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Simple Summary: The engrailed (en) and invected (inv) paralogs play a fundamental role in arthro-
pod segmentation. Previous research suggests that knockdown of either en or inv in sequentially
segmenting insects leads to an unexpected and variable loss of segments but does not mimic the
segment polarity defects seen in Drosophila en mutants; the consequences for segmentation when both
paralogs are lost have not been reported outside of Drosophila. We analyzed the phenotypes of single
and double knockdowns in the flour beetle Tribolium castaneum. Unlike Drosophila, inv knockdowns
are inviable, consistent with a functional divergence of the paralogs between Tribolium and Drosophila.
We find the Tribolium paralogs are redundant and act synergistically to pattern trunk appendages and
segments. The most common Tribolium double knockdown results in small, limbless larvae that suffer
a loss of a portion of each trunk segment that shares characteristics with segment polarity mutants in
Drosophila. Some of the double knockdown embryos arrest development before germband retraction,
consistent with an underexplored early function for en and inv in the regulation of cell proliferation
or death in sequentially segmenting insects.

Abstract: Engrailed (en) and invected (inv) encode paralogous transcription factors found as a closely
linked tandem duplication within holometabolous insects. Drosophila en mutants segment normally,
then fail to maintain their segments. Loss of Drosophila inv is viable, while loss of both genes results
in asegmental larvae. Surprisingly, the knockdown of Oncopeltus inv can result in the loss or fusion
of the entire abdomen and en knockdowns in Tribolium show variable degrees of segmental loss.
The consequence of losing or knocking down both paralogs on embryogenesis has not been studied
beyond Drosophila. To further investigate the relative functions of each paralog and the mechanism
behind the segmental loss, Tribolium double and single knockdowns of en and inv were analyzed.
The most common cuticular phenotype of the double knockdowns was small, limbless, and open
dorsally, with all but a single, segmentally iterated row of bristles. Less severe knockdowns had
fused segments and reduced appendages. The Tribolium paralogs appear to act synergistically:
the knockdown of either Tribolium gene alone was typically less severe, with all limbs present,
whereas the most extreme single knockdowns mimic the most severe double knockdown phenotype.
Morphological abnormalities unique to either single gene knockdown were not found. inv expression
was not affected in the Tribolium en knockdowns, but hh expression was unexpectedly increased
midway through development. Thus, while the segmental expression of en/inv is broadly conserved
within insects, the functions of en and inv are evolving independently in different lineages.
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1. Introduction

It has long been known that most insect species add their segments sequentially, in con-
trast to the near-simultaneous process in dipteran insects such as Drosophila. The discovery
of the developmental genetic network that regulates Drosophila melanogaster segmentation
has opened the door to the comparative exploration of the molecular basis of segmentation
in insect species lacking the same genetic tools. The Drosophila segmentation genes have
become key tools for understanding the evolution of differences in the mechanisms of
segmentation. Most, but not all, of the Drosophila segmentation genes, are readily identified
across species, yet many of their expression patterns, functions, and regulatory interactions
vary throughout arthropods (reviewed in [1,2]). One exception to this pattern is the class
of genes referred to as segment polarity genes. Particularly noteworthy is the remarkable
conservation of the expression patterns of the segment polarity genes engrailed (en) and/or
invected (inv) that encode paralogous homeodomain-containing transcription factors.

In Drosophila, en and inv function to establish and maintain the posterior compartment
in segments and appendages throughout development [3–5]. en and inv are also known
to function in neurogenesis [6,7], axon targeting [8] wing venation, and butterfly wing
coloration patterning [9–12]. Their expression has been widely examined, most frequently
using the 4D9 antibody that typically recognizes the homeodomain of both proteins [13].
In all species examined, 4D9 expression is detected in a narrow stripe in the posterior
compartment of each segment [14–22]. In those species for which both en and inv expression
has been examined separately, their expression co-localizes during segmentation, with only
minor variance in the onset of expression in antennal and mandibular segments in one
species [15,16,23,24]. The timing of their embryonic expression is thought to coincide with
the ‘phylotypic stage’ of insects—the segmented germband [1].

Further support for the conservation of their function came from comparative analyses
of an early acting feedback loop between wingless (wg), en, and hedgehog (hh) known to
maintain the architecture of the Drosophila segment. wg expressing cells are restricted to the
anterior segmental compartment and secrete wg protein toward the posterior which main-
tains en in the cells within the posterior compartment. In turn, en regulates hh to maintain
wg in the anterior compartment. Failure to maintain this feedback loop results in a failure
to maintain the segment boundaries. Later, wg and en function independently [5,25–29].
This feedback loop is expected to be conserved in other species, and its conservation is
supported by the fact that transplantation of en-expressing cells creates new boundaries
when juxtaposed to cells in the anterior of Oncopeltus segments [30] and more directly
by ectopic expression of wg via a baculovirus vector in Tribolium embryos that leads to
induction of en expression in adjacent cells [31]. In addition, embryos and larvae with the
most severe reduction in the function of Tribolium hh and wg share similarities with one
another [31].

Given the widespread conservation of patterns and timing of expression during a
conserved embryonic stage, as well as support for conserved regulatory interactions, it
was generally assumed that the function of en/inv genes would also be conserved. Con-
sequently, their function in early segmentation, either in single or double loss of function
or knockdown experiments, has not been widely explored. Beyond Drosophila, there is a
single report of Tribolium en knockdowns [32] and a single report of Oncopeltus fasciatus inv
knockdowns [14], (see Supplemental Data Note). In both cases, the results differ from that
expected from Drosophila. Drosophila en mutants are embryonic lethal and have an unusual
phenotype displaying features that affect the cuticular pattern in both a pair-rule and
segmental manner [4,33]. By contrast, Tribolium castaneum en knockdowns result in cuticles
with incomplete or irregular segment boundaries, missing anywhere between 1–11 trunk
segments [32]. Null mutations in the other Drosophila en family paralog inv are viable [34,35].
However, when inv is knocked- down in Oncopeltus fasciatus, the phenotype varies from
segment fusions and poorly demarcated boundaries to larvae in which the entire abdomen
is lost or fused, suggesting segment development from the growth zone might have been
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affected [14]. The Oncopletus inv and Tribolium en knockdown data suggest that en and inv
function in segmental patterning may vary from their described roles in Drosophila.

