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Simple Summary: Insects comprise the largest and most diverse class of animals on earth, and have
major impacts on human health and agriculture. The effort to better understand insect biology has
led to the sequencing of hundreds of insect genomes. However, the usefulness of having a genome
sequence is limited in the absence of a comprehensive annotation—a description of the function of
each part of the sequence. Functional parts of the genome include not only genes, but also regulatory
sequences that mediate gene expression. We discuss here methods used to identify regulatory
sequences within the genome, with the emphasis on a pair of tools we have developed, REDfly and
SCRMshaw, that can be used in tandem to carry out this task in an efficient and economical manner.

Abstract: An ever-growing number of insect genomes is being sequenced across the evolutionary
spectrum. Comprehensive annotation of not only genes but also regulatory regions is critical for
reaping the full benefits of this sequencing. Driven by developments in sequencing technologies
and in both empirical and computational discovery strategies, the past few decades have witnessed
dramatic progress in our ability to identify cis-regulatory modules (CRMs), sequences such as
enhancers that play a major role in regulating transcription. Nevertheless, providing a timely and
comprehensive regulatory annotation of newly sequenced insect genomes is an ongoing challenge.
We review here the methods being used to identify CRMs in both model and non-model insect
species, and focus on two tools that we have developed, REDfly and SCRMshaw. These resources
can be paired together in a powerful combination to facilitate insect regulatory annotation over a
broad range of species, with an accuracy equal to or better than that of other state-of-the-art methods.
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1. Introduction

Significant resources have been invested in sequencing insect genomes over the last
decade, with over 768 species being fully or partially sequenced [1]. For instance, the i5k
project was initiated to organize the sequencing and analysis of as many as 5000 arthropod
genomes [2]. As valuable as these genome sequences are, however, sequencing a genome
by itself is merely a beginning—the first step in a transformative process that builds
on new information to generate fresh insights. Genomes are of limited value without
comprehensive annotation: in addition to the DNA sequence itself, it is necessary to attach
biological information to the genome, including not only the locations and identities of
genes but also of non-coding regulatory elements. While gene annotation typically follows
fairly quickly after assembly, regulatory annotation can be a long time in coming, if at all,
and even then typically consists of putative locations only, without descriptions of function.
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This lack of regulatory annotation is unfortunate, as regulatory sequences are the
building blocks of transcriptional regulatory networks and essential for mediating both
development and homeostasis [3,4]. Genes within a regulatory network need to be tran-
scribed at the right time and in the right cells. This regulation is the result of the interaction
of transcription factors (TFs) with specific cis-regulatory modules (CRMs, including but
not limited to “enhancers”) that are frequently organized in a modular fashion to regulate
specific spatiotemporal aspects of the expression of nearby genes. CRMs are typically a few
hundred base pairs in length and are located upstream, downstream, or even within intronic
regions of their target regulated gene, often at a considerable distance from the promoter.

One reason why regulatory annotation so often lags behind genome sequencing is
that, historically, finding regulatory elements in the genome has been challenging even
in well-studied model organisms because of their distant positions from target genes, the
absence of a clear universal biochemical CRM marker, and the cell-type specificity of CRM
activity [5–8]. For non-model organisms, where only limited functional genomic data tend
to be available, regulatory annotation is even more difficult. In an effort to ameliorate this
situation, we have developed two tools that facilitate CRM identification, in particular with
respect to insect regulatory genomics. REDfly, the the Regulatory Element Database for
Drosophila and other insects, is a comprehensive knowledge base of published insect CRMs.
REDfly contains more than 25,000 experimentally validated Drosophila melanogaster CRMs
associated with over 1700 genes, along with their sequences and the expression patterns for
which they are responsible, accompanied by a growing number of CRMs identified in other
insects [9]. SCRMshaw is a computational approach to Supervised cis-Regulatory Module
discovery that can locate CRMs responsible for directing specific patterns of gene expression
in a rapid fashion, with minimal required input [10–12]. Used jointly, these two tools have
enabled us to identify CRMs across a range of insect species spanning over 345 million
years of evolutionary divergence. In this paper, we briefly review current approaches to
CRM discovery, and then show how REDfly and SCRMshaw together constitute a powerful
platform for insect CRM discovery and regulatory genome annotation.

2. Empirical Approaches to CRM Discovery
2.1. Reporter Gene Assays

Traditionally, CRMs have been identified through empirical testing of genomic se-
quence fragments in reporter gene assays. This is a time-consuming and resource-intensive
approach, as a CRM can sometimes reside hundreds of thousands of base pairs away
from the gene that it regulates. Moreover, in vivo reporter gene assays are not well suited
for genome-wide annotation, as they require the generation of a great many transgenic
lines to be able to survey a sufficient length of the genome, many of which will provide
negative results. More recently, with the availability of fully sequenced genomes and
next-generation sequencing methods, high-throughput methods have been developed to
functionally assay putative CRMs on a genomic scale (e.g., [13–15]). STARR-seq, which
elegantly converts CRMs into their own reporters by cloning them downstream of a core
promoter and sequencing the output, is one increasingly popular method [14,16–20]. Al-
though reporter-based methods have long been viewed as a gold standard, due to the fact
that they provide a direct functional readout of regulatory activity, there is growing recog-
nition that these methods can lead to both false-positive and false-negative results [7,8,21].
However, the overall accuracy of reporter gene assays is believed to be high, and these
remain the most definitive assays for regulatory function.

