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Simple Summary: Most arthropods (uniting animals such as the chelicerates, e.g., spiders and their
kin, as well as millipedes, centipedes, crustaceans, and insects) have distinct sensory appendages at
the second head segment, the so-called antennae. The Arachnida (e.g., spiders and scorpions) do
not possess antennae, but have evolved highly specialized sensory organs on different body regions.
However, very limited information is available concerning pseudoscorpions (false scorpions). These
animals do not seem to possess such specialized structures, but show dominant, multifunctional
appendages prior to the first walking leg, called pedipalps. Here, we investigate the neuronal
pathway of these structures as well as general aspects of the nervous system. We describe new
details of typical arthropod brain compartments, such as the arcuate body and a comparatively small
mushroom body. Neurons associated with the pedipalps terminate in two regions in the central
nervous system of characteristic arrangement: a glomerular and a layered center, which we interpret
as a chemo- and a mechanosensory center, respectively. The centers, which fulfill the same function
in other animals, show a similar arrangement. These similarities in the sensory systems of different
evolutionary origin have to be interpreted as functional prerequisites. Identifying these similarities
helps to understand the general functionality of sensory systems, not only within arthropods.

Abstract: Many arachnid taxa have evolved unique, highly specialized sensory structures such as
antenniform legs in Amblypygi (whip spiders), for instance, or mesosomal pectines in scorpions.
Knowledge of the neuroanatomy as well as functional aspects of these sensory organs is rather
scarce, especially in comparison to other arthropod clades. In pseudoscorpions, no special sensory
structures have been discovered so far. Nevertheless, these animals possess dominant, multifunctional
pedipalps, which are good candidates for being the primary sensory appendages. However, only little
is known about the anatomy of the nervous system and the projection pattern of pedipalpal afferents
in this taxon. By using immunofluorescent labeling of neuronal structures as well as lipophilic dye
labeling of pedipalpal pathways, we identified the arcuate body, as well as a comparatively small
mushroom body, the latter showing some similarities to that of Solifugae (sun spiders and camel
spiders). Furthermore, afferents from the pedipalps terminate in a glomerular and a layered neuropil.
Due to the innervation pattern and structural appearance, we conclude that these neuropils are the
first integration centers of the chemosensory and mechanosensory afferents. Within Arthropoda,
but also other invertebrates or even vertebrates, sensory structures show rather similar neuronal
arrangement. Thus, these similarities in the sensory systems of different evolutionary origin have to
be interpreted as functional prerequisites of the respective modality.

Keywords: chemosensation; mechanosensation; morphology; Chelicerata; olfaction; somatotopy;
chemotopy; immunofluorescence; brain; afferents
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1. Introduction

The arachnid order of pseudoscorpions comprises more than 3300 valid species [1].
Although their general morphology appears rather conserved, pseudoscorpions display
an impressive complexity in terms of behavioral patterns and life styles. For example,
they can live solitary, in loose groups, or even in social communities sharing food and
hunting cooperatively (e.g. [2–6]). Furthermore, pseudoscorpions show different mating
strategies, from deposition and collection of spermatophores without the presence of mates
to complex courtship dances (e.g. [3,7]). A very fascinating behavior performed by many
species is called phoresy, were individuals hitchhike on larger species by grasping the
carrier with their pedipalps (e.g. [8,9]).

These and other complex behavioral capacities may depend on a well-elaborated
chemosensory perception. However, chemosensation in pseudoscorpions has not been
addressed to a sufficient degree. Evidence from behavioral observations indicates involve-
ment of chemosensory cues in various aspects of pseudoscorpion ecology. It has been
suggested that olfactory cues play an important role in phoretic behavior [10,11]. Fur-
thermore, chemosensory cues seem to be essential in mating. It has been hypothesized
that both males and females deposit and detect chemical cues on their mates [12,13]. In
those species, where males do not guide females to spermatophore deposits, males at-
tract females probably using pheromones [7,14]. These chemical cues are presumably
released by special organs, called rams horn organs [3,7,15], a structure that is also evident
in the here studied species, Chelifer cancroides [16]. Additionally, males seem to coat the
spermatophores with a droplet containing pheromones, at least in those species where
sperm packages are deposited in absence of females [17–19]. Along these lines, Judson
suggested a pheromonal function of the sternal gland secretion, marking territories or sper-
matophores [20]. Vibration of the third walking legs during mating in males of Withius piger
might distribute the chemical cue [7,20]. Associated with a complex courtship, males of
social species—including C. cancroides—border a specific territory, which they defend from
other males and in which they court visiting females [7]. These territories are hypothesized
to be marked by chemosensory cues, as males persistently rub their ventral side against
the substrate within these areas [7]. Finally, chemosensory cues might also play a role in
finding prey, although no information has been published to our knowledge.