The en gene has long served as a model for the fate of gene duplications [36]. Duplica-
tions within metazoan lineages have resulted in gene families of one to four copies, in which
the paralogs have different degrees of divergence in expression and function [12,23,37,38].
For example, in zebrafish, subfunctionalization of en duplicates led to differential expres-
sion in pectoral appendages and neurons [36]. In contrast to this widespread divergence
of function between en family paralogs, the degree to which the hexapod en/inv gene
duplication serves redundant functions in segmentation is unknown. When both en and
inv functions are lost in Drosophila, segmentation defects are more severe than those that
result from the loss of either gene alone. The double mutant results in truncated embryos
and a ‘lawn of denticles’, with no apparent segmentation, indicating redundancy of en and
inv in maintaining the structure of the segment in the fruit fly [34]. The effect of the loss or
reduction of function of both genes on segmentation has not been tested in any insect other
than Drosophila.

In Tribolium, the consequences of a reduction in inv function have yet to be reported,
and the consequences for embryonic development due to the knockdown of both en and
inv have not been explored. Through single and double knockdowns of en and inv with
embryonic RNAi (eRNAi), we find support for the previously reported en knockdown phe-
notypes and propose a novel interpretation for the loss of segment phenotype. Our double
knockdowns have disruptions of both anterior-posterior and dorsal-ventral boundaries,
segment fusions, as well as a complete loss of distal leg elements. Severely affected embryos
that develop cuticles are dramatically reduced in size; these highly contracted embryos
retain their full segment number within the CNS, as confirmed with antibody staining. Our
results suggest that en and inv serve redundant functions in gnathic and leg development,
and the late maintenance of segment integrity. Interestingly, a significant portion of the
dsRNAi-treated embryos fail to form cuticles at all, with phenotypes consistent with a
failure to grow. The Tribolium inv or en single RNAi knockdowns result in phenotypically
similar larval defects that are, for the most part, significantly less severe than the RNAi
knockdown of both en and inv. We did not find evidence for functions unique to either par-
alog. Our results are consistent with a model in which the en/inv paralogs act synergistically
to redundantly pattern the embryo.

2. Materials and Methods
2.1. Husbandry, Egg Collections, and Injection Preparations

Tribolium castaneum beetles (Strain GA-1) were maintained on whole-wheat flour
supplemented with yeast (5% whole volume) at 30 ◦C, 40–60% humidity. To collect embryos
for injection, adult beetles were incubated at 30 ◦C on white flour for one hour. Eggs were
collected using stainless-steel mesh sieves (710 µm and 300 µm). Embryos were prepared
for injections after incubating for 4 h at 30 ◦C. They were transferred to a handmade
dechorionation apparatus constructed from a 50 mL plastic centrifuge tube with a large
hole cut in its lid and a piece of mesh tightly secured to allow the eggs to be agitated in
a 5% bleach solution for 2 min and then rinsed in distilled water 3 to 5 times. Eggs were
transferred to a microscope slide using a 5/0 paintbrush and oriented to enable the injection
needle to enter the lateral flank of the egg. The dechorionated eggs adhere sufficiently to
the slide to allow resistance to the injection needle without further manipulation.

2.2. Cloning and dsRNA Synthesis

PCR primers amplified a 477 bp region of en Tc-008952 and a 627 bp of inv Tc-009896
(see Supplemental Note on identification of en/inv orthologs from genome databases).
Amplified fragments were designed to exonic regions, avoiding the homeobox (Figure 1).
To avoid off-target sequences for inv cloning, we performed a BlastN search on NCBI
of the cDNA for our genes, choosing the algorithm “somewhat similar sequences”. We
examined the hits for stretches of base pairs longer than about 15 bp and chose our clones
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to exempt potential overlap with known genes, e.g., in the highly similar homeodomain
area. Our potential Tc-inv RNA fragments were also run through the Deqor software, and
no off-target hits were identified [39]. PCR primers were designed with an optimal size of
roughly 500 bp (as defined by [40]). For the Tc-en RNA fragment, we chose to use a nearly
identical fragment used by [32].

Insects 2023, 14, x FOR PEER REVIEW 4 of 19 
 

 

the cDNA for our genes, choosing the algorithm “somewhat similar sequences”. We ex-
amined the hits for stretches of base pairs longer than about 15 bp and chose our clones to 
exempt potential overlap with known genes, e.g., in the highly similar homeodomain 
area. Our potential Tc-inv RNA fragments were also run through the Deqor software, and 
no off-target hits were identified [39]. PCR primers were designed with an optimal size of 
roughly 500 bp (as defined by [40]). For the Tc-en RNA fragment, we chose to use a nearly 
identical fragment used by [32]. 

 
Figure 1. Description of clones used in this study. Location of dsRNA fragments within the en and 
inv genes. The Tribolium en and inv gene are present in a closely linked tandem duplication shown 
at the top (as previously described in [24]). Exons (E1,2,3) are colored yellow, the homeobox encod-
ing region is colored red, location of the regions cloned and used for dsRNA experiments is shown 
in blue. 