2.2. ChIP-Based Assays

CRM activity is strictly dependent on the binding of transcription factors, which
makes it possible to use genome-wide methods that determine in vivo transcription factor
binding sites for the prediction of active CRMs. One common method for genome-wide
CRM discovery has been chromatin immunoprecipitation, followed by deep sequencing
(ChIP–seq) [22,23]. ChIP-seq not only can be used to identify binding sites for specific TFs,
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but it can also be used to identify the in vivo binding sites of transcriptional coactivators
present at large numbers of CRMs, such as the acetyltransferase p300. Coactivators do not
bind to DNA directly but are recruited by TFs, and carry out various biochemical activities,
ultimately leading to activation or repression. The advantage of this approach is that
one does not need to know sets of relevant transcription factors a priori; the shortcoming
is that focusing on a widely deployed coactivator does not allow for the preferential
discovery of CRMs active in a specific tissue. Genome-wide chromatin profiling can also be
obtained through ChIP-seq. For that purpose, antibodies against specific chromatin post-
translational modifications are used. For example, histone H3, with its lysine at position
27 acetylated (H3K27Ac), shows a high correlation with active CRMs, whereas histone H3,
with its K27 trimethylated (H3 K27me3), is indicative of inactive regions [24,25]. However,
no single marker appears to universally distinguish CRMs.

Increased chromatin accessibility is also critical to facilitate precise gene regulation.
Active CRMs reside in regions of open (nucleosome-depleted) chromatin, which can
be identified on a genome-wide scale through a variety of methods. In particular, the
formaldehyde-assisted identification of regulatory elements (FAIRE) [26–28], the assay for
transposase-accessible chromatin using sequencing (ATAC-seq) [29], and DNase-seq [30]
are all used to identify open chromatin regions across the genome. Improvements in
single-cell technologies have led to the ability to measure chromatin accessibility using
single-cell ATAC-seq (scATAC-seq), a potential game-changer in the ability to undertake
cell-type-specific CRM discovery without needing to obtain large numbers of purified cells
of uniform type [31–37].

2.3. Limitations

None of the abovementioned empirical methods are without limitations. They remain
costly (compared to in silico approaches); can be difficult to validate, depending on the
availability of biological resources such as cell lines, antibodies, and tissue samples, or
the existence of relevant technologies, such as transgenesis; and carry false-positive and
false-negative rates that can be surprisingly high—false-positive rates range as high as 40%
for some ChIP-based methods [38–40] and from 10–20% for some ATAC-seq studies [31,32].
Moreover, CRMs may be functional only in certain cell types or under specific conditions,
and thus can only be identified when assays include those cells or conditions. The features
used by the abovementioned empirical approaches must, therefore, be assessed in multiple
tissues over many developmental stages and/or under varying environmental conditions,
in order to achieve comprehensive CRM discovery.

3. Computational Approaches

As part of the contemporary arsenal of methods for CRM discovery, computational
approaches have proven to be an important complement to experimental ones. Compu-
tational CRM discovery has several potential benefits, including a low cost, rapid results,
and no requirement for access to expensive and/or limiting biological resources and assays.
This is of particular benefit when working with non-model organisms, for which there
may be a genome sequence but frequently not extensive other resources. However, many
current computational approaches still rely on experimental data for either training or as
input (see below), which often negates these advantages.

3.1. Supervised Machine Learning

Recently, genome-wide computational CRM prediction has gained prominence with
supervised machine-learning (ML) algorithms that are trained using one or more features
from known CRMs. Features can consist of the DNA sequence itself, but frequently also
include experimentally derived epigenetic information, such as histone post-translational
modifications, transcription factor binding, and chromatin accessibility. In supervised ML,
a classification algorithm is trained to distinguish between labeled positive and negative
training examples (e.g., CRMs vs. non-CRMs) based on the features of these examples. The
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trained classifier is then used to predict the labels for uncharacterized input (e.g., unseen
genomic regions). Among the ML approaches that have been used for CRM discovery are
support vector machines (SVMs) [41,42], artificial neural networks (ANNs) [43], decision
trees (DTs) [44], random forests (RFs) [45], probabilistic models (PGMs) [46,47], and, more
recently, deep learning (e.g., [48–52]).

