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Simple Summary: Redbay ambrosia beetle (RAB), a wood-borer native to Southeast Asia, was first
detected in North America in 2002 in Georgia, USA. The beetle carries a fungal symbiont that causes
laurel wilt, a lethal disease of trees in the family Lauraceae. RAB is now established in 12 southeastern
states where laurel wilt has caused widespread mortality of native forest trees, including redbay,
swampbay, and silkbay. In Florida, laurel wilt also impacts avocado, but in contrast to the situation in
forests, RAB is detected at very low levels in affected groves. Other species of ambrosia beetle have
now acquired the fungal pathogen and contribute to the spread of laurel wilt. To better understand
the beetle communities in different ecosystems exhibiting laurel wilt, parallel trapping tests were
conducted in an avocado grove and a swampbay forest in Florida. Traps were baited with ethanol
lures (the best general attractant for ambrosia beetles), essential oil lures (the best attractants for
RAB), and combinations of these lures, resulting in captures of 20 species. This study (1) documents
differences in beetle diversity and population levels at the two sites, and (2) identifies the best lures
or lure combinations for detection of different beetle species.

Abstract: Redbay ambrosia beetle, Xyleborus glabratus, is an invasive wood-boring pest first detected
in the USA in 2002 in Georgia. The beetle’s dominant fungal symbiont, Harringtonia lauricola, causes
laurel wilt, a lethal disease of trees in the Lauraceae. Over the past 20 years, X. glabratus and
laurel wilt have spread to twelve southeastern states, resulting in high mortality of native Persea
species, including redbay (P. borbonia), swampbay (P. palustris), and silkbay (P. humilis). Laurel wilt
also threatens avocado (P. americana) in south Florida, but in contrast to the situation in forests,
X. glabratus is detected at very low levels in affected groves. Moreover, other species of ambrosia
beetle have acquired H. lauricola and now function as secondary vectors. To better understand the
beetle communities in different ecosystems exhibiting laurel wilt, parallel field tests were conducted in
an avocado grove in Miami-Dade County and a swampbay forest in Highlands County, FL. Sampling
utilized ethanol lures (the best general attractant for ambrosia beetles) and essential oil lures (the best
attractants for X. glabratus), alone and in combination, resulting in detection of 20 species. This study
documents host-related differences in beetle diversity and population levels, and species-specific
differences in chemical ecology, as reflected in efficacy of lures and lure combinations.

Keywords: chemical ecology; essential oil lures; ethanol lures; Euwallacea perbrevis; invasive species;
kairomones; Persea americana; Persea palustris; pest monitoring; Xyleborus glabratus

1. Introduction

Laurel wilt is a systemic vascular disease of trees and shrubs in the family Lauraceae
caused by the fungus Harringtonia lauricola T.C. Harr., Fraedrich & Aghayeva (Ophiosta-
matales: Ophiostomataceae) [1,2] (previously Raffaelea lauricola [3]). Harringtonia lauricola
is a nutritional fungal symbiont associated with the wood boring redbay ambrosia beetle,

Insects 2022, 13, 971. https://doi.org/10.3390/insects13110971 https://www.mdpi.com/journal/insects

https://doi.org/10.3390/insects13110971
https://doi.org/10.3390/insects13110971
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/insects
https://www.mdpi.com
https://orcid.org/0000-0003-0045-1074
https://orcid.org/0000-0003-2291-1844
https://orcid.org/0000-0003-4425-0733
https://doi.org/10.3390/insects13110971
https://www.mdpi.com/journal/insects
https://www.mdpi.com/article/10.3390/insects13110971?type=check_update&version=3


Insects 2022, 13, 971 2 of 15

Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae) [4]. Conidia of the
fungus are housed inside specialized cuticular pouches called mycangia located at the base
of the mandibles [5] and female beetles inoculate their brood galleries with these conidia
during colonization of host trees [6]. Beetle larvae and adults feed directly on H. lauricola
not the host wood itself [6], and the developing H. lauricola fungus does not directly kill the
host tree.