The desired gene fragments were amplified via PCR from genomic DNA. Amplified 
fragments were cloned into the pSC-A-amp/kan PCR cloning vector (Agilent Stratagene 
TA Cloning Kit, Santa Clara, CA, USA) and verified by sequencing (UA Genomics Core, 
Tucson, AZ, USA). Standard PCR reactions were conducted using OneTaq reagents from 
New England Biolabs and primers designed to create a T7 primer sequence on either end 
of the Tc-en and Tc-in clones (for downstream dsRNA synthesis). dsRNA was synthesized 
and purified with the T7 MEGAscript kit (Ambion, Carlsbad, CA, USA). dsRNA solutions 
used for injection included 0.5, 1.0, 1.5 and 2.0 µg/µL each of Tc-en and Tc-in. 

2.3. Microinjections and Needle Preparation 
A Narishige Micromanipulator was used in conjunction with a 1.0 mm × 100 mm thin 

wall glass capillary needle (TW100F-4; WPI, Inc., Sarasota, FL, USA) shaped using a Model 
P-97 Sutter Instruments Co. needle puller. Needles were broken under a dissecting micro-
scope with fine-tip forceps. The injections were carried out using an aspirator tube assem-
bly (Sigma) fitted with a solution-filled 3.5′ glass capillary tube (Drummond). The nitrogen 
gas pressure balance and pressure are first set to pBal = 0.5 PSI and pOut = 28 PSI and 
adjusted as needed. Microinjection was performed under a Leica dissecting scope. For 
embryonic injections, embryos were collected for one hour and then aged at 30 °C for 3 h 
prior to processing for injection. The embryos were injected without any covering. All so-
lutions were injected into the lateral flank of each egg. Once injections were complete, 
embryos were kept on the injection slide, stored on petri dishes filled with 1% agarose 
inside a closed large Tupperware container, and raised to the desired age at 30 °C. To raise 
the embryos to hatchlings the Tupperware containers were opened after the 3rd day of 
incubation to decrease the humidity in the container. 

2.4. qPCR Analysis 
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region is colored red, location of the regions cloned and used for dsRNA experiments is shown
in blue.

The desired gene fragments were amplified via PCR from genomic DNA. Amplified
fragments were cloned into the pSC-A-amp/kan PCR cloning vector (Agilent Stratagene
TA Cloning Kit, Santa Clara, CA, USA) and verified by sequencing (UA Genomics Core,
Tucson, AZ, USA). Standard PCR reactions were conducted using OneTaq reagents from
New England Biolabs and primers designed to create a T7 primer sequence on either end
of the Tc-en and Tc-in clones (for downstream dsRNA synthesis). dsRNA was synthesized
and purified with the T7 MEGAscript kit (Ambion, Carlsbad, CA, USA). dsRNA solutions
used for injection included 0.5, 1.0, 1.5 and 2.0 µg/µL each of Tc-en and Tc-in.

2.3. Microinjections and Needle Preparation

A Narishige Micromanipulator was used in conjunction with a 1.0 mm × 100 mm
thin wall glass capillary needle (TW100F-4; WPI, Inc., Sarasota, FL, USA) shaped using
a Model P-97 Sutter Instruments Co., (Novato, CA, USA) needle puller. Needles were
broken under a dissecting microscope with fine-tip forceps. The injections were carried out
using an aspirator tube assembly (Sigma, St. Louis, MI, USA) fitted with a solution-filled
3.5′ glass capillary tube (Drummond, Birmingham, AL, USA). The nitrogen gas pressure
balance and pressure are first set to pBal = 0.5 PSI and pOut = 28 PSI and adjusted as
needed. Microinjection was performed under a Leica dissecting scope. For embryonic
injections, embryos were collected for one hour and then aged at 30 ◦C for 3 h prior to
processing for injection. The embryos were injected without any covering. All solutions
were injected into the lateral flank of each egg. Once injections were complete, embryos
were kept on the injection slide, stored on petri dishes filled with 1% agarose inside a closed
large Tupperware container, and raised to the desired age at 30 ◦C. To raise the embryos
to hatchlings the Tupperware containers were opened after the 3rd day of incubation to
decrease the humidity in the container.

2.4. qPCR Analysis

For Tc-en qPCR experiments, embryos were injected with either 1 or 2 ug/uL Tc-en at
4 h AEL and collected at later developmental stages, roughly (24, 31, 48, 50 h AEL). Total
RNA was isolated from 50 or more buffer-injected controls and dsRNA-injected eggs using
Trizol (Invitrogen), according to the manufacturer’s instructions. The aqueous phase was
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purified using the NEB Monarch RNA mini-prep kit (NEB #T2010). 10 ng of RNA was used
in each reaction of the NEB Luna Universal One-Step RT-qPCR kit (cat # E3005). RT-qPCR
reactions were carried out in triplicate, and melting curves were examined to ensure single
products. Results were quantified using the CFX Maestro software from Biorad using the
“delta-delta Ct” method and normalized to Histone 3 (H3) transcript levels (Supplemental
Figure S2). Primer sequences used are: H3 F: 5′-CTGCCCTTCCAGAGATTGGT-3′; H3 R:
5′-GAACAGACCCACGAGGTACG-3′; en F: 5′-CGCAGGGACTCTACAACCAC-3′; en R:
5′-CGAGATTTGCCTTCGCTCTC-3′; inv F: 5′-GCAAGCCGAAGAAGGTTGTG-3′; inv R:
5′-TTCTTGACTCGCCTGGTTCG-3′; hh F: 5′-CACTGAAGGACGCATCGGAA-3′; hh R:
5′-GGTTCATCACCGAAATCGCC-3′.