The commonly used SVM seeks to find a hyperplane in an N-dimensional space
(where N equals the number of input features) that distinctly separates the data points.
SVMs work very effectively when there is a clear margin of distinction between classes, but
suffer when the data set is big, noisy, and/or overlapping, and they are prone to over-fitting.

Random forest classifiers, on the other hand, are an ensemble method that has become
a popular machine-learning technique due to its ability to run efficiently on large datasets
without over-fitting, and to deal with unbalanced and missing data [45]. Usefully, random
forests can also indicate the relative importance of individual input features.

Deep learning algorithms are particularly suitable for dealing with large, high-throughput
data sets. They utilize a hierarchical assembly of ANNs—nodes connected in a web acting
like neurons in the brain, where connections between nodes are strengthened during train-
ing if they lead to successful outcomes—to carry out the process of machine learning. Due
to their inherent non-linearity and high-level representation of features, algorithms using
deep learning often outperform other ML-based methods in predicting CRMs.

3.2. Chromatin and Epigenetic Features

Examples of supervised learning tools based on chromatin features include chro-
matin signature identification by an artificial neural network (CSI-ANN) [43], Chro-
magenSVM [41], random forest-based enhancer identification using chromatin states
(RFECS) [45], and deep learning for identifying cis-regulatory elements (DECRES) [49].
CSI-ANN uses an artificial neural network model to predict CRMs based on histone methy-
lation and acetylation signatures, whereas ChromagenSVM employs a genetic algorithm
to choose an optimum combination of histone epigenetic marks for use in an SVM-based
classifier. Taking advantage of the strong feature-selection capabilities of random forests,
Rajagopal et al. [45] evaluated the importance of different histone modifications using
RFECS and an extended panel of histone-ChIP data, to conclude that a combination of
three histone modifications, H3K4me1, H3K4me2, and H3K4me3, gave the strongest per-
formance. However, almost as good a performance was achieved when substituting the
more commonly assessed H3K27ac for H3K4me2. When all three of these aforementioned
chromatin-based tools were applied to the same histone modification datasets in CD4+

T-cells, RFECS achieved the highest validation rate (70% vs. 57% for ChromaGenSVM and
51% for CSI-ANN) and lowest misclassification rate (7% vs. 27% and 35% as compared to
ChromagenSVM and CSI-ANN, respectively). While in relative terms RFECS, therefore,
gives the strongest performance, the actual validation rates should be viewed with caution,
as the study used an extremely generous criterion for true positive predictions, defined
as falling with ±2.5 kb of a set of themselves non-dispositive CRM markers, including
DNaseI hypersensitive sites and the binding of several TFs and coactivators [49]. The
deep-learning approach, DECRES, uses a comprehensive feature set integrating histone
modification, TF binding, DNase-seq, FAIRE-seq, and ChIA-PET data from the ENCODE
project [53], along with the transcriptionally active enhancers and promoters cataloged by
the FANTOM project [54], to predict CRMs. When evaluated against two empirically deter-
mined CRM datasets from K562 cells, DECRES displayed high sensitivity (predicting 65%
and 98% of validated CRMs from the two sets, respectively) but also a high false-positive
rate (predicting 53% and 92% of non-CRMs) [49].

3.3. Sequence Features

Although substantial amounts of cell-type-specific epigenetic data exist for human
and mouse such data are often much more limited for other organisms, and reliance on
extensive experimental data nullifies many of the advantages of having a computational



Insects 2021, 12, 591 5 of 18

approach in the first place. Therefore, a number of methods have explored using sequence
features alone as a basis for CRM prediction. Common features used in sequence-based
approaches are DNA subsequence composition (e.g., kmers) or TF binding site motifs,
although additional features such as G + C and A + T frequencies or CpG island length
have been used as well [42]. Kmer-based methods have often been coupled with SVM
classifiers, e.g., “kmer-support vector machine” (kmer-SVM) [55]. Kmer-svm can accurately
predict CRMs (defined by the binding of the p300 co-activator) from genomic sequence
alone and can also discriminate CRMs from non-functional elements with high accuracy
in a cross-validation framework. This approach was subsequently improved by “gapped
kmer SVM” (gkm-SVM), which takes kmers with gaps into consideration [56].

Deep-learning approaches have been increasing in popularity as the underlying meth-
ods become more mature and as advances in computing power make them more feasible.
DECRES (introduced above) can be trained and applied using only sequence features,
although its performance is then significantly reduced, compared to training with a full
range of experimental chromatin-level data [49]. BiRen [52] leverages the deep learning
power of convolutional neural networks (CNNs) and bidirectional recurrent neural net-
works (BRNNs) to predict CRMs using DNA sequences alone as input, although chromatin
and histone modification data are used during training. Although this approach exhibited
high performance in a cross-validation setting, validation based on overlap with genomic
features suggestive of CRMs was relatively weak: association with DNaseI hypersensitive
sites, histone H3K27ac, and high-occupancy target for TF ChIP (HOT) regions was only
55%, 40% and 23%, respectively. Nevertheless, BiRen outperformed competing methods
also based solely on sequence-feature input [42,55] in head-to-head comparisons, showing
the promise of contemporary deep-learning approaches for CRM discovery.