Mortality from laurel wilt disease results from the host defensive responses that at-
tempt to restrict the movement of H. lauricola [7], with parenchymal tyloses ultimately
blocking the xylem vessels, impeding water transport, and leading to tree death [8]. In the
USA laurel wilt is particularly lethal to trees in the genus Persea and documented suscepts in-
clude redbay, [Persea borbonia (L.) Spreng.] [5,9], swamp bay [P. palustris (Raf.) Sarg.] [10,11],
silkbay (P. humilis Nash) [12], and avocado (P. americana Mill.) [13]. The disease is less severe,
though may still cause wilting and death, in other genera, including sassafras [Sassafras
albidum (Nutt.) Nees] [10,11], California bay laurel [Umbellularia californica (Hook. & Arn.)
Nutt.] [1], northern spicebush [Lindera benzoin (L.)] [5,14], pondberry [L. melissifolia (Walter)
Blume] [15], pondspice [Litsea aestivalis (L.) Fern.] [15,16], bay laurel (Laurus nobilis L.) [17],
Gulf licaria, [Licaria triandra (Sw.) Kosterm.] [18], camphor tree [Cinnamomum camphora (L.)
J. Presl.] [19,20], and lancewood [Nectandra coriacea (Sw.) Griseb.] [10,11].

The redbay ambrosia beetle is native to Southeast Asia [21] and was first detected
in North America in Port Wentworth, Georgia, USA in 2002 [22,23] as a single introduc-
tion event [4]. By 2003 laurel wilt was detected in redbay forests of Georgia and South
Carolina [6], and since then laurel wilt has spread rapidly throughout the Atlantic and
Gulf coastal plains [1,20,24–29]. As of April 2022 laurel wilt has been detected in 12 states
and has killed an estimated 300,000 redbay trees [4], with greater than 90 percent tree-loss
reported in some forested areas of the USA [5,30–33]. Additionally, laurel wilt is currently
a threat to the $13.7 million dollar avocado industry in Florida [34] and has killed over
200,000 commercial trees since its introduction into Miami-Dade County in 2010 [13,35–39].
Although laurel wilt is prevalent in the commercial avocado orchards of south Florida, X.
glabratus adults are rarely captured or detected in this agrosystem [40–43].

The absence of significant X. glabratus populations in avocado suggests that alter-
native ambrosia beetle species have acquired H. lauricola through the lateral transfer of
the fungus from X. glabratus [44–47]. Typically, each species of ambrosia beetle is asso-
ciated with one or two primary fungal symbionts that are transmitted vertically to their
progeny [46,48–50], and the progeny acquire these symbionts from their natal galleries
while they feed and develop on these fungi. Within a host tree several different species of
ambrosia beetles can breed sympatrically [51], providing an environment where beetles
can acquire the fungal symbionts from other species. Although X. glabratus is still regarded
as the most efficient vector, H. lauricola has been recovered from nine additional ambrosia
beetle species in Florida, including Ambrosiodmus lecontei Hopkins, Xyleborinus andrewesi
(Blandford), Xyleborinus gracilis (Eichhoff), Xyleborinus saxesenii (Ratzeburg), Xyleborus affinis
Eichhoff, Xyleborus bispinatus Eichhoff, Xyleborus ferrugineus (Fabricius), Xyleborus volvulus
(Fabricius), and Xylosandrus crassiusculus (Motschulsky) [44–47,52]. Of these species, it has
been demonstrated under greenhouse conditions that X. bispinatus [52], X. volvulus, and
X. ferrugineus [44] can transmit H. lauricola to healthy avocado trees and induce laurel wilt.
Once established in a susceptible environment, laurel wilt is logistically difficult and labor
intensive to manage [53], highlighting the importance of effective monitoring for early
detection of the beetle vectors.

Most ambrosia beetles function ecologically as decomposers, colonizing stressed or dy-
ing trees [51], and ethanol-based lures are used in monitoring and surveillance programs for
these species [54]. Ethanol is a natural byproduct of dead and fermenting wood or stressed
tree tissues [54], and dispersing females utilize it as a kairomone for location of suitable
hosts [55]. In contrast, X. glabratus can function as a primary colonizer, attacking healthy
unstressed trees; consequently, it is not attracted to ethanol-based lures [9,56,57]. Instead,
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female X. glabratus are attracted to volatile monoterpenes and sesquiterpenes emitted from
host wood and utilize these odor cues to find suitable trees for colonization [56,58–60].