Although all these observations point to a well-developed chemosensory system,
no clear evidence on a chemosensory organ nor special sensilla exists. Interestingly,
some sensilla on the fingers and chelae are often termed ‘chemosensory setae’ in taxo-
nomic contributions (e.g. [21–26]), but their ultrastructure has never been investigated.
While other arachnid taxa have evolved special chemosensory detectors—such as anten-
niform legs in Amblypygi, Thelyphonida, or Opiliones [27–30], the so-called pectines
in scorpions [31–33], or the fan-shaped malleoli in Solifugae (sun spiders and camel
spiders) [34]—pseudoscorpions do not possess such conspicuous structures, at least at
first glance. Promising candidates for such a primary chemosensory organ are the pedi-
palpal appendages, due to its elongated, anteriorly outreaching nature and their dense
coverage by sensory sensilla of diverse types [3]. Beside mechanosensory trichobothria
and proprioceptive lyriform organs, some of these sensilla are suggested to function as
chemosensory detectors [3]. The pedipalps possess sophisticated chelae, which are built by
the swollen tibia (also termed ‘hand’) extending into the fixed finger, and the tarsus forming
the movable finger (see Figure 1A). The pedipalps do not only play a role in capturing and
manipulating prey items (many pseudoscorpions possess venom glands at the tips of the
fingers) but are also involved in social interactions [3].
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Figure 1. General morphology, the sensory equipment, and neuronal innervation of the pedipalps of
Chelifer cancroides. (A) Dorsal view of the animal, showing the four pairs of walking legs, the chelicera,
and the large pedipalps, consisting of the trochanter, femur, patella, and the chela (tibia + tarsus).
All appendages are associated with the prosoma (PR). The opisthosoma (OP) does not possess any
appendages. (B) Overview of the chelal surface stained with Congo red (gray). The chela possesses
two fingers, a dorsal fixed finger, and a ventral movable finger (joint indicated by arrowhead).
(C) Detail of the movable finger, showing the sensory equipment with different types of sensilla,
e.g., trichobothria (arrows), shorter hair-sensilla (double arrowheads), and club-shaped sensilla
(arrowheads). The chelal teeth (CT) and poison tooth (PT) are indicated. (D) Overview of the
innervation of the chela based on lipophilic dye injection (DiI, yellow). Within the chelal hand, two
main fibers can be distinguished, each innervating one of the fingers (FN: fixed finger nerve; MN:
movable finger nerve). Shortly after entering the fingers, these nerves split into two branches (veFN,
doFN: ventral and dorsal nerve of fixed finger; veMN, doMN: ventral and dorsal nerve of movable
finger). (E,E’) Details of the innervation of the chelal hand. From the main nerve branches (FN
shown), various branches split of and send fine branches (double arrowheads in (E)) toward sensory
structures at the cuticle surface (arrows in (E)). Along these fine fibers, swellings of cell bodies can
be observed (arrowheads in (E,E’)). (F,F’) Details of the innervation of the fixed finger. From the
dorsal and ventral nerve branches within the fingers, numerous fibers branch off and innervate
sensory structures (double arrowheads in (F,F’)). Again, swellings consisting of cell bodies are present
(arrowhead in (F’)). Other abbreviations: di: distal; do: dorsal; pr: proximal; ve: ventral.
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Similar to the peripheral nervous system and its sensory equipment, the central ner-
vous system of pseudoscorpions has received little attention as well. In early accounts,
a rather simplified nervous system with a general anatomy of a fused ganglionic mass
surrounding the esophagus, the so-called synganglion [35], has been described [3,36–39].
Besides the clearly distinguishable arcuate body (an unpaired midline neuropil presumably
involved in coordination of limb motor control; e.g. [40,41]), only residues of mushroom
bodies (higher-order integration centers in arthropod brains involved in multimodal integra-
tion, learning, and memory; e.g. [42–46]) have been identified in the protocerebrum [3,39].
Lehmann and Melzer [47] re-visited the morphology of a rather simple visual system of Neo-
bisium carcinoides, updating pioneering studies by Hanström [39] and Boissin and Cazal [48].
Finally, immunocytochemical investigations and identification of neuroactive compounds
are limited to a recent study, addressing the histaminergic system in C. cancroides [49].

Intriguingly, Hanström (1919) identified a neuropil consisting of spherical subunits,
which he termed ‘glomerular mass’ (German: ‘Glomerulimasse’) [38]. These glomeruli ex-
tend on both hemispheres adjacent to the esophagus at the transition between the brain
and subesophageal neuromeres [38,39,50]. However, the association of these glomeruli to a
specific appendage or neuromere remains unresolved (compare [38,39,50]). Interestingly,
glomerular structures within the central nervous system are a rather strong indicator for
chemosensory processing, as these conspicuous structures are found in chemosensory neu-
ropils in many invertebrate but also vertebrate representatives (reviewed in, e.g. [51–53]). It
should be emphasized, that glomerular neuropils are also found in other neuronal regions
than chemosensory pathways, namely, in protocerebral circuits associated with the visual
or mushroom body pathways (see discussion) (e.g. [54–60]).

The present contribution sets out to revisit the general morphology of the central
nervous system of the pseudoscorpion C. cancroides with immunocytochemical methods
combined with lipophilic dye labeling and confocal laser-scanning microscopy. In order to
answer the question, if the glomerular mass identified by previous contributions [38,39,50]
is associated with the pedipalps, we focus on the neuronal pathway of these appendages.
In the following, we present first morphological evidence of a chemosensory pathway
associated with the pedipalps in the pseudoscorpion C. cancroides.

2. Materials and Methods
2.1. Animal Collection

Adults of Chelifer cancroides (both sexes) were collected from an old hayloft near Rinteln
(Lower Saxony, Germany). After collection, animals were kept in jars with crumpled paper
as hiding place for transport to the laboratory where they were sacrificed as soon as possible.

Before dissection, animals were anesthetized with 99.7 vol% CO2 and cooled down
in the refrigerator at approximately 4 ◦C for at least 10 min. Afterwards, specimens were
viewed with a dissection microscope (Stemi 508, Zeiss, Oberkochen, Germany) ventral
side up, in order to determine the sex: ventrally, males show dark bilateral symmetric
structures—known as rams horn organs, which are lacking in females (description of
sex-specific differences see [16]). Afterwards, animals were processed according to the
different experiments.

2.2. Staining of Chelal Cuticle Using Congo Red

In order to visualize the sensory equipment of the chelal fingers, the chelae (12 female
and 10 male chelae) were cleaned and treated with Congo red (Sigma-Aldrich, St. Louis,
MO, USA). After anesthetizing the animals with CO2, the pedipalps were cut proximally
to the patella-chela-joint and transferred to 70% ethanol (Merck, Darmstadt, Germany)
for at least 24 h. Afterwards, the specimens were incubated in 5% potassium hydroxide
(KOH; Merck) at room temperature for several days (protocol from [61]). Then, specimens
were transferred to glacial acetic acid (Merck) for 15 min, followed by six washing steps
of 15 min each in distilled water. In the next step, the chelae were incubated in Congo red
dissolved in distilled water (1.5 mg Congo red per milliliter distilled water, see [62]) for two
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weeks. Finally, the preparations were washed several times in distilled water until no solute
Congo red was visible anymore and mounted in 90% glycerin (Merck) in distilled water.
To avoid squeezing of preparations hollow-ground microscopic slides (Paul Marienfeld
GmbH, Lauda-Königshofen, Germany) were used.

