VgR mRNA expressions by the LC10 dose of imidacloprid. Similar results appeared
in the Wolbachia-infected SBPH, suggesting that the fecundity of SBPH may be enhanced
by increasing the frequency of caspase-dependent apoptosis in the ovaries of infected
SBPH [45]. Our findings revealed that sublethal concentration of imidacloprid could
induce apoptosis in the ovaries of SBPH, and further suggested that a link may exist
between the increased fecundity and apoptosis of SBPH ovaries mediated by sublethal
concentrations of imidacloprid.

The virus transmission in insects is closely related to the change of external conditions,
including pesticides. The studies demonstrated that pesticides may inhibit the transmission
of plant viruses in insects, especially the tomato yellow leaf curl virus (TYLCV) transmit-
ted by B. tabaci. For instance, sulfoxaflor significantly eliminated the transmission of
TYLCV [60], and lethal and sublethal doses of flupyradifurone also significantly decreased
TYLCV transmission in B. tabaci [61,62]. However, other studies indicated pesticides could
promote virus transmission in insects. Neonicotinoid pesticides clothianidin and imidaclo-
prid promoted the replication of the deformed wing virus in honey bees [63]. Sublethal
doses of thiacloprid and imidacloprid induced the higher black queen cell virus (BQCV)
titers in the honey bees [64–66]. Our results indicated that the vertical transmission rate of
RSV in SBPH was partly stimulated by the LC10 dose of imidacloprid, but no significant
differences occurred. However, a recent study has indicated that the vertical transmission
rates of RSV were significantly induced by sublethal doses of triazophos in SBPH [50].
The mRNA expression level of CP gene or viral RNA3 segment is used to reflect viral
load and has been widely applied to quantify RSV accumulations in SBPH [67]. Thus, our
study measured the expression levels of RNA3 and CP, and they were both up-regulated
significantly by the LC10 dose of imidacloprid, whereas decreased by the LC30 dose of
imidacloprid. These results are generally consistent with the recent study which showed
that after treatment with LC20 to LC50 of triazophos, the transcript levels of RNA3 and CP
were significantly stimulated in the RSV-carrying SBPH [50]. These results showed that
low concentrations of insecticides could increase RSV viral load in viruliferous SBPH.

5. Conclusions

In conclusion, this study indicated that a sublethal dose of imidacloprid could stimu-
late the fecundity of SBPH, which may be related to the Vg and VgR mRNA expressions
and the increase of apoptotic cells in ovarioles. Additionally, we found that the LC10 dose
of imidacloprid stimulated the replication of RSV in SBPH, suggesting that the impact of
insecticides on the transmission of viruses by insects should be considered. This study will
provide a theoretical basis for understanding the sublethal effects of insecticides and new
insights for integrated pest management.
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