Unsupervised machine-learning methods have suggested the presence of different
CRM classes, such as “strong” and “weak” enhancers, based on histone modifications
and other ChIP-derived data [46,47]. Although reporter-gene-based validation has called
these specific designations into question [13], the sequences themselves are independently
discoverable using supervised methods based solely on sequence features. iEnhancer-
EL [57] uses a combination of sequence features to build a two-layer ensemble model
formed from 16 individual SVM classifiers. In testing, it was shown to perform well
at both CRM detection and at stratifying the identified CRMs by their ChromHMM-
defined [46] “weak” and “strong” designations, with a measured accuracy of ~75% for the
CRM discovery task. This was modestly improved upon (77% accuracy on the same data
set) by Nguyen et al. [58], whose iEnhancer-ECNN replaces the ensemble SVM model with
an ensemble CNN model instead, using a combination of one-hot encoding and kmers
as the sequence input. Another recently proposed method, iEnhancer-5Step, makes use
of a word-embedding approach borrowed from natural language programming along
with an SVM classifier [59]. This model showed further improvements—an accuracy of
79%—on the same data set analyzed by the other “iEnhancer” methods. However, it is
important to note that all of these methods have only been tested using a pre-classified set,
with equal numbers of positive and negative sequences (as defined by ChromHMM). This
raises significant questions as to what their performance would look like in a “real-world”
test using a complete genome, where negative sequences significantly outnumber positive
ones, and if validated against a set of CRMs defined using orthogonal criteria.

4. Cross-Species or Non-Model Insect CRM Discovery

CRM discovery in non-traditional insect models presents a particular challenge. Re-
searchers studying these insects often lack the backing of large well-established communi-
ties, able to dedicate “big science” resources to gathering the necessary extensive genomic
data, and many methods, in particular transgenesis, are not well-established outside of the
primary research organisms. Recent advances in technologies that appear to be broadly
applicable, such as CRISPR-Cas9 genome manipulation, as well as rapidly declining costs
for accessing sequencing-based approaches such as ATAC-seq, are helping to level the
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playing field [29,60]. Single-cell methods, especially scATAC-seq, show great promise
as they should help to get around the problem of needing to purify large numbers of
individual cell types in order to obtain chromatin profiles [31,32].

Computational methods that can be rapidly and inexpensively applied are, in princi-
ple, an attractive solution for obtaining a quick regulatory annotation of newly sequenced
insect genomes. However, as demonstrated in the preceding discussion, most effective
computational methods still require input data, either in the form of training data using
known CRMs, or chromatin-level genomic assays. Paradoxically, therefore, computational
CRM discovery appears to be dependent on just the sorts of empirical studies that it is
intended to bypass.

A potential way past this dilemma is to leverage data from one species to train a
computational algorithm to search the genome of a second species [48,61–63]. Such an
approach has two basic requirements. First, there must be sufficient similarity in sequence-
level CRM properties among species for a cross-species approach to be feasible, as the
only input data for the second species may be its genome sequence. This requirement
raises a biological question: even when there is a lack of obvious sequence similarity, do
functionally related CRMs contain shared features? A growing body of literature suggests
that this is the case, at least for CRMs regulating genes involved in core developmental
processes. For instance, the similarity of the co-occurrence of sequence patterns has been
used to make use of known Drosophila melanogaster CRMs to identify “orthologous” CRMs
in the distantly related drosophilid and sepsid fly species [61]. The Capra lab has used two
machine-learning frameworks (SVMs and CNNs) to distinguish CRMs from the genomic
background, based on DNA sequence patterns, and models trained to predict CRMs from
one species also accurately identify CRMs in the same cellular context in other species—
from humans to opossums [48]. While these sets of species maintain a reasonable amount of
alignable sequence, cross-species CRM prediction has also been demonstrated across more
highly sequence-diverged species pairs. Minnoye et al. [63] designed a multi-class neural
network-based method, DeepMEL, that when trained on human melanoma ATAC-seq data
successfully predicted enhancers for two related but distinct cell types across six different
species (human, dog, horse, pig, mouse, zebrafish); the latter pairing begins to approach
the level of divergence observed in family-level comparisons among the holometabola [64].
Transcription factor binding site clustering, based on Drosophila melanogaster CRMs, has
been used to discover CRMs in other holometabolous insects [65–68], and the SCRMshaw
algorithm (described more fully below) has used Drosophila data to successfully identify
CRMs in species as distantly diverged as the Hemiptera e.g., [62,69,70] (H.A. and M.S.H.,
unpublished data), based on statistical similarities in subsequence (kmer) counts among
the CRMs. Detailed analysis of such distant but related CRMs has revealed the presence of
common sets of transcription factor binding sites, and even potential enhancer grammars
(conserved arrangements of binding sites), shared features that blend into the noise of
whole-genome analyses but that become possible to detect once CRM locations have been
defined [62]. So far, most success in cross-species CRM discovery where genomes are
not alignable has been seen with CRMs that function in well-conserved developmental
pathways, and it remains to be determined how widespread these deep sequence-level
homologies are with respect to less fundamental regulatory networks.