Early field trapping studies relied on wounded redbay bolts to attract X. glabratus [9],
and steam distillation of redbay wood and bark indicated high levels of two sesquiterpenes,
α-copaene and calamenene. Subsequent field trials showed that manuka and phoebe essen-
tial oils, also high in these sesquiterpenes, were as attractive as redbay bolts to X. glabratus
in South Carolina and Georgia [56]. However, in Florida field trials, manuka and phoebe oil
lures captured many non-target Scolytinae, and manuka oil lures had a very short field life
and were not competitive with Persea wood [58]. Additionally, commercial production of
phoebe oil was discontinued due to depletion of the source trees in Brazil, thereby spurring
research to identify an alternative attractant. In a comparison of seven essential oils, cubeb
oil, naturally high in α-copaene, α-humulene, and β-caryophyllene, was identified as
an improved attractant for X. glabratus [57]. In a concurrent study evaluating attraction
and boring preferences of X. glabratus to wood from nine lauraceous species, emissions
of α-cubebene, α-copaene, α-humulene, and calamenene were positively correlated with
female attraction, and electroantennography confirmed antennal chemoreception of these
host kairomones [61].

The most attractive synthetic lure currently used in monitoring and surveillance pro-
grams for X. glabratus consists of a distilled essential oil product enriched to contain 50%
content of (-)-α-copaene [62,63]; its predecessor, the cubeb oil lure, contains a lower per-
centage of α-copaene, but is rich in several other sesquiterpenes. The current standard
for monitoring overall ambrosia beetle populations consists of ethanol-based lures. How-
ever, little information exists about the efficacy of essential oil lures for detection of other
ambrosia beetle species. Likewise, little is known about potential interactions between
essential oils (sesquiterpenes) and ethanol. We hypothesize that many species may utilize
both semiochemicals as part of their host location process: terpenoid emissions to assess
the suitability of a host tree species, and ethanol emissions to determine the level of stress
or morbidity of that host. In advance of the continued spread of X. glabratus into the
western US and Mexico, where there are 120 reported species within the Lauraceae [64]
and a $2.4 billion dollar avocado industry [65], the current work was initiated to better
understand the attractiveness of essential oil lures, alone and in combination with ethanol,
to ambrosia beetle communities in both agricultural (avocado grove) and forest (swampbay
stand) ecosystems impacted by laurel wilt in Florida.

2. Materials and Methods
2.1. Lures

Sampling lures consisted of three commercial formulations: (1) low-release ethanol
sleeve, 15 mL in a 40 cm long white plastic tube (Contech Enterprises Inc., Victoria, BC,
Canada), (2) cubeb bubble lure, and (3) 50% α-copaene bubble lure, each containing 2 mL
essential oil product in a 29-mm diam. clear plastic dispenser (products #3087 and #3302,
respectively; Synergy Semiochemicals Corp., Delta, BC, Canada). In addition, one treatment
used host wood as bait, consisting of bolts (42 cm length, 10 cm width) of silkbay (Persea
humilis Nash) collected from Archbold Biological Station, Lake Placid, FL. At the time of bolt
collection, the cut ends were wrapped in Parafilm M (Bemis Flexible Packaging, Neenah,
WI, USA) to minimize desiccation and loss of volatile terpenoids prior to deployment in
field tests.

2.2. Trap Design

Traps were constructed using two white sticky panels (23 × 28 cm, Scentry wing trap
bottoms; Great Lakes IPM, Vestaburg, MI, USA) oriented back-to-back and suspended from
an S-shaped wire hook. Ethanol sleeves were attached to the wire stem and then secured
along the side of the panel to minimize contact with the adhesive surface (Figure 1A,B); bub-
ble lures were clipped to the wire just above the sticky cards (Figure 1B). With silkbay, a wire
loop was stapled to the top of the bolt, the bolt was hung vertically from the hook, and the
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sticky panels stapled to the bottom of the bolt (Figure 1C). The final assembly was topped
with an inverted plastic plate to provide a protective covering. In previous field trials, this
sticky trap design has been shown to be more effective for detection of X. glabratus [66] and
other Scolytinae [41] than comparably baited funnel traps or cross-vane traps.
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Figure 1. Sticky trap designs used to sample bark and ambrosia beetle communities at sites with
laurel wilt. Representative photos depicting traps baited with (A) a low-release ethanol sleeve, (B) a
combination of ethanol and essential oil lure, and (C) a bolt of host wood (silkbay, Persea humilis).
Traps in panel (A) were deployed in an avocado grove in Miami-Dade County, FL; traps in panels
(B,C) were deployed in a swampbay forest in Highlands County, FL.