2.3. Vibratome Sections, Immunohistochemistry, and Phalloidin Labeling

To describe the general anatomy of the nervous system, the synganglia of 11 females
and 9 males were dissected and freed from surrounding tissue with fine forceps (all dissec-
tion tools obtained from Fine Science Tools, Heidelberg, Germany). Afterwards, the tissue
was fixed in 4% paraformaldehyde (PFA; Sigma-Aldrich) dissolved in phosphate-buffered
saline (PBS; 10 mM sodium phosphate, 150 mM sodium chloride, pH 7.4; chemicals ob-
tained from Merck) over night at 4 ◦C. After three washing steps with PBS for at least 15 min
each, the synganglia were transferred to black scale pans, carefully dried with filter paper,
and briefly covered with poly-D-lysine (1 mg/mL in demin. H2O; Merck) to achieve better
connection between the tissue and embedding medium. The removal of the poly-D-lysine
was followed by embedding the tissue in 7% low-melting-point agarose (Carl Roth, Karl-
sruhe, Germany) dissolved in distilled water at approximately 35 ◦C. The preparations were
cooled to 4 ◦C and the trimmed blocks were cut into 50 µm-thick sections in the horizontal,
frontal, or sagittal plane by using a VT 1000 S Vibratome (Leica, Wetzlar, Germany).

The slices were permeabilized for 1 h in 0.3% saponin (Sigma Aldrich) in PBS contain-
ing 0.3% Triton X-100 (Merck) (PBS-TX 0.3%), washed three times for at least 15 min each in
PBS-TX 0.3%, and incubated for at least 3 h in 5% normal goat serum (Vector Laboratories,
Burlingame, CA, USA) in PBS-TX 0.3% as the blocking solution. In the following step,
the primary antiserum mouse-anti-synapsin (Developmental Studies Hybridoma Bank,
University of Iowa, IA, USA, 3C11; 1:40) were applied overnight at room temperature
in blocking solution containing 1% Triton X-100. After three washing steps for 15 min
in PBS-TX 0.3%, the preparations were incubated for at least 3 h at room temperature in
Alexa Fluor 488-conjugated goat anti-mouse secondary antibody (Invitrogen, Carlsbad,
CA, USA, Lot 1,907,294), diluted 1:250 in a blocking solution containing 0.3% Triton X-100.
To visualize the filamentous actine, the immunocytochemical labeling was accompanied
by treatment with AlexaFluor488-conjugated Phalloidin (Molecular Probes, Eugene, OR,
USA) simultaneously. The methanolic stock solution was allowed to evaporate and then
redissolved at 1:50 (equivalent to 4 U/mL) in a secondary antibody solution. Preparations
were washed two times in PBS-TX 0.3% and once with PBS for 15 min each and finally
mounted on adhesive microscope slides in Mowiol (Merck).

In order to visualize the position and relative size of the synganglion within the body,
ten animals (3 females, 7 males) were processed slightly different to the previous protocol:
five animals were cold anesthetized and legs as well as pedipalps were cut distally to
the coxa. Furthermore, the posterior part has been cut posteriorly to the fourth walking
leg. Afterwards, the specimens were incubated in 4% PFA for 48 h at 4 ◦C. After three
washing steps in PBS, the specimens were embedded in 7% low-melting-point agarose as
described above, and further sliced sagittally in 150 µm sections. The next steps correspond
to the procedure describes above. In the remaining 5 specimens, the carapace was coarsely
removed after fixation and processed as above, but without sectioning the specimens.

2.4. Lipophilic Dye Labeling of Pedipalpal Nerves

In order to visualize the innervation of the pedipalpal chela and the projection pattern
of the associated afferents toward the central nervous system, the lipophilic tracers DiI (1,1′-
Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate, Sigma-Aldrich) and/or
DiA (4-(4-(Dihexadecylamino)styryl)-N-methylpyridinium iodide, ATT Bioquest, Biomol,
Hamburg, Germany) were used.

Living specimens were anesthetized and the legs, opisthosoma, carapace, and tips
of the chelae were removed in 18 animals (9 males, 9 females). In another 8 animals
(4 males, 4 females), only the tips of the fixed and movable finger were cut. The chelae
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and bodies were fixed for 48 h at 4 ◦C in 4% PFA, followed by three washing steps with
PBS for 30 min each. The broken tips of pulled glass micropipettes (Harvard Apparatus
LTD, Holliston, MA, USA, type GC100TF–10) were submerged in methanolic dye solution.
The methanol was allowed to evaporate, resulting in a thin coat of dye crystals on the
micropipette [63]. The tip of these coated micropipettes was injected into (a) the isolated
chelae; (b) the stumps of the pedipalps at the level of the patella; and (c) the movable and
fixed fingers. The preparations were stored in PBS containing 0.1% sodium azide (Carl
Roth) at approximately 25 ◦C in a dark place. The progress of dye travelling was checked
using an upright fluorescent microscope (SliceScope Pro, Scientifica, Uckfield, UK) every
two days.

Afterwards, the remains of the pedipalps were cut at the coxae and stored together
with the isolated chelae for further processing (see below). The central nervous system was
freed from the remaining surrounding tissue and further processed for fluorescent labeling
of the synapsin and actin, and for the nuclear counterstain. The protocol for sectioning
and immunolabeling followed the descriptions above, with the following differences:
permeabilization with saponin and Triton-X100 was omitted to maintain the stability of
membranes and to avoid fading of the lipophilic tracer labeling.