2.5. Cuticle Preparation

Samples were mounted in 1:1 of Sigma Aldrich Lactic Acid ACS reagent ≥85% and
Hoyer’s mounting solution and placed on a heat block set to 60 ◦C for 12–24 h. Samples
were imaged using a Zeiss Axioplan2 and captured with AxioVision 4.8 software at either
10 or 20×. DIC/Nomarski imaging was performed using high-contrast settings.

2.6. Statistical Analysis

The statistical significance of the mean cuticle length was tested by one-way ANOVA,
and statistical significance was defined as p < 0.05. The beetle categories were based on
knockdown type and concentration of knockdown. Two groups were compared at a time
to determine if there was a difference in mean length.

2.7. Embryo Fixation and Immunohistochemistry

Embryos were dechorionated in 5% bleach for 2 min, washed with distilled water
to fully dilute the remaining bleach, and fixed in a 1:1 (v/v) ratio of n-heptane and 4%
formaldehyde, for ~45 min. The fix solution was removed, replaced with ice-cold 100%
MeOH, and shaken vigorously by hand for 2 min. to encourage devitellinization. Embryos
that fell to the bottom were separated as devitellinized; embryos remaining at the interphase
were either sonicated, dissected, or left as whole embryos and stored in 100% methanol.
Immunohistochemistry followed the protocol as described in [13]. Antibodies used were:
4D9—Engrailed/Invected (DSHB) [13]; FP6.87-Ubx-abdA DSHB) [41]. We assume 4D9
detects both En and Inv proteins and FP6.87 detects both Ubx-abdA, although that has not
been directly tested in Tribolium.

3. Results
3.1. Knockdown of Both en and inv Produces a Range of Morphological Defects

The larval cuticles resulting from Tc-en/inv dsRNA-injected embryos showed substan-
tial phenotypic variability. To represent that variability, we grouped larvae into categories
reflecting the severity of segment and appendage loss, bristle pattern, segment fusion, and
dorsal closure defects (Figures 2–4).
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Figure 3. Variety of severe phenotypes resulting from knockdown of both en and inv. (A) Category C
larva with fusing and minimized gnathic and thoracic segments (arrowheads); (B) Category C larva
with a reduced number of segments and incomplete dorsal closure (red circled area) but complete
urogomphi (circled in red). (C) Category D asegmental larva with fused spiracles (blue). Moreover,
note the absence of long bristles, mouthparts, and legs; antennae (circled in yellow) and labrum
(circled in purple) were present. (D) Category D asegmental larva with similar cuticular features to C
but more complete dorsal closure; (E) Category E larvae with secreted cuticle and minimal cuticular
features. All larvae are oriented anterior to the left. Larvae had been injected with 0.5 µg/µL of both
Tc-en and Tc-inv, except for C, which was injected with (1 µg/uL each of Tc-en and Tc-inv). Scale
bar = 50 µm.
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Figure 4. Phenotypic categories resulting from increasing concentration of Tc-en/inv dsRNA injected.
Category A: phenotypically normal; Category B: fully segmented, primarily normal with incomplete
dorsal closure on the anterior thorax, reduced limbs, and minor disruptions of bristle pattern;
Category C: larvae with fused and/or missing segments, a greater degree of incomplete dorsal
closure, and missing appendages; Category D: asegmental larvae with fused tracheal pits, reduced
bristle pattern, and failed dorsal closure; Category E: asegmental, unhatched larvae with minimal or
no cuticular features. Sample sizes are indicated at the top of each bar; concentrations in µg/µL of
dsRNA injected of either en/inv, en, or inv dsRNA are indicated below the bars.

3.1.1. Segment Number

Larvae varied from asegmental to fully segmented, although greater than 75% of the
double knockdowns were asegmental (Figure 4). Category A larvae were phenotypically
normal (Figure 2A,B). Category B larvae were fully segmented (Figure 2C,D). Category
C larvae (Figure 3A,B) were missing between 1–9 trunk segments, with posterior seg-
ments less affected. Categories D and E (Figure 3C–E) were asegmental and included
unhatched larvae.

To examine segmentation and to what degree en/inv were knocked down in the ex-
tremely reduced phenotypes, we fixed embryos at stages prior to the secretion of cuticle and
examined the expression of En/Inv proteins using the 4D9 antibody ([13]; Figure 5A,B) and
expression of Ultrabithorax/abdominal-A using the FP6.87 antibody [41]; Figure 5C–D’).
Wildtype embryos (48–50 h AEL) show standard En/Inv stripes in the posterior of each seg-
ment; expression can be seen in the (3) gnathal, (3) thoracic, and (10) abdominal segments,
as well as in all appendages. The double knockdown is much smaller and has no detectable
En/Inv stripes. The CNS tissue occupies a more extensive amount of the embryo width,
and the tissue has not begun to close dorsally (not shown in image). In the Ubx/abd-A
specimens, a ridge of cells strongly expressing the Ubx/abd-A antigen (arrowhead in B)
runs down the lateral flank of both sides of the embryo, likely correlating to the spiracles
(bright expression surrounding each tracheal pit in the control). A similar ridge appears
in every embryo analyzed and seems to delineate the ventral midline tissues (which have
visible segmental structures) from the lateral flanks (with smoothened appearance), sug-
gesting that segmental expression is still detectable in the CNS but segments in the lateral
flank have fused/lost segmental boundaries. We compared individual z-slices to the z-max
projection, confirming that at least 8 abdominal segments are present in these animals;



Insects 2023, 14, 691 8 of 18

the non-expressing tissue posterior to the final segment was identified as the protruding
hindgut, slightly curled ventrally.