2.3. Field Tests

Parallel 7-week field tests were conducted at two Florida sites with laurel wilt. The first
test was deployed in a commercial avocado grove in the Redland agricultural area of Miami-
Dade County (25◦35.530′ N, 80◦27.509′ W), and ran from 3 February to 24 March 2015. The
second test was conducted from 11 March to 29 April 2015 on a private ranch with ample
woodlands containing swampbay trees in Highlands County (27◦03.026′ N, 81◦20.159′

W). Both tests evaluated captures of bark and ambrosia beetles with seven treatments:
α-copaene, cubeb, ethanol, α-copaene + ethanol, cubeb + ethanol, silkbay wood, and a
non-baited control trap. At test deployment, to promote release of host volatiles, a thin
layer was cut off the ends of each silkbay bolt using a battery-operated reciprocating saw
(Craftsman; Sears, Roebuck and Co., Chicago, IL, USA).

Both tests followed a randomized complete block design, with five replicate blocks.
Each block was comprised of a row of traps hung 1–1.5 m above ground [67] in shaded
locations. There was a minimum spacing of 10 m between adjacent traps within a row, and
30 m spacing between replicate rows. Traps were serviced weekly; at each sampling date,
sticky panels were collected and replaced, a thin layer removed from each silkbay bolt, and
traps rotated sequentially within each row. At the end of the 7-week tests, each treatment
had rotated through each of the seven field positions within each row, thereby minimizing
positional effects on beetle captures.

Samples were sorted under a stereo microscope in the laboratory (swampbay collec-
tions at the Subtropical Horticulture Research Station, Miami, FL; avocado collections at
the University of Florida Tropical Research and Education Center, Homestead, FL, USA).
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All specimens of Scolytinae and Platypodinae were removed from the sticky panels, soaked
in histological clearing agent (Histo-Clear II; National Diagnostics, Atlanta, GA, USA) to
remove adhesive, and stored in 70% ethanol. Except for Hypothenemus spp. (the pygmy
wood borers), all beetles were identified to species level according to previously described
methods [23,68,69].

2.4. Statistical Analysis

One-way analysis of variance (ANOVA) was used to test the effect of treatment on
mean field captures (beetles/trap/week). Significant ANOVAs were then followed by
mean separation with Tukey HSD test. When necessary, data were either square-root
(x + 0.05)-transformed or log (x + 1)-transformed to stabilize variance prior to analysis.
Analyses were performed using SigmaPlot 14.0 (Systat Software Inc., San Jose, CA, USA).
Results are presented as mean ± SEM; probability was considered significant at a critical
level of α = 0.05.

3. Results

The combined sampling from both field tests resulted in the detection of 20 species of
bark and ambrosia beetles, with the majority of captures representative of the scolytine tribe
Xyleborini (Table 1). At the swampbay site, a total of 2314 specimens were collected. The
most abundant beetles were Xyleborinus andrewesi which comprised 49.2% of the captures,
followed by Xyleborinus saxesenii at 20.5% and Xyleborus glabratus at 11.0%. Equivalent
trapping efforts in the avocado grove yielded 52,754 specimens. Xyleborinus saxesenii pre-
dominated in the avocado grove, accounting for 88.2% of the captures. Other species caught
in high numbers (>400 specimens) included Xylosandrus crassiusculus (6.5%), Hypothenemus
spp. (1.6%), Xyleborus affinis (1.2%), Xyleborus volvulus (Fabricius) (1.1%), and Euwallacea
perbrevis (Schedl) (0.8%). The latter species and Theoborus ricini (Eggers) were only detected
at the avocado site. In addition, X. glabratus and X. andrewesi were very minor components
of the avocado beetle community, represented by only 5 and 2 captures, respectively, over
the course of the 7-week test.

