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Simple Summary: Pest control mainly relies on the use of chemical insecticides, whereas insecticide
resistance is problematic for the effective management of insect pests. Sulfoxaflor is a new sulfoximine
insecticide. The wheat aphid Sitobion miscanthi is one of the most important pests adversely affecting
wheat cultivation. We obtained an S. miscanthi field population highly resistant to sulfoxaflor, despite
this insecticide not having been widely and continuously used for control of wheat aphids in China.
The understanding of the cross-resistance or multi-resistance spectrum and fitness cost caused by
insecticide resistance is important for selecting suitable insecticides to integratively manage insecticide
resistance. Our findings suggest that the S. miscanthi population that is highly resistant to sulfoxaflor
had moderate resistance to two pyrethroid insecticides, which was accompanied by severely adverse
biological fitness. The study provides valuable information regarding the rational use of pesticides
and may be relevant for exploring new mechanisms of insecticide resistance.

Abstract: Sulfoxaflor belongs to a new class of insecticides that is effective against many sap-feeding
pests. In this study on Sitobion miscanthi (Takahashi) (i.e., the predominant wheat pest), a highly
sulfoxaflor-resistant (SulR) population was obtained from a field. Its resistance to the other seven
insecticides and its biological fitness were analyzed using a leaf-dip method and a two-sex life table
approach, respectively. Compared with the relatively susceptible (SS) population, the SulR population
was highly resistant to sulfoxaflor, with a relative insecticide resistance ratio (RR) of 199.8 and was
moderately resistant to beta-cypermethrin (RR = 14.5) and bifenthrin (RR = 42.1) but exhibited low
resistance to chlorpyrifos (RR = 5.7). Additionally, the SulR population had a relative fitness of 0.73,
with a significantly prolonged developmental period as well as a lower survival rate and poorer
reproductive performance than the SS population. In conclusion, our results suggest that S. miscanthi
populations that are highly resistant to sulfoxaflor exist in the field. The possibility that insects may
develop multi-resistance between sulfoxaflor and pyrethroids is a concern. Furthermore, the high
sulfoxaflor resistance of S. miscanthi was accompanied by a considerable fitness cost. The study
data may be useful for improving the rational use of insecticides and for exploring novel insecticide
resistance mechanisms.
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1. Introduction

Sulfoxaflor is a new sulfoximine insecticide that is highly effective against a variety
of sap-feeding insect pests [1]. It affects the nicotinic acetylcholine receptors in the insect
nervous system, but its binding site differs from that of other insecticides, including
neonicotinoids, spinosyns, and nereistoxin analogs [2]. Additionally, sulfoxaflor was
designated as the only Group 4C new active ingredient by the Insecticide Resistance Action
Committee [3]. Moreover, sulfoxaflor is a nicotinic acetylcholine receptor agonist that
induces hyperactivity and paralysis in insects, resulting in death [4]. It can be used to control
various insect pests (e.g., Aphidoidea, Miridae, Thripoidea, and Delphacidae species) that
infest wheat, cotton, rice, fruit trees, and other crops, while also controlling pests resistant
to neonicotinoid, organophosphate, pyrethroid, and carbamate insecticides [2].

Pest control measures typically involve the widespread use of chemical insecticides,
which often leads to insect populations developing resistance to those insecticides. Earlier
research revealed that sulfoxaflor performs equally well against Nilaparvata lugens and
Bemisia tabaci populations susceptible and resistant to imidacloprid in the laboratory [1], but
different field populations of N. lugens and Aphis gossypii have been identified with low resis-
tance to sulfoxaflor [5,6]. In addition, a B. tabaci strain resistant to pyrethroid (deltamethrin)
and organophosphate (prophosphate) insecticides has not shown cross-resistance to sul-
foxaflor, and there is no cross-resistance to sulfoxaflor and neonicotinoids (imidacloprid)
in Trialeurodes vaporariorum [7]. However, an N. lugens strain resistant to sulfoxaflor in the
laboratory reportedly exhibited considerable cross-resistance to dinotefuran, nitenpyram,
thiamethoxam, clothianidin, imidacloprid, and cycloxaprid, but low or no cross-resistance
to isoprocarb, etofenprox, chlorpyrifos, triflumezopyrim, and buprofezin [8].