The second requirement for cross-species CRM discovery is that there must be an
extensive enough body of data of a suitable type in the training species. Sets of known
CRMs are ideal for this purpose, as this is purely sequence-based data that can be readily
applied to other sequenced genomes. Here insects have a significant advantage, due to
the extensive set of known CRMs available for Drosophila melanogaster, many of which are
functionally validated. Moreover, the majority of these have been carefully curated into
the insect-specific REDfly database, a comprehensive source of regulatory data unique
among the metazoa [9]. In the remaining sections of the paper, we focus on how REDfly
and SCRMshaw can be used together for CRM discovery across multiple insect species as
a powerful platform to facilitate the field of insect regulatory genomics.
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5. REDfly and SCRMshaw: Powerful Tools for Insect Regulatory Genomics
5.1. REDfly

REDfly is a one-stop curated knowledgebase for insect cis-regulatory data [9]. His-
torically focused on experimentally verified Drosophila melanogaster CRMs, REDfly has
grown over its 15 years of existence to include Drosophila transcription factor binding sites,
CRMs identified from epigenetic profiles and computational prediction, and, most recently,
CRMs from an increasing number of other insects, including important disease vectors
such as mosquitoes. (Currently, three insect species in addition to D. melanogaster have
been incorporated—Anopheles gambiae, Aedes aegypti, and Tribolium castaneum—with more
on the way.) To date, REDfly has over 25,500 D. melanogaster CRMs (60% from in vivo
reporter genes, most of the remainder from cell-culture assays) associated with 12–15% of
protein-coding genes, and ~2700 defined transcription factor binding sites (TFBSs). These
data are based on more than 1200 curated publications. The core REDfly Drosophila CRM
annotations are provided to FlyBase, making Drosophila the only model organism whose
genome annotation provides comprehensive coverage of validated CRMs, enabling direct
integration with other Drosophila genomic and genetic data.

One strength of REDfly is the extensive detail it provides about the CRMs it curates
(Figure 1). Regulatory activity is described using the Drosophila anatomy and development
ontologies [71], which allows for retrieval of tissue-specific and stage-specific CRM datasets
at multiple degrees of granularity. Terms from the Gene Ontology [72,73] are incorporated
to annotate regulatory elements that respond to specific physiological or environmental
cues (e.g., wound-healing, hypoxia). CRMs can be filtered by size, genomic location,
position relative to target genes (e.g., upstream, downstream, intronic), and sex-specificity.
Overlapping regions between multiple CRMs are automatically calculated to suggest
potential minimal CRM sequences and their regulatory activity.

As the most detailed existing platform offering regulatory element annotation for any
animal, REDfly serves as an important platform for supporting both empirical and compu-
tational research. REDfly has contributed to numerous studies in multiple areas relating
to non-Drosophila, as well as Drosophila systems including studies of basic CRM biology
(e.g., [74–83]) and interpretation of genomic data such as TF binding studies (e.g., [84–86]),
studies of insulators [87,88], of chromosome domains and “states” (e.g., [89–92]), of 3D-
chromatin conformation [93,94], and of ncRNA and eRNA expression [95,96]. REDfly data
have facilitated the validation of ATAC-seq approaches (e.g., [97,98]), have been used to
establish TF-CRM associations for the study of gene regulatory networks [74,99–104], and
have enabled studies of CRM evolution and TFBS turnover (e.g., [104–111]).

REDfly has also played a dramatic role in developing methods for computational
CRM discovery. Its extensive collection of experimentally verified CRMs provides a
ready source of validation data for assessing CRM predictions and for comparing among
methods [21,112–116]. Perhaps more importantly, REDfly’s advanced search and filtering
features make it an unmatched source for compiling training data for machine-learning
approaches [10,11,61,117]. As we review in the following section, we have used REDfly
to develop nearly 50 individual training sets, spanning numerous Drosophila tissues and
time points, for use in conjunction with our SCRMshaw algorithm. This has enabled
considerable new CRM discovery in Drosophila but, more excitingly, also allows for cross-
species identification of CRMs in a wide range of insect species.
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Figure 1. The REDfly search interface. Researchers can make use of REDfly’s comprehensive search
capabilities to assemble sets of CRMs with specific properties. In this example, for instance, over
25,000 “CRM” records will be searched for (A) sequences belonging to the Drosophila melanogaster
genome that (B) positively regulate gene expression in the (C) wing imaginal disc, and that are (D) no
greater than 800 bp in length. Results are listed in the Results Table (E). Clicking on an individual
result opens a Detailed Results window with extensive further information, or multiple records can
be selected using the checkboxes for download in a variety of formats.