Pedipalps and chelae treated with lipophilic dyes were incubated in 70% ethanol for
a maximum of 30 min in order to remove dye crystals, which might have attached to the
cuticle. Afterwards, the pedipalps and chelae were incubated in 50% and subsequently 90%
glycerol in PBS for approx. 3 h and mounted in fresh 90% glycerol in PBS.

2.5. Antibody Characterization

A monoclonal mouse anti-Drosophila synapsin antibody (“SYNORF1”, Developmental
Studies Hybridoma Bank) raised against a Drosophila GST-synapsin fusion protein was
applied. This antibody reacts with a highly conserved epitope, as it labels neuropil struc-
tures over a wide range of arthropod taxa (e.g. [64–67]), including arachnid representatives,
e.g., spiders [58,68,69], scorpions [49,70], and amblypygids (whip spiders) [58]. This anti-
body has also been used as a structural marker in the focus species of this contribution,
C. cancroides [49]. In Western blots of brain tissues of Drosophila and the crustacean Coenobita
clypeatus identical bands were stained by the synapsin antibody, which suggests that the
epitope for SYNORF1 is strongly conserved between Drosophila and Coenobita [64].

2.6. Microscopy and Image Acquisition

Sections were examined with a Leica TSC SP5 II confocal microscope (cLSM). Z-
series were processed with NIH ImageJ, v. 1.8 (Rasband WS, ImageJ, U.S. National
Institutes of Health, Bethesda, MD, USA, http://rsb.info.nih.gov/ij/ (accessed on
20 November 2021)), producing maximum projections. Image processing and panel
preparation were conducted with Adobe Photoshop 6.0 (San Jose, CA, USA), including
global contrast and brightness adjustment.

3. Results
3.1. External Morphology and Innervation Pattern of the Pedipalps

From proximal to distal, the pedipalps of pseudoscorpions consist of the coxa, trochanter,
femur, patella, and the chela (terminology from [16]) (Figure 1A). The latter is built up of
the tibial hand, which terminates in a fixed (belonging to the tibia) and a movable finger
(tarsus) (Figure 1B). The movable finger is positioned ventrally, the fixed finger dorsally.
The fingers are slightly bent toward the body (Figure 1A,B).

Both fingers possess numerous sensory sensilla of various forms, including trichoboth-
ria and short hair-sensilla as well as small club-shaped structures (Figure 1C). The sensilla
are distributed on the entire surface of both fingers but seem to increase in number from
proximal to distal (Figure 1C). These sensilla are innervated by a large number of sensory
neurons (Figure 1D,F,F’). Directly after entering the chela, the pedipalpal nerve splits into
two main branches, each supplying a specific finger: the fixed finger nerve and the movable

http://rsb.info.nih.gov/ij/
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finger nerve (Figure 1D,E). Thinner branches split off and are associated with structures on
the cuticle of the hand, such as, e.g., sensory sensilla or glands (Figure 1D,E,E’). Swellings
on these fine tracts represent clusters of cell somata (arrowheads in Figure 1E,E’). Addi-
tionally, some thinner tracts enter the chela and form a fine net of neuronal processes,
which are not associated with cuticular structures, but probably represent motoneurons.
Within both fingers, the nerve tracts split up again at the base of the fingers (Figure 1D).
One branch innervates the sensilla positioned on the dorsal portion of the fingers, while
the other tract is associated with the sensilla on the ventral part (Figure 1D). Toward the
tip of the fingers, numerous fine branches leave the main tracts, innervating the sensory
structures (Figure 1F). Close to the sensilla, clusters of somata can be observed, from which
the dendrites reach out toward the base of the sensilla (Figure 1F,F’).

3.2. General Anatomy of the Central Nervous System

The central nervous system of C. cancroides is positioned at the level of the first to third
walking leg, directly beneath the dorsal cuticle (Figure 2A,B). As we could not identify any
differences of the neuronal anatomy between males and females throughout our experi-
ments, we do not distinguish between sexes in the following descriptions. The neuromeres
are fused, forming a typical synganglion—connectives between the segmental neuromeres
cannot be distinguished (Figure 2C–G). A contiguous soma cortex surrounds the fused
central nervous system, and only few cell bodies are positioned within the neuropilar
regions (Figure 2B–D). The synganglion can be divided into two main regions, the sube-
sophageal ganglion and the supraesophageal ganglion, also called the brain (Figure 2B).
The subesophageal ganglion is composed of the four walking leg neuromeres (Figure 2C).
A small neuropilar region follows the fourth walking leg neuromeres posteriorly, which
represents residuals of the condensed opisthosomal neuromeres (Figure 2G). Anteriorly, the
first walking leg neuromeres are followed by the large pedipalpal neuromere (Figure 2C),
which is built up of several distinct neuropils. However, their boarders to each other are
difficult to outline. This neuropil spans laterally around the esophagus, and thus builds the
connection between the subesophageal ganglion and the brain (Figure 2C). Dorsally to the
pedipalpal neuropil, already belonging to the brain, the smaller cheliceral neuropil can be
distinguished (Figure 2C). Finally, the prominent protocerebrum follows posterodorsally
(Figure 2C,D and Figure 3).