The insecticide resistance of insect populations is usually accompanied by a fitness
cost (e.g., low survival rate, fecundity, hatching, and longevity), which may affect how
quickly insect populations develop resistance [9–11]. This fitness cost is considered to
reflect the evolution of insect resistance. Thus, thoroughly characterizing this fitness cost is
critical for developing effective insecticide resistance management strategies [12–14]. Life
table analyses have been widely used in ecological studies, including those examining the
timing of pest control procedures [15], host preferences, and insect fitness [16]. Previous
studies have examined the fitness costs of Myzus persicae, N. lugens, and A. gossypii strains
resistant to sulfoxaflor [6,8,17].

The wheat aphid Sitobion miscanthi (Fabricius) (Hemiptera: Aphididae) is one of the
most important pests adversely affecting wheat cultivation in China [18–20]. To the best of
our knowledge, sulfoxaflor has not been widely and consistently used for the long-term
control of S. miscanthi in China [21]. However, during an investigation of the resistance
levels of S. miscanthi field populations to insecticides throughout China, we detected
S. miscanthi field populations that were highly resistant to sulfoxaflor [22]. In this study,
the fitness cost of field-evolved resistance to sulfoxaflor and the resistance to multiple
insecticides were investigated using S. miscanthi populations. The study provides valuable
information regarding the rational use of pesticides and may be relevant for exploring new
mechanisms of insecticide resistance.

2. Materials and Methods
2.1. Insects and Insecticides

The field population of S. miscanthi with high resistance to sulfoxaflor (SulR) was
collected from Kunming, Yunnan province, China, in 2019 (N24◦59′58′′, E102◦33′11′′). The
sulfoxaflor-susceptible (SS) field population of S. miscanthi was collected from Hefei, Anhui
province, China, in 2019 (N31◦57′34”, E117◦11′36”). All populations were reared on wheat
seedlings (Lunxuan 987) in a climate-controlled chamber maintained at 20 ± 1 ◦C with
60 ± 10% relative humidity and a 16 h light:8 h dark photoperiod. The aphid populations
were not exposed to any pesticides.

Sulfoxaflor (96%) was supplied by Hubei Kangbaotai Fine Chemicals Co., Ltd. (Wuhan,
China), whereas imidacloprid (96%), beta-cypermethrin (95%), thiamethoxam (97%), bifen-
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thrin (97%), abamectin (95%), and chlorpyrifos (97%) were provided by Beijing Green
Agricultural Science and Technology Group Co., Ltd. (Beijing, China). Omethoate (40%,
emulsifiable concentrate) was provided by Hebei Xinxing Chemical Co., Ltd. (Baoding,
Hebei, China).

2.2. Insecticide Bioassays

The toxicity of sulfoxaflor, neonicotinoids (imidacloprid and thiamethoxam), pyrethroids
(beta-cypermethrin and bifenthrin), organophosphates (chlorpyrifos and omethoate), and
abamectin to field S. miscanthi populations was determined by performing insecticide
bioassays using a leaf-dip method [23]. The insecticides were formulated as stock so-
lutions (10,000 mg/L) with acetone and then stored at 4 ◦C. Each insecticide was di-
luted with 0.1% Tween-80 solution (prepared in water) to produce working solutions
(five concentrations), with three replicates per concentration. Controls were treated with
the 0.1% Tween-80 solution. For each insecticide concentration, at least 30 aphids were
treated. Specifically, the apterous aphids together with the leaves were immersed in the
insecticide working solutions for 3–5 s, after which they were placed on moistened filter
paper in a disposable culture dish. Aphids were incubated at 20 ± 1 ◦C with 60 ± 10%
relative humidity and a 16 h light:8 h dark photoperiod. Aphid mortality was examined
using a stereomicroscope at 24 h after the treatment. Aphids were considered dead if they
were unable to move after being touched with an anatomical needle.