In the swampbay test (Figure 2), there were significant differences in mean captures
of bark and ambrosia beetles (all species combined) among the treatments (F = 28.094;
df = 6,28; p < 0.001). Traps baited with α-copaene + ethanol captured the highest number
of beetles, and these were significantly higher than captures with ethanol alone. Captures
with cubeb + ethanol were comparable to those of α-copaene + ethanol, but not greater
than captures with ethanol alone. Mean captures with α-copaene alone, cubeb alone, and
silkbay bolts were not significantly different than those of the non-baited control trap.

Analysis of captures of the three most abundant species at the swampbay site also
indicated significant differences among treatments: X. andrewesi (F = 53.844; df = 6,28;
p < 0.001), X. saxesenii (F = 32.324; df = 6,28; p < 0.001), and X. glabratus (F = 24.592; df = 6,28;
p < 0.001). With X. andrewesi (Figure 3A), highest captures were observed in traps baited
with α-copaene + ethanol and with cubeb + ethanol, and these captures were significantly
greater than captures with ethanol alone or with any other treatment. Traps baited with
ethanol alone caught more than the control, but this was not the case with α-copaene alone,
cubeb alone, or silkbay bolts. With X. saxesenii (Figure 3B), equally high numbers were
captured with all treatments that contained ethanol (i.e., ethanol alone, α-copaene + ethanol,
and cubeb + ethanol); these numbers were significantly higher than those observed with any
other treatment. In contrast, traps baited with ethanol alone captured the lowest number
of X. glabratus (Figure 3C). Highest captures of this species were obtained with α-copaene
alone, and the combination of α-copaene + ethanol resulted in a significant decrease in
captures. Mean numbers caught with α-copaene + ethanol, cubeb alone, cubeb + ethanol,
and silkbay bolts were all equivalent, and significantly greater than ethanol alone or the
non-baited control trap.



Insects 2022, 13, 971 6 of 15

Table 1. Total captures of bark and ambrosia beetles (Coleoptera: Curculionidae) in parallel field
tests at two Florida sites with laurel wilt: a swampbay forest in Highlands County and a commercial
avocado grove in Miami-Dade County.

Species Swampbay Avocado

Subfamily Scolytinae
Tribe Xyleborini

Ambrosiodmus devexulus (Wood) 21 51
Ambrosiodmus lecontei Hopkins * 77 54
Euwallacea perbrevis (Schedl) 0 402
Premnobius cavipennis Eichhoff 1 40
Theoborus ricini (Eggers) 0 19
Xyleborinus andrewesi (Blandford) * 1139 2
Xyleborinus gracilis (Eichhoff) * 16 42
Xyleborinus saxesenii (Ratzeburg) * 474 46,537
Xyleborus affinis Eichhoff * 23 653
Xyleborus bispinatus Eichhoff * 86 64
Xyleborus ferrugineus (Fabricius) * 2 2
Xyleborus glabratus Eichhoff * 254 5
Xyleborus volvulus (Fabricius) * 10 566
Xylosandrus compactus (Eichhoff) 36 11
Xylosandrus crassiusculus (Motschulsky) * 21 3425