Within the subesophageal ganglion, several horizontal and longitudinal tracts can be
distinguished. The walking leg nerves enter the associated neuromere and split into three
horizontal tracts: a ventral (VHT), an intermediate (IHT), and a dorsal horizontal tract
(DHT) (Figure 2D,G). At least the prominent DHT and the smaller IHT closely approach the
midline and seem to contain contralateral projections (double arrowheads in Figure 2D). The
VHTs form a conspicuous, ventrally positioned longitudinal tract (VLT) near the midline
(Figure 2E). The bilateral symmetric VLTs are connected anteriorly and posteriorly by two
commissures (double arrowheads in Figure 2E). More dorso-laterally, another prominent
longitudinal tract runs from the last walking leg neuropil to the pedipalpal neuromere (LLT,
Figure 2F). In between the bilateral symmetric LLTs and dorsally to the VLTs, two types
of neuropilar regions can be distinguished: paired medial neuropils (arrows in Figure 2F),
and at least one unpaired median neuropil (double arrowhead in Figure 2F). Dorsally in
the subesophageal ganglion, the DHTs split into at least three dorsal longitudinal tracts
(arrows in Figure 2G). Furthermore, several commissural fibers connect the hemispheres of
the subesophageal ganglion at a dorsal level (exemplified shown in Figure 4A).
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Figure 2. General morphology of the central nervous system of Chelifer cancroides, revealed by fluorescent
labeling of synaptic regions (green), f-actin (gray), and cell bodies (blue). (A) Position of the synganglion
within the prosoma from a dorsal view. The dashed line indicates the outline of the synganglion.
(B) From a sagittal view at the midline level, the synganglion is positioned at the dorsal margin of the
prosoma. The soma cortex (CO) surrounds the neuropilar regions. The synganglion is divided into a
supraesophageal brain (BR) and the subesophageal ganglion (SOG). Dashed line indicates the esophagus.
(C) Sagittal slice of the synganglion at a more lateral level compared to (B). Ventrally, the four walking
leg neuromeres (WLN1–4) can be recognized. Anterior to the WLN lies the large pedipalpal neuromere
(PN). Dorsally to the PN, the cheliceral neuromere (CN) can be distinguished. The main part of the brain
consists of the protocerebrum (PC), including the dorso-posterior arcuate body (AB). (D) Dorsal section
of the synganglion at the level of the first walking leg neuromere (WLN1). A thick fiber tract (WLT1)
connects the lateral parts of the WLN1 with medial areas of the synganglion. The WLT1 splits into
three branches, a ventral (VHT1), an intermediate (IHT1) and a dorsal horizontal tract (DHT1). At least
the IHT1 and the DHT1 seem to contain contralateral projections (double arrowheads). (E) Horizontal
section of the synganglion at a ventral level. The ventral horizontal tracts of the walking legs (VHTs) are
connected to a ventral longitudinal tract near the midline (VLT). Arrowheads point on two commissures
formed by the bilateral symmetric VLTs. (F) At a more dorsal level, a thick, more lateral longitudinal tract
(LLT) appears. Between these bilateral symmetric tracts, paired (arrows) and unpaired midline neuropils
(double arrowhead) can be distinguished. (G) At an even more dorsal level, the dorsal horizontal
tracts of the walking legs split up in several dorsal longitudinal tracts (arrows). Note the fused mass of
opisthosomal ganglia (OPN), between the fourth walking leg neuromeres (WLN4). Other abbreviations:
an: anterior; CC: chelicera; do: dorsal; po: posterior; PP: pedipalp; ve: ventral; WL1–4: walking legs 1–4.
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Figure 3. Neuroanatomical details of the protocerebrum in Chelifer cancroides, revealed by fluorescent
labeling of synaptic regions (green), f-actin (gray), and cell bodies (blue). (A,B) Frontal (A) and sagittal
view on the protocerebrum. The arcuate body (AB) is located at a postero-dorsal position and consists
of a dorsal (doAB) and a ventral layer (veAB). (C) In horizontal view, the arcuate body is built up of
several palisade-like subunits, which are separated by fiber tracts (double arrowheads in (C) and (D)).
(D) Distinct fibers (arrowheads) connect the arcuate body and contralateral protocerebral neuropils.
(E–G) Ventral to dorsal series of the protocerebrum, showing the components of the mushroom bodies.
Two fiber tracts (arrowheads in (E)) emerge from an antero-lateral neuropil (arrow in (E)). More ventrally
both fiber tracts (arrowheads in (F)) fuse and project further posteriorly. At a dorsal level, the fused
main tract (white arrowhead in (G)) terminates in a postero-medial lobe (double arrowhead in (G)) close
to the midline. A lateral tract leaves the main tract (black arrowhead in (G)). It seems, that the main
tract projects further posteriorly (arrow in (G)) and terminates in a second lobe (asterisk in (G)) in close
vicinity to the arcuate body. Other abbreviations: an: anterior; do: dorsal; po: posterior; ve: ventral.
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The protocerebrum, although comparatively large, does not possess many distinct
subcompartments. One exception is the rather isolated postero-dorsal arcuate body
(Figures 2C and 3). The arcuate body is slightly bent ventrally and consists of two dis-
tinct layers: a thicker ventral layer and a thinner dorsal layer (Figure 3A,B). The arcuate
body consists of several palisade-like subunits, which are separated by horizontal fiber
bundles (double arrowheads in Figure 3C,D). Furthermore, fibers associated with the arcu-
ate body cross the midline anteriorly and connect the arcuate body to the adjacent lateral
parts of the protocerebrum (arrowheads in Figure 3D).

Besides the arcuate body, a prominent tract can be distinguished in the protocerebrum,
which we interpret as being part of the mushroom bodies. From a small, rather indistinct
antero-lateral neuropil, two conspicuous tracts run posteriorly (Figure 3E). Shortly after
leaving that neuropil, both tracts fuse and further project posteriorly (Figure 3F). This tract
is associated with a medial mushroom body lobe close to the midline (Figure 3G). From
here, the tract is difficult to follow, but it seems that it continues in a posterior direction and
terminates in a second mushroom body lobe in direct vicinity of the ventral aspects of the
arcuate body (Figure 3G). Finally, a lateral tract leaves the main tract (Figure 3G).