2.3. Fitness Comparison

Life tables for the SulR and SS S. miscanthi populations were established using the age-
stage, two-sex life table approach [24]. For each population, 120 apterous adults that had not
reproduced were placed on fresh wheat seedlings in a Petri dish (9 cm diameter) lined with
moistened filter paper to facilitate reproduction, with one adult per dish. After 24 h, all adult
aphids were removed, and a random nymph was left in each dish. Population parameters,
including developmental time, fecundity, mortality, and longevity were analyzed daily.
During the reproductive period, the number of newborn nymphs produced by females was
recorded daily. The wheat seedlings were replaced by fresh seedlings every 3 days until all
adult aphids died. The life table experiment was performed in a greenhouse at 20 ± 1 ◦C
with 60 ± 10% relative humidity and a 16 h light:8 h dark photoperiod.

2.4. Data Analysis

The mortality data were adjusted based on the control mortality (<10%) using Abbott’s
formula. The median lethal concentrations (LC50), 95% confidence intervals, and slopes
were calculated using Data Processing System software (version 7.05) (Zhejiang University,
Hangzhou, China). The relative insecticide resistance ratio (RR) of the two S. miscanthi
populations was calculated by dividing the LC50 of the SulR population by the LC50 of the
SS population. Insecticide resistance, including multi-resistance, was classified according
to the RR as follows: RR ≤ 5 (susceptible), 5 < RR ≤ 10 (low resistance), 10 < RR ≤ 100
(moderate resistance), and RR > 100 (high resistance) [25,26].

The life table data of two S. miscanthi populations were analyzed according to age-stage,
two-sex life table theory [24,27,28]. The developmental duration, longevity, reproductive
days, fecundity, age-stage-specific survival rate (sxj), age-specific survival rate (lx), age-
specific fecundity (mx), age-specific maternity (lxmx), age-specific life expectancy (exj),
age-stage reproductive value (vxj), intrinsic rate of increase (r), finite rate of increase (λ), net
reproductive rate (R0), and mean generation time (T) were calculated using the TWOSEX-
MS Chart program [27–29]. The variance and standard error of the life table parameters
were calculated using the bootstrap procedure included in the TWOSEX-MS Chart, with
100,000 random resamplings [30–33]. The relative fitness (Rf) of the SulR population was
calculated as follows: Rf = R0 of SulR/R0 of SS [9,12]. An Rf value < 1 suggests that the
resistance of the population was accompanied by a fitness cost [34].



Insects 2023, 14, 75 4 of 10

3. Results
3.1. Field-Evolved Resistance of SulR and SS S. miscanthi Populations to Insecticides

The resistance of S. miscanthi field populations to sulfoxaflor was evaluated in a bioas-
say. The bioassay data were used to calculate the LC50 for the two populations. The
RR indicated that compared with the SS population, the SulR population was highly
resistant to sulfoxaflor (RR > 100) (Table 1). The resistance of the SulR S. miscanthi popula-
tion to the following seven insecticides was assessed: neonicotinoids (imidacloprid and
thiamethoxam), pyrethroids (beta-cypermethrin and bifenthrin), organophosphates (chlor-
pyrifos and omethoate), and abamectin. The SulR population exhibited moderate resistance
to beta-cypermethrin and bifenthrin and low resistance to chlorpyrifos (Table 1). Interest-
ingly, there was susceptibility to abamectin, imidacloprid, thiamethoxam, or omethoate
(RR < 5) (Table 1).

Table 1. Toxicity of the tested insecticides to Sitobion miscanthi field populations.

Insecticide Population N a Slope ± SE b LC50
c (95% CI d; mg/L) χ2 p-Value RR e

Sulfoxaflor SS 708 0.51 ± 0.11 1.7 (0.2–4.6) 0.26 0.88
SulR 585 0.53 ± 0.10 339.6 (138.1–1835.7) 2.30 0.32 199.8

Imidacloprid SS 542 0.40 ± 0.06 37.4 (16.0–82.5) 0.34 0.84
SulR 598 0.42 ± 0.07 70.3 (33.62–184.7) 3.10 0.21 1.9

Thiamethoxam SS 614 0.56 ± 0.06 23.3 (13.6–37.4) 6.80 0.08
SulR 567 0.67 ± 0.08 37.8 (23.8–62.9) 0.79 0.85 1.6

Beta-cypermethrin SS 605 0.63 ± 0.06 4.8 (2.5–8.0) 6.40 0.09
SulR 541 0.77 ± 0.07 69.5 (45.9–112.9) 1.00 0.80 14.5