Tribe Cryphalini
Cryptocarenus heveae (Hagedorn) 1 0
Hypothenemus spp. 91 863

Tribe Corthylini
Corthylus papulans Eichhoff 44 4
Monarthrum mali (Fitch) 1 0

Subfamily Platypodinae
Euplatypus parallelus (Fabricius) 17 14

* Species from which Harringtonia lauricola, causal agent of laurel wilt, has been isolated [47].
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Figure 2. Mean (±SEM) captures of bark and ambrosia beetles (all species summed) in a 7-wk
field test conducted in a swampbay forest with laurel wilt, Highlands County, Florida. Treatments
contained α-copaene lures (cop), cubeb oil lures (cub), low-release ethanol lures (eth), combinations
of essential oil lures and ethanol lures (cop + eth; cub + eth), bolts of silkbay (Persea humilis), and
non-baited traps (control). Bars topped with the same letter are not significantly different (Tukey
HSD mean separation, p < 0.05).
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County, Florida. Treatments consisted of white sticky panel traps baited with 50% α-copaene lures
(cop), cubeb oil lures (cub), low-release ethanol lures (eth), combinations of essential oil lures and
ethanol lures (cop + eth; cub + eth), bolts of silkbay (Persea humilis), and non-baited traps (control).
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In the avocado field test (Figure 4), there were significant differences in mean captures
of bark and ambrosia beetles (all species combined) among the seven treatments (F = 30.394;
df = 6,28; p < 0.001). Highest captures were obtained with traps that included ethanol
(i.e., ethanol alone, α-copaene + ethanol, and cubeb + ethanol), and these numbers were
significantly greater than those observed with any other treatment.
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Figure 4. Mean (±SEM) captures of bark and ambrosia beetles (all species summed) in a 7-wk
field test conducted in a commercial avocado grove with laurel wilt, Miami-Dade County, Florida.
Treatments consisted of white sticky panel traps baited with 50% α-copaene lures (cop), cubeb oil
lures (cub), low-release ethanol lures (eth), combinations of essential oil lures and ethanol lures
(cop + eth; cub + eth), bolts of silkbay (Persea humilis), and non-baited traps (control). Bars topped
with the same letter are not significantly different (Tukey HSD mean separation, p < 0.05).

Analysis of captures by species also indicated significant differences among treat-
ments at the avocado site: X. saxesenii (F = 30.558; df = 6,28; p < 0.001), X. crassiusculus
(F = 30.380; df = 6,28; p < 0.001), Hypothenemus spp. (F = 11.075; df = 6,28; p < 0.001),
X. affinis (F = 13.364; df = 6,28; p < 0.001), X. volvulus (F = 15.682; df = 6,28; p < 0.001), and
E. perbrevis (F = 29.072; df = 6,28; p < 0.001). Consistent with the test in swampbay, captures
of X. saxesenii (Figure 5A) were equally high with all treatments that contained ethanol
(alone or in combination with α-copaene or cubeb oil), and were significantly higher than
captures with all other treatments. With X. crassiusculus (Figure 5B), highest numbers
were caught with cubeb + ethanol, which were significantly higher than ethanol alone,
but not greater than captures with α-copaene + ethanol. Captures with α-copaene alone,
cubeb alone, and silkbay bolts were no different than those of the non-baited control. With
Hypothenemus spp. (Figure 5C), highest captures were obtained with all treatments that
included ethanol (alone or in combination with essential oil lures), and captures were
significantly greater than those with all other treatments. With X. volvulus (Figure 5D), traps
baited with cubeb + ethanol captured the highest numbers, which were significantly greater
than ethanol alone, α-copaene + ethanol, or other treatments. With X. affinis (Figure 5E),
results were similar to those observed with X. volvulus; cubeb + ethanol captured the
highest numbers, which were significantly greater than ethanol alone; however, not greater
than those obtained with α-copaene + ethanol. In contrast to the other dominant species
present at the avocado site, highest numbers of E. perbrevis (Figure 5F) were obtained with
α-copaene alone, and these numbers were significantly higher than captures with any other
treatment. Captures with ethanol alone were no different than those of the non-baited
control, and addition of ethanol to α-copaene resulted in a significant reduction in captures.
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Figure 5. Mean (±SEM) captures of (A) Xyleborinus saxesenii, (B) Xylosandrus crassiusculus,
(C) Hypothenemus spp., (D) Xyleborus volvulus, (E) Xyleborus affinis, and (F) Euwallacea perbrevis, the
most abundant species sampled in an avocado grove with laurel wilt, Miami-Dade County, Florida.
Treatments consisted of white sticky panel traps baited with 50% α-copaene lures (cop), cubeb oil
lures (cub), low-release ethanol lures (eth), combinations of essential oil lures and ethanol lures
(cop + eth; cub + eth), bolts of silkbay (Persea humilis), and non-baited traps (control). Bars topped
with the same letter are not significantly different (Tukey HSD mean separation, p < 0.05). Please note
differences in the scale of the y-axis.