3.3. The Pedipalpal Neuropil Houses a Glomerular and a Stratified Neuropil

The pedipalpal neuropil is situated within the anterior part of the synganglion, directly
lateral to the esophagus, connecting the subesophageal ganglion and the brain (Figure 2C).
Apart from the protocerebrum, the pedipalpal neuropil is the largest neuromere within the
nervous system of C. cancroides. The pedipalpal neuropil contains a conspicuous neuropilar
region, which consists of numerous spheric or ovoid substructures of different size (asterisks
in Figure 4C–E). This glomerular neuropil spans above and below the level of the esophagus
(Figure 4B,C). The overall shape of this neuropil appears spheric to ovoid in the sagittal
(Figure 4B,C) and frontal view (Figure 4G–I), but possesses at least three sublobes in the
horizontal plane (Figure 4D). The glomerular neuropil is innervated by fibers coming from
an anterolateral direction (arrowheads in Figure 4E). These fibers surround the glomerular
neuropil and penetrate the glomeruli from the antero-lateral direction.

In a posterolateral position to the glomerular neuropil, another distinct region can be
observed, receiving input from the same direction as the glomerular neuropil. It appears as
an elongated neuropil, extending from an antero-lateral to a postero-medial position within
the pedipalpal ganglion and possesses a stratified or lamellar organization (arrowheads in
Figure 4F).

In the frontal view, two fiber bundles projecting in the dorso-lateral direction connect the
glomerular neuropil with the protocerebral regions (Figure 4H). These tracts are assumed to
consist of projection neurons. However, a clear destination within the protocerebrum could
not be identified (see Section 4). Finally, distinct tracts connect the glomerular neuropil with
the ventral soma cortex (Figure 4I), which we interpret as the projections of interneurons.

3.4. Lipophilic Dye Injection Reveal Connectivity of the Pedipalpal Nerve and Central
Neuropilar Regions

In order to verify if the glomerular and stratified neuropils are associated with the
pedipalps, lipophilic dye injection in the distal part of the patella was performed. The
course of the pedipalpal nerve toward the central nervous system can clearly be visualized
(Figure 5A). Within the central nervous system, the tracer labels only structures within the
pedipalpal neuromere (Figure 5B,C).

Three subregions of the pedipalpal neuropil are clearly labelled: the glomerular
neuropil, the stratified neuropil, as well as a yet unidentified small neuropil, which we here
term accessory neuropil (Figure 5B–E”). Within the glomerular neuropil, every glomerulus
is labelled rather homogenously (Figure 5D). Additionally, the lamellae of the stratified
neuropil show strong labeling (Figure 5E’,E”).
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Figure 4. Position and morphology of glomerular structures in the pedipalpal neuropil, revealed by
fluorescent labeling of synaptic regions (green), f-actin (gray), and cell bodies (blue). (A) In the most
dorsal horizontal section (in relation of the subesophageal ganglion) of the synganglion, a conspicuous,
drop-shaped neuropil (GN) consisting of glomerular subunits can be observed in antero-medial aspects
of the pedipalpal neuromere. Note the commissure in posterior region (arrowhead). (B,C) In the
sagittal view, the glomerular neuropil (GN) spans spherically around the esophagus, with a fraction
lying dorsally, the other part lying ventrally with respect to the esophagus (dashed lines). Asterisks
indicate glomeruli. (D) In the dorsal view, the arrangement of the glomeruli (asterisks) gives the
impression of separated subcompartments (indicated by dashed lines). (E) The glomerular neuropil
is penetrated by fibers (arrowheads) from the antero-lateral direction, innervating the glomeruli
(asterisks). (F) Besides the glomerular neuropil, another distinct neuropil is found postero-laterally,
having a stratified appearance of parallel fibers (arrowheads). (G–I) Frontal views on the glomerular
neuropil (highlighted by dashed lines), showing a spheric to drop-shaped appearance. The glomerular
neuropil is connected to dorsal, protocerebral regions by two distinct tracts (rings in (H)). Ventrally,
fibers connect the glomerular neuropil to the ventral soma cortex (rings in (I)). Other abbreviations:
an: anterior; CN: cheliceral neuropil; do: dorsal; PC: protocerebrum; po: posterior; ve: ventral.
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Figure 5. Innervation of the pedipalpal neuropil revealed by lipophilic dye labeling (DiI, yellow),
injected at the distal part of the patella, combined with fluorescent labeling of the synaptic regions
(green) and cell bodies (blue). (A) Overview of a dye injected pedipalp, visualizing the projection
pattern of the pedipalpal nerve (PNerve). (B,C) Maximum projections of two consecutive horizontal
sections, from ventral (B) to dorsal (C). Dye-labelled fibers enter the glomerular (GN) and the stratified
neuropil (SN). Further, a small neuropil between GN and SN is labelled (arrowheads; accessory
neuropil: AN). (D) Detail of the pedipalpal neuropil (PN), horizontal view. The glomeruli (asterisks)
are clearly labelled. Furthermore, the accessory neuropil (AN) and the medial portion of the stratified
neuropil (SN) are marked. Note that no labeling is evident in the contralateral GN (dashed line).
(E,E’,E”) Horizontal section of the pedipalpal neuropil labelled against synapsin (E) and by lipophilic
dye (E’); both channels merged in (E”). Glomeruli are indicated by asterisks. Note the layered
innervation of the stratified neuropil, indicated by rings in (E”). The AN seems to receive input from
anterior fibers associated with the SN (arrowheads in (E’,E”)). Other abbreviations: an: anterior; di:
distal; po: posterior; pr: proximal; WLN1–4: walking leg neuromeres 1–4.
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The accessory neuropil seems to receive input from fibers running parallel to the
most anterior lamellae of the stratified neuropil (arrowheads in Figure 5E’,E”). Notably,
no contralateral projections nor ipsilateral projections toward other neuromeres could
be observed.