Insects 2023, 14, x FOR PEER REVIEW 8 of 19 
 

 

of the embryo width, and the tissue has not begun to close dorsally (not shown in image). 
In the Ubx/abd-A specimens, a ridge of cells strongly expressing the Ubx/abd-A antigen 
(arrowhead in B) runs down the lateral flank of both sides of the embryo, likely correlating 
to the spiracles (bright expression surrounding each tracheal pit in the control). A similar 
ridge appears in every embryo analyzed and seems to delineate the ventral midline tissues 
(which have visible segmental structures) from the lateral flanks (with smoothened ap-
pearance), suggesting that segmental expression is still detectable in the CNS but seg-
ments in the lateral flank have fused/lost segmental boundaries. We compared individual 
z-slices to the z-max projection, confirming that at least 8 abdominal segments are present 
in these animals; the non-expressing tissue posterior to the final segment was identified 
as the protruding hindgut, slightly curled ventrally. 

 
Figure 5. En/Inv and Ubx-adbA protein expression in wild type and en/inv RNAi knockdowns. (A) 
En/Inv expression in wild-type and (B) en/inv RNAi knockdowns. (C,C’) Ubx-abdA expression in 
wild-type embryos. (D,D′) Ubx-abdA expression in en/inv RNAi knockdowns. Ubx-adbA protein 
expression extends from the posterior of the third thoracic segment through 8 abdominal segments 
in both wild-type and knockdown embryos. (C′,D′) The expression is shown in a single focal plane. 
The arrowhead in D points to fused spiracles. Both WT and knockdown embryos were reared to 48–
50 h AEL. Scale bars = 50µm. 

3.1.2. Larval Length 
larvae resulting from the Tc-en/inv dsRNA injections were significantly shorter (using 

p < 0.05) than buffer-injected controls along the AP axis (Figure 6). The reduction in size 
along the AP axis can be attributed to several independent features of the phenotype: (1) 
Intrasegmental tissue loss: the loss of bristle and naked cuticle pattern elements suggests 
a loss of a significant portion of many, if not most, of the segments (Figure 7). (2) Segment 
fusions: fusions were detected by the presence of fused tracheal pits on the ventral and 
lateral surfaces (Figures 3C,D, 5B,D, and 7B). Further evidence of segment fusion was seen 
dorsally, where rows of bristles from two to four segments were observed to converge 
along the midline (not shown). Posterior segments fused less frequently: in category C, 

Figure 5. En/Inv and Ubx-adbA protein expression in wild type and en/inv RNAi knockdowns.
(A) En/Inv expression in wild-type and (B) en/inv RNAi knockdowns. (C,C’) Ubx-abdA expression
in wild-type embryos. (D,D’) Ubx-abdA expression in en/inv RNAi knockdowns. Ubx-adbA protein
expression extends from the posterior of the third thoracic segment through 8 abdominal segments in
both wild-type and knockdown embryos. (C’,D’) The expression is shown in a single focal plane.
The arrowhead in (D) points to fused spiracles. Both WT and knockdown embryos were reared to
48–50 h AEL. Scale bars = 50µm.

3.1.2. Larval Length

Larvae resulting from the Tc-en/inv dsRNA injections were significantly shorter (using
p < 0.05) than buffer-injected controls along the AP axis (Figure 6). The reduction in size
along the AP axis can be attributed to several independent features of the phenotype:
(1) Intrasegmental tissue loss: the loss of bristle and naked cuticle pattern elements suggests
a loss of a significant portion of many, if not most, of the segments (Figure 7). (2) Segment
fusions: fusions were detected by the presence of fused tracheal pits on the ventral and
lateral surfaces (Figure 3C,D, Figure 5B,D and Figure 7B). Further evidence of segment
fusion was seen dorsally, where rows of bristles from two to four segments were observed
to converge along the midline (not shown). Posterior segments fused less frequently: in
category C, the segment fusions left the two most posterior abdominal segments unaffected
or much less affected than the anterior abdominal and thoracic segments (Figure 3A,B).
(3) Reduction in the size of the head: The head was severely reduced in size in all but
Category B embryos.
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Figure 6. Reduction in length as a function of dsRNA injected. All concentrations of dsRNA used in
single or double knockdowns led to a significant reduction in length (p < 0.05) relative to controls.
Within each group, only en 0.5 µg/µL relative to either en 1.0 µg/µL or en 1.5 µg/µL led to significant
differences in length, indicated with an asterisk. No inv or en/inv dsRNA concentrations led to larvae
significantly different in length from one another. dsRNA concentrations are shown in µg/µL.
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Figure 7. Model for loss of repeated segmental elements and segment fusions. (A) Dorsal view,
buffer-injected control. Spiracles are circled in green; (B) en/inv dsRNA injected (1 µg/µL) category D
larvae with repeating rows of short bristles missing intervening regions of the naked cuticle. Fused
spiracles are circled in green. Ant, antennae, Lb, labrum. (C) Diagram of loss of cuticular phenotypes
in the severely affected double knockdowns.

3.1.3. Appendage Formation

Gnathal and thoracic appendages were either lost or significantly reduced in size in all
categories (Figures 3, 5 and 7). The labrum and antennae were present but reduced in size
(Figures 3, 5 and 7). Urogomphi were unaffected in all but the most severely affected larvae
(e.g., Figure 3C). Appendage loss was independent of segment loss-appendages were lost,
or present only as small buds, even in embryos with normal segmentation.
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3.1.4. Bristle Patterns

Bristle patterns highlighted abnormalities in segment formation. A hallmark feature of
Category D phenotypes was the repeated basiconic sensilla (as described in [41]) covering
the lateral and dorsal cuticle, atypically uninterrupted by the naked cuticle (Figures 3C
and 7). In Category C larvae, rows of bristles were atypically discontinuous along the
dorsal midline (Figure 3B). Category E (Figure 3E) larvae were covered in primarily naked
cuticles and only a few bristles of uncertain segmental origin could be identified.