4. Discussion

Host-derived volatile cues play an important role in the host selection and colonization
process of ambrosia beetles [55,57,60,70–73]. Female beetles navigate through complex
odor environments containing both host and non-host volatile compounds [74,75], and
rely on a suite of compounds as ‘volatile signatures’, not single compounds alone, to
identify suitable hosts from non-hosts [57,61,70,73,76,77]. For example, ambrosia beetles
that colonize coniferous trees are generally attracted to volatile conifer terpenoids [51], but
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can detect, and are deterred by, some volatile angiosperm odors [78]. Understanding the
host odors, or volatile signatures, used by ambrosia beetles to find suitable hosts can inform
the development of attractive lures for monitoring species composition and population
levels in specific environments. Further, understanding the temporal distribution and
spatial patterns for a specific pest species are important when developing appropriate
monitoring programs for a target pest [79].

In the current trapping study, beetle assemblages at the swampbay and avocado
sites varied both in their species composition and population levels. Of particular note,
captures of scolytine beetles were more than 20 times higher in the avocado grove, a large
monoculture of trees exhibiting various stages of wilt-induced stress. Xyleborinus saxesenii
predominated at the avocado site, comprising 88% of the captures, and X. andrewesi was the
most abundant species in swampbay, making up 49% of the captures. Xyleborinus andrewesi
was first detected in North America in 2010 in Lee County, FL [80] and is now established
throughout the state. Traps baited with α-copaene + ethanol and cubeb + ethanol captured
the most beetles overall in swampbay, and in avocado equally high numbers of total
beetle captures were recovered from traps baited with ethanol, α-copaene + ethanol, and
cubeb + ethanol. Theoborus ricini and E. perbrevis (previously E. nr. fornicatus) were captured
exclusively at the avocado site. Euwallacea perbrevis is the tea shot-hole borer, vector of
Fusarium dieback, another vascular disease of avocado now prevalent in south Florida [81].
Only 91 of the total 953 Hypothenemus spp. were captured at the avocado site. Although not
identified to species level in this study, Hypothenemus members likely include eight species
identified in a previous south Florida survey [82].

The highest numbers of X. glabratus were captured in traps baited with the α-copaene
lure at the swampbay location, and very few were captured at the avocado site. This
confirms previous trapping studies showing that the enriched α-copaene lure is the most
attractive lure available for X. glabratus [62,63]. Like X. glabratus, E. perbrevis can colonize
apparently healthy trees, and was most attracted to traps baited with the α-copaene lure.
The addition of α-copaene to standard quercivorol (p-menth-2-en-1-ol, a fungal volatile)
lures increases captures of E. perbrevis compared to quercivorol alone [42], but in the current
study, traps baited with α-copaene alone captured significant numbers of E. perbrevis.
Addition of ethanol to the copaene lure resulted in a significant reduction in captures of
both X. glabratus and E. perbrevis, indicating a repellent effect on these major pest species.
With X. andrewesi, low numbers were captured with ethanol alone or essential oils alone;
however, both combinations of essential oil plus ethanol resulted in synergistic attraction
and significantly higher captures, suggesting this species relies on both semiochemicals
for host discrimination. Xyleborinus saxesenii captures were high with any treatment that
included ethanol, but low in traps baited with essential oil lures alone, confirming previous
results that ethanol is sufficient for detection and monitoring of X. saxesenii [83]. Similarly,
the addition of (-)-α-pinene, a host-derived monoterpene emitted by some pine trees [84],
to traps baited with ethanol does not increase captures of X. saxesenii compared to ethanol
alone [85,86]; however, increasing release-rates of ethanol results in increased X. saxesenii
captures [87].