5.2. SCRMshaw

The CRM training data made available by REDfly enabled us, in collaboration with
Saurabh Sinha’s laboratory at the University of Illinois, to develop SCRMshaw (for super-
vised cis-regulatory module discovery), a highly effective method for computational CRM
discovery [10–12]. Other than the possession of a moderately sized training set of known
CRMs—we have had success with fewer than ten CRMs, although 20–30 is preferred—
the only input SCRMshaw requires is an annotated genome. As no other genomic data
are required (e.g., no binding site data, chromatin conformation or state data, or histone
modification data), SCRMshaw is ideal for use with newly sequenced and less-studied
insect species.

SCRMshaw (Figure 2) uses a training set composed of known CRMs, defined by a
common functional characterization (e.g., “nervous system”, “midgut”) to build a statistical
model that captures their short DNA subsequence (kmer) count distribution. This kmer
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distribution is then compared to that of a set of non-CRM “background” sequences in a
machine-learning framework. The kmers likely serve as proxies for the unknown TFBSs,
but TFBSs themselves, even when known, are not explicitly used by the algorithm. The
trained model is then used to score overlapping sequence windows in the genome, and
the highest-scoring windows are output as predicted CRMs. SCRMshaw has proven to be
remarkably effective: when SCRMshaw predictions are tested empirically using reporter
gene assays, success rates have averaged ~80%, with some training sets yielding over 90%
true positives [10,11,62,69,118].
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Figure 2. Supervised motif-blind CRM discovery (SCRMshaw). (a) SCRMshaw uses a training set of
known Drosophila melanogaster CRMs (“training sequences”), drawn from REDfly, that are defined by
common functional characterization, and a 10-fold larger background set of similarly sized non-CRM
sequences (“background sequences”). (b) The short DNA subsequence (kmer) count distributions
of these sequences are then used to train a statistical model. The trained model (c) is used to score
overlapping windows in the “target genome”; to date, we have successfully used multiple different
species from the Holometabola and several Hemiptera. (d) High-scoring regions are predicted to be
functional regulatory sequences (asterisks). Figure adapted from [69]. Insect images downloaded
from TheNounProject.com (accessed on 28 April 2021) set “Bugs” by Georgiana Ionescu, under the
CC-BY license.

5.3. Cross-Species Prediction

As noted above, SCRMshaw’s true power is its ability to predict CRMs across species.
Kazemian et al. [62] used SCRMshaw with Drosophila CRM training data to discover
CRMs across the entire ~345 Mya range of the holometabolous insects. By using the
same methods and training sets as previously used for within-species CRM discovery
in D. melanogaster [10], and instead searching the genomes of Anopheles gambiae, Aedes
aegypti, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis, SCRMshaw successfully
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predicted CRMs in a cross-species fashion with an approximately 75% prediction success
rate, based on reporter gene assays in xenotransgenic flies [62,69,118]. Direct testing of a
predicted Tribolium CRM in transgenic Tribolium confirmed that SCRMshaw can find bona
fide CRMs cross-species [70]. Preliminary data using hemipteran genomes suggest at least
some ability to predict CRMs in this even more diverged insect order as well (H.A. and
M.S.H., unpublished data).

5.4. Training Set Improvement

As with any machine-learning method, a key factor affecting SCRMshaw’s importance
is the quality of the training data. Interestingly, our testing has shown that even training
sets made up of randomly grouped but validated CRMs outperform groups of random
non-coding, non-regulatory sequences when used for SCRMshaw training [10,21]. This is
most likely due to the increased presence of binding sequences for common transcription
factor families (e.g., E-boxes, homeodomain binding sites) in the true CRM sequences,
and may account for the positive predictive performance obtained even with our least
effective training sets. However, increasing the cohesiveness of the training sets, so that
they fully represent groups of CRMs with common activity profiles, should improve
predictive performance.

We have constructed over 48 training sets spanning a broad range of gene expression
patterns across tissues and stages, using the most current available CRM data in the REDfly
database. For the most part, these new sets are generated automatically by filtering REDfly
CRMs based on anatomical classifications derived directly from the Drosophila anatomy
ontology. Because the anatomy terms are not all temporally specific—while some terms
distinguish between embryonic, larval, and adult stages, others do not—some of the
training sets are likely too broadly constituted, leading to reduced performance. Taking
advantage of updated temporal staging data in REDfly [9], as well as performing manual
refinement to create more specific groupings of known CRM-driven expression patterns,
should help to improve training set quality. We recently developed a training set evaluation
pipeline, pCRMeval, that enables unbiased assessments of SCRMshaw performance on a
training set by training set basis, to aid in this process [21].