Bifenthrin SS 587 0.66 ± 0.07 3.5 (1.7–6.0) 5.54 0.14
SulR 584 0.51 ± 0.07 147.4 (73.8–404.6) 0.69 0.88 42.1

Abamectin SS 623 0.86 ± 0.10 12.2 (8.5–17.8) 1.72 0.42
SulR 645 1.31 ± 0.15 9.8 (7.0–14.0) 0.56 0.76 0.8

Chlorpyrifos SS 595 2.28 ± 0.22 2.3 (1.9–2.8) 5.29 0.15
SulR 615 2.76 ± 0.42 13.2 (11.6–14.9) 0.37 0.54 5.7

Omethoate SS 593 1.24 ± 0.11 97.5 (7.05–140.8) 6.09 0.11
SulR 655 1.46 ± 0.15 263.4 (192.4–386.9) 0.30 0.86 2.7

a number of tested aphids; b standard error; c concentrations (mg/L) resulting in 50% dead or affected
insects after 24 h; d 95% confidence limit of the median lethal concentrations; e relative insecticide resis-
tance ratio, RR ≤ 5 (susceptible), 5 < RR ≤ 10 (low resistance), 10 < RR ≤ 100 (moderate resistance), and
RR > 100 (high resistance).

3.2. Developmental Duration and Fecundity of SulR and SS S. miscanthi Populations

The developmental duration, longevity, and fecundity of the SulR and SS populations
are presented in Table 2. There were no significant differences between the SulR and SS
S. miscanthi populations regarding the developmental times, including the first, second, and
third nymph stages (L1, L2, and L3, respectively), the reproductive period, adult longevity,
or total longevity (p > 0.05). However, the fourth nymph stage (L4), the whole nymph
stage (pre-adult), adult pre-reproductive period (APRP), and total pre-reproductive period
(TPRP) were 0.36, 0.49, 0.19, and 0.57 days longer for the SulR population than for the SS
population, respectively (p < 0.05). Moreover, on average, the SulR population produced
4.18 fewer offspring per aphid than the SS population (p < 0.05).
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Table 2. Developmental duration and fecundity of sulfoxaflor-susceptible (SS) and sulfoxaflor-
resistant (SulR) Sitobion miscanthi populations.

Parameter a
SS Population SulR Population

p-Value
N b Mean ± SE N Mean ± SE

L1 (d) 120 1.75 ± 0.06 a 120 1.75 ± 0.08 a 0.9705
L2 (d) 113 2.01 ± 0.09 a 112 2.08 ± 0.08 a 0.5565
L3 (d) 110 1.84 ± 0.07 a 109 2.02 ± 0.08 a 0.0940
L4 (d) 109 1.72 ± 0.07 b 103 2.08 ± 0.07 a 0.0005
Pre-adult (d) 109 7.24 ± 0.10 b 103 7.73 ± 0.18 a 0.0173
Adult longevity (d) 109 11.34 ± 0.42 a 103 10.34 ± 0.46 a 0.1075
Total longevity (d) 118 17.66 ± 0.48 a 118 16.93 ± 0.48 a 0.2851
APRP (d) 107 0.45 ± 0.06 b 97 0.64 ± 0.06 a 0.0328
TPRP (d) 107 7.63 ± 0.11 b 97 8.20 ± 0.17 a 0.0055
Reproductive period (d) 109 7.50 ± 0.32 a 103 6.74 ± 0.31 a 0.0889
Fecundity (offspring/female) 109 18.40 ± 0.98 a 103 14.22 ± 1.00 b 0.0031

a L1, first nymph stage; L2, second nymph stage; L3, third nymph stage; L4, fourth nymph stage; Pre-adult,
complete nymph stage; APRP, adult pre-reproductive period; TPRP, total pre-reproductive period. b number of
tested aphids. Data are presented as the mean ± SE. Values in the same row followed by different letters are
significantly different (p < 0.05) from the respective control values.