3.1.5. Dorsal Closure

The majority of larvae resulting from the Tc-en/inv eRNAi also failed to complete dorsal
closure. The least affected larvae failed to close along the dorsal midline of the first thoracic
segment (Figure 2C). The most severely affected larvae failed to close at any position along
the AP axis. This could also be seen in the examination of late-stage embryos.

3.1.6. Failure to Form Cuticle

The most extremely affected embryos (Figure 8; on average 22.5% of double knock-
downs; 10.25% of single knockdowns) lacked cuticles altogether. Embryonic tissue could
be identified in these embryos but was frequently curled and spiraled within the vitelline
membrane. Some embryos had an obvious anteroposterior polarity but had no distinguish-
able axial characteristics. Some appeared to have formed extensions orthogonal to the A/P
axis (Figure 8D,F).
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Figure 8. Representative images of embryos that failed to secrete cuticle. (A–F) Embryos stained
with DAPI. Embryo (F) is shown within the vitelline membrane, the remaining panels are cropped to
isolate the embryo. Dotted lines in (D) indicate unusual orthogonal axes, also shown visibly in (F).
Scale bars = 50 µm.

3.2. Single Knockdowns

Single knockdowns of either Tc-en or Tc-inv resulted in similar phenotypes, although
the inv dsRNA-injected individuals were more frequently normal under all concentrations
of dsRNA injected (Figure 4). Even at the highest concentrations of injected dsRNA for
either gene, the larvae were primarily normal morphologically, with minor patterns of
bristle fusions (Category A,B; Figure 9A,B). More severe phenotypes included primarily
irregularly shaped appendages, with a bloated appearance (Figure 9C,D). The more severe
phenotypes were overall smaller in size, with greater deformation of the appendages, and
missing or fused segments (Figure 9E,F,H). A single inv dsRNA injected larva developed
nearly normal gnathic and thoracic appendages but lacked an abdomen Figure 9H). Unlike
the double knockdowns, except in the most extreme phenotypes (Figure 9G) appendages
were present. Category D phenotypes (Figure 3C,D and Figure 7B) were not observed in
the single knockdowns.
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Figure 9. No qualitative differences between Tc-en and Tc-inv single knockdowns. (A) 2.0 µg/µL
Tc-en dsRNA injected larva with abdominal bristle fusions (yellow* and small arrowheads) and minor
failure to complete dorsal closure (large arrowhead); (B) 1.5 µg/µL Tc-inv dsRNA injected larva
with fusing segments A4-A5 and A5-A6 (yellow*); (C) 2.0 ug/uL Tc-en dsRNA injected larva with
misshapen limbs (T2 legs colored); (D) 0.5 µg/µL inv dsRNA injected larva with misshapen limbs
(T1 legs colored); (E) 2.0 µg/µL Tc-en larva with misshapen limbs, failed dorsal closure and missing
abdominal segment; (F) 1.5 µg/µL Tc-inv dsRNA injected larva with segmental fusion, missing
abdominal segment; (G) 2.0 µg/µL Tc-en dsRNA injected amorphous cuticle highlighted in green;
(H) 1.5 µg/µL Tc-inv dsRNA injected larva very reduced in size, with the vestigial abdomen.
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3.2.1. Asegmental embryos at High dsRNA Tc-en or Tc-inv Concentrations

In double knockdowns, the loss of all segmentation, bristle pattern, and morphology
was observed in approximately 28% of samples injected with 1 µg/µL Tc-en/inv dsRNA
(Category E). This phenotype was not observed in single gene knockdown larvae resulting
from 0.5 or 1 µg/µL Tc-en or Tc-inv dsRNA injections, but became more prevalent with
increasing concentrations of dsRNA injected: at 1.5 µg/µL Tc-inv dsRNA injected 3%
of the sample were category E, at 2.0 µg/µL Tc-en dsRNA injected 11% of the sample
were Category E. These larvae were inviable and lacked visible morphological structures.
However, the cuticle preparations of these samples revealed that the cuticle was present,
frequently with an axial polarity and a few random bristles (Figure 9G).

3.2.2. En Single Knockdowns Do Not Significantly Affect inv mRNA Levels

As noted above, Drosophila en mutations lead to the loss of inv function and some
Drosophila en enhancer reporters fail to express in inv mutants [34,35]. Thus, a potential
explanation for the asegmental phenotypes observed at high concentrations of dsRNA
injected in the single knockdowns (Figure 9H) could be due to a regulatory interaction
between en and inv in Tribolium. To test this idea, we performed qPCR on en eRNAi embryos
at a series of stages (24, 31, and 48 h AEL) during germband retraction. All stages showed
significant knockdown of en. We found no evidence of a significant modification of inv
expression in the en knockdowns (Figure 10). We also measured changes in hh expression
in the en knockdowns: hh levels would be maintained in the absence of en if Inv protein
redundantly regulates hh in the absence of En protein. hh mRNA levels were unchanged at
24 or 48 h AEL but unexpectedly rose slightly at the 31 h AEL timepoint (Figure 10).

Insects 2023, 14, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 10. Effects on expression of inv and hh in en knockdowns. en knockdown is initiated at 4 
HAEL and examined at progressively later stages during which the phenotype is more pronounced. 
At each time point, en expression is reduced (black columns) and inv (red) is not affected, but hh 
(blue) levels are statistically increased in the 31 h sample (error bars are SD and significance (*) is p 
< 0.05). 