What can be done when a cohesive enough set of training CRMs of sufficient number
is not available? In such cases, an iterative search-and-validation strategy has proven very
effective (Figure 3). For example, in collaboration with Thomas Williams’ laboratory at the
University of Dayton, we used SCRMshaw on a small training set of just seven CRMs that
drive gene expression in the Drosophila adult abdomen, in a first round of SCRMshaw, to
identify CRMs potentially involved in abdominal pigmentation. Empirical testing of 18 of
these predictions revealed 10 new CRMs regulating the desired specific expression pattern
(55%); an additional three appeared to be bona fide CRMs but with a different expression
profile (for a total of 13/18 or 72% validating as CRMs). The ten CRMs driving the “correct”
expression pattern were then combined with the original seven members of the training
set to generate a new, 2.5-fold expanded training set for a second round of SCRMshaw
prediction. Notably, the top prediction results from this second round did not include seven
of the eight sequences previously found to be false positives by empirical testing—including
true CRMs with non-targeted expression profiles—but still contained all ten of the previous
true positives. Empirical validation for the second round of predictions confirms this
improved performance: out of 21 CRMs tested, 20 were functional CRMs (95%) of which
17 (81%) had the expected pattern of expression (T. Williams, personnal communication).
These results demonstrate that iterative approaches can serve to augment weak training
sets to improve true-positive: false-positive ratios and underscore the importance of having
a well-constructed training set. Although so far we have used this approach exclusively
for Drosophila CRM prediction, iterative searching should also be useful for increasing
the success of our cross-species predictions. Validated cross-species sequences can be
added to our training sets in the same way that we have added validated Drosophila
CRMs, with similarly improved results. Indeed, we expect that we may see even more



Insects 2021, 12, 591 11 of 18

dramatic improvement in some cases, as by adding in additional sequences from the species
being searched, we will be increasing the number of same-species sequences, moving the
SCRMshaw search closer to a same-species search.
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Figure 3. Iterative search and validation. Sequences validating as true CRMs from an initial
SCRMshaw search can be added back to the training set, and the new, enlarged training set used for
a subsequent round of predictions. This strategy can effectively compensate for an initially weak
training set. Images downloaded from TheNounProject.com (accessed on 28 April 2021), “Fly” by
Georgiana Ionescu, and “analytics” by Wilson Joseph, under the CC-BY license.

5.5. Limitations

While many insect species are being sequenced, the genome assemblies and anno-
tations are of varying quality, ranging from extremely well-assembled genomes (e.g.,
Aedes aegypti with a scaffold N50 size of 409,777,670 bp) to very poorly assembled genomes
(Yellow Sally stonefly with a scaffold N50 of only 457 bp) [119,120]. How do these factors
affect CRM prediction using SCRMshaw? Since, by default, SCRMshaw searches the
genome in 500 bp windows, we reasoned that assembly is not likely to be a major limiting
factor for any but the most poorly assembled genomes. By simulating different degrees of
genome assembly for the Drosophila genome, and comparing the results to those obtained
with the fully assembled genome, we determined that this is indeed the case: SCRMshaw
maintains its strong predictive power when applied to increasingly less well-assembled
genomes, with only a minor drop-off in sensitivity—less than 15% on average—and a
negligible increase in the false-positive rate [21]. Assembly quality does not, therefore,
appear to present a significant barrier to successful CRM prediction using SCRMshaw.
Moreover, with long-read sequencing technologies becoming more prevalent, less fractured
assemblies are now frequently available [121].

The second factor to consider is genome annotation, which can lag considerably
behind sequencing and assembly: only 40% of all i5k-sequenced species currently have an
accompanying predicted gene set [120]. Because SCRMshaw looks at kmer-level patterns,
we typically exclude coding sequences from the analysis out of concern that the inherent
constraints on coding sequences (e.g., codon biases and the limited number of valid codon
triplets) will affect the SCRMshaw scoring. To test how important this is, we have compared
the results of running SCRMshaw on the Drosophila genome with and without exons
masked (H.A. and B. Yuen, unpublished data). These tests show that there is only minimal
overlap in the top predictions between the masked and unmasked versions, confirming
the importance of excluding coding sequences from the analysis. Therefore, having a
good draft gene annotation is an important requirement for ensuring optimal SCRMshaw
predictions. Fortunately, common genome annotation pipelines such as Maker2 [122] and
Braker2 [123] are generally effective at detecting protein-coding regions, enabling adequate
initial annotations to be generated.
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6. Integrating Computational and Experimental Approaches