Traps baited with ethanol and cubeb + ethanol captured the most Hypothenemus
spp. Combining α-copaene with ethanol slightly reduced Hypothenemus spp. captures
compared to ethanol alone, suggesting that α-copaene may function as a non-host odor
for Hypothenemus spp. Cubeb + ethanol baited traps captured greater numbers of X.
crassiusculus, X. affinis, and X. volvulus than either cubeb or ethanol alone, consistent
with previous findings that cubeb alone is not attractive to these species [83]. Cubeb +
ethanol baited traps also captured more X. crassiusculus, X. affinis, and X. volvulus compared
to traps baited with α-copaene + ethanol, suggesting that volatile sesquiterpenes other
than α-copaene (i.e., α-cubebene, α-humulene, and calamenene [83]) may interact with
ethanol resulting in increased attraction. Cubeb + ethanol baited traps also captured large
numbers of Scolytinae (species not identified) in previous trapping studies in Florida [57],
and the current field results may provide information about the assemblage of species
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captured in that study. Ethanol baited traps are commonly used to capture X. affinis and
X. crassiusculus [87–90], and the addition of (-)-α-pinene to ethanol baited traps increased
trap captures of X. affinis in Florida compared to ethanol alone [85]; but the addition of
(-)-α-pinene to ethanol baited traps decreased trap capture of X. crassiusculus compared to
ethanol alone [85].

The most abundant species of Scolytinae captured in this study are not native to North
America. Xyleborus andrewesi is native to the Old World tropics [91], X. affinis is native to
South America [23,51], X. volvulus is native to South America and the Caribbean [51], and
X. saxesenii and X. crassiusculus are native to Eurasia [51]. Invasive pests and pathogens
can devastate native forest and agricultural systems leading to rapid environmental degra-
dation [4,92]. Laurel wilt is currently altering the structure of affected native plant and
agricultural communities in the southeastern USA and poses an imminent threat to other
areas that have susceptible laurel species. High capture rates of X. andrewesi, X. saxesenii,
and X. glabratus at the swampbay site were associated with the rapid spread of laurel wilt
in natural forest ecosystems. Low capture rates of X. glabratus at the avocado site and
high captures of X. saxesenii, X. crassiusculus, X. affinis, and X. volvulus were observed in
laurel wilt affected avocado orchards in Florida. Xyleborus bispinatus, the species most
frequently and persistently associated with H. lauricola in avocado systems [93], was found
in relatively low numbers at both the avocado and swampbay sites. However, in another
field study using ethanol-baited traps, X. bispinatus was one of the dominant ambrosia
beetles in a Florida avocado grove [41]. Information about the diversity and population
levels of these non-X. glabratus Xyleborini are thus important for laurel wilt management
in both forest and agricultural environments.

Identifying the best lures, or lure combinations, for different ambrosia beetle species
may aid the development of predictive risk models, and optimize current monitoring
lures, for future invasions into naïve and susceptible landscapes. This trapping study
provides further evidence to support the continued use of traps baited with enriched
α-copaene lures for the detection and monitoring of the primary vector of laurel wilt,
X. glabratus. Additionally, the beetle assemblages captured in this study provide evidence
that the best lure combination for X. andrewesi, X affinis, X. volvulus, and X. crassiusculus
is a combination of cubeb + ethanol; and that ethanol alone is sufficient for attracting and
capturing X. saxesenii.

5. Conclusions

In parallel trapping tests directly comparing the communities of bark and ambrosia
beetles resident in forest and agricultural ecosystems with laurel wilt, differences were
observed in the species diversity and abundance. Total numbers captured in an avocado
grove were more than 20 times greater than those intercepted in a swampbay forest. The
dominant species detected in swampbay were X. andrewesi, X. saxesenii, and X. glabratus;
major species in avocado included X. saxesenii, X. crassiusculus, Hypothenemus spp., X. affinis,
and X. volvulus. Except for Hypothenemus (a group of bark beetles), all these beetles can
vector H. lauricola and contribute to the spread of laurel wilt. Although Scolytinae are
typically regarded as either primary colonizers (attracted to host terpenoids) or secondary
colonizers (i.e., decomposers; attracted to ethanol), results of this study suggest that there
is a continuum across this taxon. Standard ethanol lures were sufficient for detection of
X. saxesenii and Hypothenemus spp., and α-copaene lures were sufficient for X. glabratus and
E. perbrevis. However, species like X. andrewesi, X. affinis, X. volvulus, and X. crassiusculus
were most attracted when ethanol and cubeb oil were presented in tandem. This behavior
indicates that some ambrosia beetles utilize multiple kairomones for reliable host location.
Improvement in pest detection programs may be achieved through novel combinations of
attractants, and optimization of release rates, tailored for individual target species.
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