4. Discussion 
4.1. Paralog Redundancy—A Model for the Tribolium en/inv Paralogs Acting Synergistically 

We find that the Tribolium en/inv paralogs have redundant functions in the embryo. 
Knockdown of either Tribolium en or inv function results in nearly identical phenotypes. 
Larvae from both single knockdowns are viable at lower concentrations of dsRNAi-in-
jected but inviable at higher concentrations. Their functional redundancy is further sup-
ported by the qPCR analysis of en knockdowns. Based on the En-Hh/Wg feedback loop in 
Drosophila, the En protein would be expected to activate hh gene expression [42]. Tran-
scription of hh did not show a decrease in the en knockdowns, consistent with the idea 
that inv can compensate for the loss of en function. 

We do not find that en/inv are fully redundant. A small percentage of the knockdown 
of either gene alone induces an extreme phenotype with very little discernible pattern in 
the cuticle (red in Figure 4). A similar phenotype is also seen in the double knockdown, 
albeit at much higher penetrance than in the single knockdowns. This extreme phenotype 
does not seem to result from direct or indirect regulation between the paralogs, as is 
known to occur in Drosophila [29,34,35]. Our qPCR analysis of en knockdowns did not 
show a consequent decrease in the transcription of inv from 24 to 48 hAEL, as would have 
been expected from a requirement for either paralog in the continued transcription of the 
other. An alternate explanation to shared regulation is that the en/inv paralogs act syner-
gistically. The double knockdown phenotype is observed when either gene or the combi-
nation of both genes, is reduced below a threshold. Similar synergistic effects between 
paralogs have been reported in Arabidopsis thaliana and Caenorhabditis elegans [43,44]. In 

Figure 10. Effects on expression of inv and hh in en knockdowns. en knockdown is initiated at 4 h
AEL and examined at progressively later stages during which the phenotype is more pronounced. At
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levels are statistically increased in the 31 h sample (error bars are SD and significance (*) is p < 0.05).
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4. Discussion
4.1. Paralog Redundancy—A Model for the Tribolium en/inv Paralogs Acting Synergistically

We find that the Tribolium en/inv paralogs have redundant functions in the embryo.
Knockdown of either Tribolium en or inv function results in nearly identical phenotypes.
Larvae from both single knockdowns are viable at lower concentrations of dsRNAi-injected
but inviable at higher concentrations. Their functional redundancy is further supported by
the qPCR analysis of en knockdowns. Based on the En-Hh/Wg feedback loop in Drosophila,
the En protein would be expected to activate hh gene expression [42]. Transcription of
hh did not show a decrease in the en knockdowns, consistent with the idea that inv can
compensate for the loss of en function.

We do not find that en/inv are fully redundant. A small percentage of the knockdown
of either gene alone induces an extreme phenotype with very little discernible pattern in
the cuticle (red in Figure 4). A similar phenotype is also seen in the double knockdown,
albeit at much higher penetrance than in the single knockdowns. This extreme phenotype
does not seem to result from direct or indirect regulation between the paralogs, as is known
to occur in Drosophila [29,34,35]. Our qPCR analysis of en knockdowns did not show a
consequent decrease in the transcription of inv from 24 to 48 h AEL, as would have been
expected from a requirement for either paralog in the continued transcription of the other.
An alternate explanation to shared regulation is that the en/inv paralogs act synergistically.
The double knockdown phenotype is observed when either gene or the combination of
both genes, is reduced below a threshold. Similar synergistic effects between paralogs
have been reported in Arabidopsis thaliana and Caenorhabditis elegans [43,44]. In our results,
this postulated threshold is reached at lower concentrations of en dsRNA injected than inv
dsRNA. We speculate that the different responses in the en and inv single knockdowns are
primarily due to quantitative differences in expression. Because inv mRNA is expressed
at much higher levels in the typically developing embryo (Supplemental Figure S3), it is
likely more difficult to reach that threshold with inv-only dsRNA injections.

One caveat to our model is the absence of the most common double knockdown
phenotype (Category D; Figure 3C,D and Figure 7B) from the single knockdowns. This
remains unexplained. We note that [32] reports en knockdown larvae from pupal RNA that
appear to have a similar phenotype, although the bristle pattern was not described.

Redundancy between the en/inv paralogs is also seen in Drosophila. The en/inv re-
dundancy may contribute to both developmental robustness as has been suggested for
other gene paralogs [45] as well as the observed evolutionary stability of the segment
polarity pathway. While both species have maintained redundant functions of the en/inv
paralogs, comparing the relative function of each paralog between the two species sug-
gests the degree of genetic redundancy between the two paralogs varies between Tribolium
and Drosophila.

4.2. En/Inv Are Redundant for Gnathal and Thoracic Appendage Formation

A requirement for an interaction between en and wg in the establishment of the
proximal-distal axis of the leg has been well documented in flies [46–48]. Here we demon-
strate that this interaction can be fulfilled redundantly by either en or inv in Tribolium.
Gnathal and thoracic appendage formation was absent or severely reduced in the Tc-en/inv
RNAi larvae but present, albeit at times misshapen, in the single knockdowns (except for
the most extremely affected phenotypes). Similarly, appendages were present when inv
function was knocked down in Oncopeltus [14], and in a separate study of en knockdowns
in Tribolium [32]. All these results are consistent with Tc-en/inv having redundant roles
in larval appendage development, a phenotype that would not be observed in legless
Drosophila larvae.

The labrum and antennae were present, although sometimes with an irregular shape,
in not only single knockdowns but also the double en/inv knockdowns that lacked legs.
Similar differential effects on labrum and antennae vs. other appendages were reported
for Tc-wg knockdowns [49] (note that [50] shows a weaker effect) and the Dll expression
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in the Tribolium labrum has been shown to be independent of either Tc-wg and Tc-hh sig-
naling [50]. Interestingly, antennae are lost in Tc-hh pRNAi in both Tribolium [51] and
Oncopeltus [52]. This suggests that Hh signaling is maintained in the antennae by transcrip-
tional activity other than en/inv. Antennae have long been considered serially homologous
to limbs [53–57] and it has been suggested that the labrum is also appendicular in origin
(e.g., [58–60]). However, accumulating developmental evidence has been used to argue
against considering the head and thoracic appendages as serial homologs [52]. Our ev-
idence provides further developmental genetic support for the proposed lack of serial
homology between head and thoracic appendages [52].