With empirical methods such as ATAC-seq becoming increasingly more accessible
and affordable, it is fair to ask the question, what is the future of computational CRM
prediction for insect genomes? We believe that the combination of REDfly and SCRMshaw
retains several powerful advantages. For one, the approach remains both rapid and cost-
effective. With no required access to biological samples, negligible expense, and only a
few days’ time—much of which is hands-off—a reasonable first-pass annotation of the
regulatory genome is possible for any recently sequenced insects within the holometabola,
and probably their nearest neighboring families. This may prove especially useful for
acquiring a broad sampling of CRM data for evolutionary studies; because SCRMshaw
uses the same training data to search each species, the chances of discovering homologous
(or functionally similar) CRMs for orthologous genes are high. In the long run, however,
the greatest benefit is likely to be seen from combining computational prediction with other
forms of genomic CRM discovery, where the in silico results can help to sharpen and refine
empirical data. For instance, computational CRM discovery with subsequent alignment
across groups of moderately closely related species can pinpoint important sequence motifs,
and provide insights into possible enhancer grammar [62]. When used in conjunction with
open-chromatin assays, SCRMshaw can help distinguish CRMs from non-CRM open
regions, and, for whole-animal assays, is able to help home in on the most relevant tissue-
specific CRMs. When used with single-cell methods, the fact that SCRMshaw predictions
are based on tissue-specific training sets will help to assign identities to individual cell types
to better interpret the single-cell results, and may help to develop improved methods for
distinguishing sets of CRMs that are most closely related (i.e., integrate similar transcription
factor inputs) from those that use different input strategies to achieve the same regulatory
output (e.g., [124,125]). Chromatin profiling and next-generation sequencing assays each
contain various biases (e.g., [126–129]). Those that are known can be corrected for to a
certain extent, whereas other biases may not yet be well understood. Combining such
assays with SCRMshaw, a wholly orthogonal method, should help in weeding out false-
positive results from both types of assays, leading to more accurate CRM prediction overall.

7. Conclusions

The rapid growth in sequenced insect genomes requires the development of equally
rapid and economical means for annotating the regulatory components of these genomes.
Although many methods for CRM identification rely on extensive empirical data, a subset
of computational approaches, including SCRMshaw, function effectively using sequence
features only as input for both training and discovery. We discussed here how SCRMshaw,
using the wealth of Drosophila regulatory data curated by REDfly, can be used cross-
species to produce reasonable first-draft annotations of regulatory sequences throughout
the holometabola and likely beyond. We focused on SCRMshaw because that is where
data demonstrating good cross-species performance currently exist; however, it is likely
that other sequence-based CRM discovery methods will similarly be capable of cross-
species discovery. Our experience suggests that the most critical factor is the quality and
cohesiveness of the training data. As the CRM data in REDfly become more finely annotated
for developmental timing and cellular identities, it should be possible to generate improved
training data and subsequently, an ever more accurate prediction of CRM locations in newly
sequenced genomes. Moreover, as data for CRMs accumulate in more phylogenetically
basal species, the ability to push prediction success into further diverged insect orders may
become feasible.

Computational pipelines are able to provide rapid first-pass gene annotations of
newly sequenced genomes, but require experimental follow-up in order to refine gene
models for a final, accurate, finished annotation [130]. In the same way, REDfly and
SCRMshaw can be paired as a powerful combination to generate initial, albeit imperfect,
regulatory annotations for insect genomes, to be further refined by subsequent empirical
CRM identification.
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8. URLs

REDfly is freely accessible to the public at http://redfly.ccr.buffalo.edu.
SCRMshaw software and associated useful utility programs can be downloaded

from the Halfon lab GitHub site at https://github.com/HalfonLab. Protocols for using
SCRMshaw can be found in references [12] and [21].
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Abbreviations

ANN Artificial neural network
ATAC-seq Assay for transposase-accessible chromatin using sequencing
auROC Area under the receiver operating characteristic
BRNN Bidirectional recurrent neural networks
ChIA-PET Chromatin interaction analysis with paired-end tag
ChIP Chromatin immuno precipitation
CNN Convolutional neural network
CRM cis-regulatory module
CSI-ANN Chromatin signature identification by artificial neural network
DECRES Deep learning for identifying cis-regulatory elements
ECNN Ensemble of CNN
ENCODE Encyclopedia of DNA elements
FAIRE Formaldehyde-assisted isolation of regulatory elements
FANTOM Functional annotation of the mammalian genome
Gkm-SVM Gapped kmer support vector machine
HMM Hidden Markov model
Kmer-SVM kmer-support vector machine
ML Machine learning
REDfly Regulatory element database for Drosophila
RF Random forest
RFECS Random forest-based enhancer identification using chromatin states
ROC Receiver operating characteristic
scATAC-seq Single cell assay for transposase-accessible chromatin using sequencing
SCRMshaw Supervised cis-regulatory module discovery
STARR-seq Self-transcribing active regulatory region sequencing
SVM Support vector machine
TF Transcription factor
TFBS Transcription factor binding site
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