3.5. Differential Innervation by Afferents from the Fixed and Movable Fingers

Differential lipophilic labeling of the fixed and movable finger revealed a distinct
projection pattern. Within the hand, the two tracts originating in the fixed and movable
finger project discretely toward the metatarsus–tibia joint (Figure 6A). Before entering the
joint, the two nerves fuse and form the pedipalpal nerve, and follow the same path toward
the pedipalpal neuropil. In the central nervous system, both tracers label the glomerular
neuropil in a homogenous way (Figure 6B,B’). In contrast, the stratified neuropil shows
a differential innervation by afferents associated with the fixed and movable finger. The
sensilla associated with the latter innervates more the posterior regions, and sensilla on
the fixed finger project to the anterior areas of the stratified neuropil (Figure 6B,B’). The
characters of the pedipalpal sensory pathway are summarized in Figure 7.

Figure 6. Differential labeling of movable and fixed finger nerves with lipophilic dyes (DiI: magenta;
DiA: green), combined with f-actin labeling (gray). (A) Overview of dye-injected fingers, visualizing
the projection pattern of the fixed finger (FN) and movable finger nerve (MN). At the chela–patella
joint, both fibers fuse (pedipalpal nerve: PNerve). (B,B’) Horizontal view, showing the innervation
pattern of the glomerular neuropil (GN) and the stratified neuropil (SN). While the GN is inner-
vated homogenously (arrows point to selected glomeruli), the stratified neuropil shows a distinct
innervation pattern by fibers associated with the movable finger (movable finger portion: MP) and
fixed finger (fixed finger portion: FP). Other abbreviations: an: anterior; di: distal; po: posterior;
pr: proximal.
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Figure 7. Schematic summary of the projection pattern of the sensory structures associated with the
pedipalpal chelae of Chelifer cancroides. Differential labeling of afferents of the fixed (FN: fixed finger
nerve, magenta) and movable finger (MN: movable finger nerve, green) innervate two neuropils in
the pedipalpal neuromere within the central nervous system (CNS): The glomerular neuropil (GN)
is innervated rather homogenously by projections from both fingers, while the stratified neuropil
(SN) shows a clear separation in an anterior portion innervated by afferents from the fixed finger
and a posterior portion innervated by fibers associated with the movable finger. Other abbreviations:
AN: accessory neuropil; PNerve: pedipalpal nerve.
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4. Discussion

Most of our knowledge on the morphology of the nervous system in pseudoscorpions
is based on older investigations with limited technical potential in comparison to current
techniques [3,36–39]. Here, we presented a comprehensive description of the general
organization of the central nervous system of C. cancroides, including details concerning the
mushroom bodies and the arcuate body. Furthermore, we identified a glomerular and a
stratified neuropil innervated by afferents from the pedipalps, revealing a sophisticated
chemo- as well as mechanosensory pathway.

4.1. Comparative Aspects of Prominent Protocerebral Neuropils
4.1.1. The Arcuate Body

In Arachnida, the arcuate body is a prominent midline neuropil in a postero-dorsal
position (e.g. [35,39,54,71–74]), showing similar characteristics in all taxa: it appears as
a crescent-shaped, layered neuropil with palisade-like arrangement. We could observe
this general arrangement in the brain of C. cancroides as well (Figure 3). It has been
suggested that this unpaired midline neuropil is involved in the coordination of limb motor
control [40,41,75], although this hypothesis is mainly based on extrapolated results obtained
from crustaceans and insects. Interestingly, the motoric repertoire seems to correlate with
the elaboration and relative size of the arcuate body [40]. Besides several connections of the
arcuate body to midbrain areas, it receives input from visual pathways, at least in spiders
(e.g. [57,59,60,71]). In pseudoscorpions, Boissin and Cazal proposed a direct connection of
the visual system to the arcuate body in Hysterochelifer meridianus [48]. However, Lehmann
and Melzer found no evidence of a direct connection between the arcuate body and visual
neuropils in another pseudoscorpion species, N. carcinoides [47]. We could not identify any
tracts connecting the arcuate body with optic ganglia in C. cancroides. However, due to the
simplicity of the visual pathway in combination with the applied methods, we were not
able to address any details of the visual pathway in this contribution.

4.1.2. The Mushroom Bodies

The mushroom bodies of pseudoscorpions have been described as rather reduced struc-
tures [38,39]. In general, we agree with this observation, but in contrast to Hanström [38,39],
the mushroom body tracts cover the entire length of the protocerebrum in antero-posterior
direction, reaching from the anterior soma cortex to the vicinities of the arcuate body
(compare Figure 3E–G and Figure 428 in [39]). Anteriorly, these tracts seem to be associated
with a small neuropil. In the posterior direction, the main tract splits into three branches—a
lateral and two medial ones. A clear contralateral connection (mushroom body bridge) of
the medial lobes as observed by Hanström [38,39] could not be identified. Corresponding
to Hanström [38,39], no distinct clusters of globuli cells were identified, which are generally
interpreted as a typical characteristic for mushroom bodies (e.g. [43,76]). Interestingly, no
globuli cells per definition [77,78] have been found in the jumping spider Marpissa muscosa,
although this species possesses elaborated mushroom bodies [59].

Within Arachnida, the mushroom bodies of Amblypygi (whip spiders), Thelyphonida
(whip scorpions), and Araneae (spiders) are rather complex, compared to pseudoscorpions
and Solifugae (sun spiders, camel spiders). In the three former taxa, globuli cells supply
prominent mushroom body pedunculi and several lobes (also termed hafts), which evolved
to extensive convoluted structures in Thelyphonida and Amblypygi [54,58]. Furthermore,
the mushroom body is closely associated with the protocerebral glomerular neuropil, which
is termed the mushroom body calyx by some authors (e.g. [55,56,58]), while others identify
these structures as distinct second-order visual neuropils associated with the mushroom
body [57,59,60]). In either case, the amblypygid [58] and araneaen [57,59,60] mushroom
bodies receive strong input from the visual system (but note structural variation depending
on species, as pointed out by Long [60]). Visual input of the solifuge mushroom body
neuropil seems to be absent [79].
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In addition to visual input, the mushroom bodies of amblypygids receive input from
the first chemosensory integration center associated with the antenniform legs [58]. A simi-
lar observation has been made for Solifugae, where projection neurons from the chemosen-
sory glomeruli of the malleolar system innervate the mushroom body neuropil [80].