3.3. Comparison of sxj, lxmx, exj, and vxj between the SulR and SS S. miscanthi Populations

The sxj data for the SulR and SS populations are provided in Figure 1. The differences
in the developmental duration between individuals lead to overlapping stages of devel-
opment. The sxj of the third nymph stage (L3) was higher for the SulR population than
for the SS population, but the opposite pattern was observed for the adult stage (female).
The mx data indicated that both S. miscanthi populations began to produce offspring after
day 5, with peak offspring production on day 9 and no offspring production after day 25
(Figure 2). The lx, mx, and lxmx values were lower for the SulR population than for the SS
population from day 9 to 23, day 6 to 13, and day 6 to 13, respectively (Figure 2), indicating
that the survival rate was lower for the SulR population than for the SS population during
these periods. Additionally, the exj and vxj data were lower for the SulR population than
for the SS population (Figures 3 and 4).
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3.4. Population Life Table Parameters of the SulR and SS S. miscanthi Populations

The life table parameters of the SulR and SS populations are listed in Table 3. There
were no significant differences between the SulR and SS populations regarding T, whereas
R0, r, and λ were significantly lower for the SulR population than for the SS population
(p < 0.05). Moreover, the Rf of the SulR population (0.73) indicated that the high sulfoxaflor
resistance of this population adversely affected fitness.

Table 3. Life table parameters of sulfoxaflor-susceptible (SS) and sulfoxaflor-resistant (SulR) Sitobion
miscanthi populations.

Parameter
SS Population SulR Population

p-Value
n Mean ± SE n Mean ± SE

Net reproductive rate (R0) 120 17.00 ± 1.00 a 120 12.41 ± 0.98 b 0.0011
Mean generation time (T) 120 10.93 ± 0.14 a 120 11.28 ± 0.14 a 0.0790
Intrinsic rate of increase (r) 120 0.26 ± 0.01 a 120 0.22 ± 0.01 b 0.0003
Finite rate of increase (λ) 120 1.30 ± 0.01 a 120 1.25 ± 0.01 b 0.0003
Relative fitness (Rf) a 0.73

a Rf = R0 of the SulR population/R0 of the SS population. Data are presented as the mean ± SE. Values in the
same row followed by different letters are significantly different (p < 0.05) from the respective control values.

4. Discussion

Insecticide-resistant insect strains have been isolated in many studies by the successive
selection with insecticides under laboratory conditions. For example, sulfoxaflor-resistant
strains of A. gossypii [6], M. persicae [17], and N. lugens [8] have been isolated. How-
ever, the importance of specific alleles for the development of insecticide resistance can
only be confirmed in insect populations that evolved their resistance under natural con-
ditions [35]. Therefore, insecticide-resistant field populations are preferable for studies
because of their resistance mechanisms that likely evolved under field conditions [36].
Earlier investigations of field-evolved insecticide resistance involved, for example, Ostrinia
nubilalis resistant to the Cry1Ab toxin [37]; Helicoverpa armigera resistant to the Cry1Ac
toxin [38]; Plutella xylostella resistant to avermectin, spinosad, Bacillus thuringiensis, and
chlorantraniliprole [39–42]; and N. lugens resistant to imidacloprid and ethiprole [43]. In
the current study, a S. miscanthi population that was highly resistant to sulfoxaflor was
obtained from a field.

Sulfoxaflor is a new sulfoximine insecticide that is highly effective against a variety
of sap-feeding insect pests and has not shown cross-resistance with other existing insecti-
cides [1,2,7]. Therefore, it is widely used in the integrated management of pests’ resistance
to insecticides [1]. However, we observed that S. miscanthi field populations may become
highly resistant to sulfoxaflor. Additionally, previous studies have shown that field popu-
lations of N. lugens and A. gossypii have developed low-level resistance to sulfoxaflor in
different regions of China [5,6]. These findings indicate a major challenge for the effective
use of sulfoxaflor in the control of insect pests.