In pseudoscorpions, we could not identify any sophisticated neuropilar structures
nor protocerebral glomeruli associated with the mushroom body tracts. Additionally, the
visual system is comparatively simple, lacking medial eyes. Where lateral eyes occur (as in
Chelifer cancroides), they are suggested to serve as light detectors, but not to generate sharp
images [3,81]. The most comprehensive investigation of the visual system by Lehmann
and Melzer [47] does not comment on a connection between the visual neuropils and the
mushroom body in pseudoscorpions.

In conclusion, the mushroom bodies of C. cancroides show structural similarities to
those in Solifugae. Small neuropilar regions are connected via tracts to two or three lobes,
lacking a mushroom body bridge (Figure 3 this study, [80]). Both taxa seem to lack visual
input to the mushroom bodies [47,79], but at least solifuges receive chemosensory input
via projection neurons [80]. We could show ascending tracts connecting the pedipalpal
glomerular neuropil to protocerebral structures (Figure 4H). Although we could not identify
the target area of these projection neurons, the mushroom bodies are good candidates to be
the second-order integration center of chemosensory information. Based on these facts, the
comparatively reduced mushroom bodies in C. cancroides as well as in solifuges might be
explained by missing input from the visual system. In these taxa, the mushroom bodies
might be mainly limited to chemosensory input.

4.2. The Glomerular Neuropil Represents a First Integration Center for Chemosensory Cues

Although the presence of chemosensory sensilla on the pedipalps of pseudoscorpi-
ons awaits its discovery, it is reasonable to interpret the glomerular neuropil within the
pedipalpal neuromere as the first morphological evidence for an elaborated chemosen-
sory pathway. We could clearly show an association of the glomerular neuropil to the
sensilla on the fingers of the pedipalpal chelae and conclude this neuropil to be the first
integration center of a chemosensory pathway in C. cancroides. A glomerular organization
of chemosensory neuropils has been described for many mandibulates (e.g., insects: [82,83];
crustaceans: [83–87]; and myriapods: [66,88]), as well as invertebrates and even vertebrates
(reviewed by, e.g. [51–53]). Glomerular structures are also known from other arachnid taxa,
for example from the pecten neuropil of scorpions (e.g. [32,33,54,70,89]), the malleolar neu-
ropil of Solifugae (e.g. [80,89,90]), the neuropil associated with the Haller’s organ in ticks
(e.g. [91,92]), or the neuromeres of the antenniform legs of amblypygids (e.g. [54,58]) and
thelyphonids (e.g. [54]). Furthermore, chemosensory pathways are mostly characterized
by a chemotopic innervation pattern, where each glomerulus typically collates the axons
of one particular chemoreceptor type, allowing for spatial segregation of chemical cues
(e.g. [75,93,94]). Although we cannot demonstrate a definite chemotopy, the homogenous
innervation of all glomeruli in the differential labeling of the fingers (Figures 6 and 7) hints
toward such a projection pattern of chemosensory afferents.

Further elements of a typical mandibulate chemosensory system associated with
the first pair of antennae are chemosensory projection neurons (see above, section “The
Mushroom Bodies”) and chemosensory local interneurons [75,83,95]. The latter link the
chemosensory glomeruli and synapse with the receptor neurons and projection neurons.
The chemosensory glomeruli in C. cancroides are innervated by axons from the ventral
cortex of the pedipalpal neuromere, which we interpret as chemosensory local interneurons
(Figure 4I).

4.3. The Layered Neuropil Represents a First Integration Center for Mechanosensory Cues

In Mandibulata, the mechanosensory neuropils associated with the first antennae are
characterized by a deutocerebral bilaterally paired neuropil, and they are clearly separated
from deutocerebral chemosensory centers. These deutocerebral mechanosensory neuropils
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often show a striate or palisade shape and contralateral connections (e.g. [75,88,96]). In
Myriapoda, this neuropil has been termed masse lamelleuse [97] and accordingly corpus
lamellosum [88,98].

Additionally, mechanosensory integration centers typically show a somatotopic in-
nervation pattern in Mandibulata (e.g., Myriapoda: [88,99]; Crustacea: [100,101]; and
Hexapoda: [102–104]). The position of the sensilla on the body surface is reflected by its
target region in the mechanosensory neuropil. Similarly, a topographic projection pattern
of mechanosensory afferents has been demonstrated in the spider Cupiennius salei [105–107]
and the scorpion Heterometrus fulvipes [108]. Based on these structural similarities (layered
arrangement, topographic innervation pattern), we interpret the layered neuropil in the
pedipalpal neuromere of C. cancroides as a mechanosensory integration center.

5. Conclusions

The data presented in this contribution give the first morphological evidence for a
sensory system related to the pedipalps of pseudoscorpions, which resembles the general
appearance of the mechano- as well as chemosensory pathway associated with the first
antennae in Mandibulata. Due to its elaborated equipment with sensory sensilla and the
associated sensory neurons, the pedipalps can clearly be classified as the most important
sensory organ in pseudoscorpions.

Chemosensory systems within Arachnida show very similar arrangements of neu-
ropils, but have evolved in different body regions, which precludes homology of these
structures. In fact, the similarities in the arrangement of chemosensory pathways of differ-
ent evolutionary origin, for example, the formation of glomerular structures, have been
interpreted as functional prerequisites for this sensory modality (e.g. [51–53,83]).

However, it is still unclear which chemical cues are relevant. Although several (mostly
anecdotal) observations support involvement of chemosensory cues in pseudoscorpion
ecology, scientific evidence is mostly missing [109]. Along these lines, it remains unclear to
which extent pseudoscorpions detect airborne signals or depend on contact-chemoreception.
Electrophysiological approaches combined with behavioral assays as well as a description
of the morphology of the chemosensory sensilla on the pedipalps will help to answer
these questions.
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