An insect population that has developed resistance to one insecticide may develop
resistance to other insecticides. In this study, the SulR S. miscanthi population exhibited
moderate resistance to beta-cypermethrin and bifenthrin as well as low resistance to chlor-
pyrifos, but it was not resistant to abamectin, imidacloprid, thiamethoxam, or omethoate
(Table 1). In a previous study, a sulfoxaflor-resistant N. lugens strain exhibited a high level
of cross-resistance to thiamethoxam and moderate cross-resistance to imidacloprid, but no
cross-resistance to chlorpyrifos [5]. In another study, a B. tabaci strain resistant to pyrethroid
(deltamethrin) and organophosphate (prophosphate) insecticides was not cross-resistant to
sulfoxaflor, and T. vaporariorum was not cross-resistant to sulfoxaflor and neonicotinoid
(imidacloprid) insecticides [7]. These results indicate that the resistance to sulfoxaflor and
other insecticides is inconsistent among insect species.

It is unlikely that the resistance of S. miscanthi to sulfoxaflor was the result of long-term
insecticide applications because, to the best of our knowledge, sulfoxaflor has not been
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widely and consistently used for the long-term control of wheat aphids in the sample collec-
tion region [21]. In other words, the resistance of the SulR population to beta-cypermethrin
and bifenthrin may be unrelated to its high level of resistance to sulfoxaflor. On the contrary,
the pyrethroids are widely and continuously used for control of wheat aphids in China [21],
and the resistance of field S. miscanthi population to sulfoxaflor are likely to be the result of
selection by pyrethroids. Overall, our findings suggest that the SulR S. miscanthi population
did not become highly resistant to other insecticides in the field. We strongly recommend
that multiple rotations of sulfoxaflor and pyrethroids should be avoided when sulfoxaflor
is used to control S. miscanthi.

The development of insecticide resistance is often accompanied by changes in life
table parameters. In previous studies, the developmental and the pre-adult durations of
sulfoxaflor-resistant A. gossypii and M. persicae strains were shorter than the corresponding
periods in susceptible strains [6,17]. However, these findings are inconsistent with those of
an investigation of the developmental duration of sulfoxaflor-resistant N. lugens strains [44].
In the current study, the L4 and pre-adult stages as well as the APRP and TPRP were signif-
icantly longer for the SulR population than for the SS population (p < 0.05) (Table 2), which
is consistent with the developmental duration of the sulfoxaflor-resistant N. lugens strains.
Although the reproductive period, adult longevity, and total longevity did not significantly
differ between the SulR and SS populations, the fecundity of the SulR population was
significantly lower than that of the SS population (Table 2).

In this study, the sxj, lx, mx, lxmx, exj, and vxj values were lower for the SulR population
than for the SS population (Figures 1–4), suggesting that the development of sulfoxaflor
resistance decreased the survival and reproduction of S. miscanthi. This is in accordance
with the findings of most previous related studies, which revealed that the development
of insecticide resistance is associated with significant disadvantages [9,45]. Therefore, the
sulfoxaflor resistance of the SulR S. miscanthi population adversely affected fitness, likely
because of a trade-off in terms of resource allocation. Although it needs to be confirmed in
further studies, the cross-resistance and fitness reduction indicates metabolic resistance as
more likely to be the type of resistance in this population.

Furthermore, R0, T, r, and λ are important indices for assessing the biological charac-
teristics of insect populations [9]. These indices appear to indicate that insecticide resistance
strongly influences life history traits, which helps to delay the evolution of additional
insecticide resistance [9]. In the current study, T did not differ substantially between the
SulR and SS populations, whereas there were significant differences between the two pop-
ulations regarding R0, r, and λ (p < 0.05). Moreover, the Rf of the SulR population was
0.73 (Table 3). Therefore, the cost of the field-evolved sulfoxaflor resistance of the SulR
S. miscanthi population was a substantial decrease in fitness.

In conclusion, our findings indicate that the S. miscanthi population that is highly
resistant to sulfoxaflor exhibited moderate resistance to beta-cypermethrin and bifenthrin
but exhibited low resistance to chlorpyrifos. In addition, insecticide resistance adversely
affected biological fitness. The extensive use and misuse of chemical insecticides may be
responsible for the rapid evolution of high-level resistance among the insects in the sample
collection region [39]. However, the S. miscanthi field populations developed high levels of
resistance to sulfoxaflor even though this insecticide has not been widely and continuously
used over a prolonged period. This may reflect the diverse ways in which insects develop
insecticide resistance. The field-evolved resistance of S. miscanthi to sulfoxaflor and the
associated mechanisms will need to be more thoroughly investigated.
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