4.3. En/Hh-Wg—Regulatory Loop

In Drosophila, en and inv expression in the posterior of each segment expression is
initiated by the transient activity of the upstream pair-rule genes, then regulated by a
positive feedback loop with adjacent wingless (wg) expressing cells, mediated by the Hh
signal, as described above. While our data do not directly address the feedback loop,
careful analysis of the timing of misregulation in en/inv, hh, or wg knockdowns suggests
additional players or regulatory interactions are involved in the maintenance of segment
boundaries in Tribolium. While wg expression is lost early in Tribolium en knockdowns [32].
En/Inv expression (measured by 4D9 antibody) is maintained throughout gastrulation
and germband extension in Tc-hh knockdowns [51]. This extended maintenance of the
4D9 stripes in the hh knockdowns suggests the presence of additional cues that function to
maintain En prior to germband retraction. It is unlikely this is prolonged maintenance from
most of the pair-rule genes as their expression has abated by this time. A second ortholog
of the pair-rule gene, sloppy-paired2, has been shown to have an expression that resembles
that of a segment polarity gene in the red flour beetle [61]. It is possible that slp-2 also
functions in the maintenance of segment boundaries during germband extension. We also
unexpectedly observed an increase in hh expression at 31 h AEL in en knockdowns. While
this increase in hh remains unexplained, it implies a role for En in repressing hh expression
at the completion of the germband extension. Further experiments are needed to resolve
the regulatory interactions between En and hh over time and the complete gene regulatory
network that maintains segment boundaries in Tribolium embryos.

4.4. Loss of Intersegmental Cellular Identity vs. Segment Polarity

We have found it curious that while the evidence suggests conservation of at least parts
of the Wg-Hh feedback loop that maintains segment polarity, comparative analyses of the
knockdown of segment polarity genes hh and wg in Tribolium have emphasized that these
knockdowns do not manifest a change in the polarity of the Tribolium segmental pattern.
Drosophila en mutations, while classified as segment polarity mutants, are an exception to
the generality of intrasegmental polarity reversals within mutations of the segment polarity
genes. The embryonic phenotype of some Drosophila en mutants have a significant deletion
of the posterior region of even-numbered segments, which led to its initial characterization
as a pair-rule gene [24]. However, Drosophila en mutants also affects the anterior margin of
every segment, thus en was unique among the pair-rule genes by having both segmental
and pair-rule phenotypes [33]. Stronger en mutant alleles result in embryos with apparent
segment fusions accompanied by an increase in cell death in portions of the segment [4,62].
While we have not documented cell death in the phenotype, our analysis of the cuticular
bristle pattern in the Tribolium en/inv double knockdowns demonstrates both segment
fusions (Figure 4, Category C/D) and a deletion of a portion of the segment (Figure 4,
Category D), consistent with a broadly defined segment polarity phenotype.

4.5. Is the Segment Addition Process Disrupted?

One of our original questions based on previously published knockdowns of Tribolium
en and Oncopletus inv was what role, if any, en/inv play in the segment addition process in
sequentially segmenting insects. Both previous reports document a loss of one-to-many
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segments in the RNAi knockdowns, which we confirm in our own single and double en/inv
knockdowns. Our Ubx-abdA expression pattern verifies that, in at least one class of the
knockdowns, all trunk segments were made but likely become reduced in size during
germband retraction, as is the case in Drosophila en mutants [4]. Further analyses of embryo
growth over time, with concomitant analyses of cell behaviors and segmentation gene
expression, will resolve whether the other classes of embryos preferentially lose segments
late in development or fail to add them initially.

We also found that a significant number of double knockdowns fail to form larval
cuticle (Figure 8). These embryos have elongated but consist of significantly fewer cells
than wild-type or less affected embryos. This failure to grow could result from a primary
role for en/inv in cell division or a secondary consequence of increased cell death. That
the tissue was frequently found coiled in a spiral is consistent with a disruption of cell
adhesion, another proposed function of Drosophila en [15], and an early disruption of
adhesion may have impacted subsequent growth. We speculate that the empty cuticle
phenotype observed in both single and double en/inv knockdowns (Category E) may also
be related to a failure to grow; embryos may have grown sufficiently enough to secrete
cuticle but have insufficient growth to complete normal intrasegmental patterning that
governs the bristle pattern.

A function for zygotic en in organizing the pre-cellular blastoderm, earlier than its
function in patterning the posterior compartment, is known in Drosophila [62]. Drosophila
en has also been shown to play a role in the control of growth in the wing disc in a Hh
independent mechanism, although in that circumstance its loss of function results in an
increase in cell proliferation [63]. Most curious in our phenotypes was the appearance of
extensions orthogonal to the primary axis in these embryos. It is possible that the disrupted
expression of en/inv is causing bifurcations from the primary axis such as that observed as
a consequence of the disruption of en or wg in Drosophila imaginal discs [64–66]. Thus, as in
Drosophila, en likely has more complex roles than maintaining identity in the cells in the
posterior of the segment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects14080691/s1 Figure S1: Phylogenetic Tree of en/inv Ensembl
hits. PhylML tree with bootstrap values made with ClustalW based on sequence alignment of en or
inv-like hits from Ensembl aligned with putative orthologs from NCBI Blast hits; Figure S2: Cycle
number of the H3 reference gene at different embryonic stages in Tribolium. Each timepoint represents the
unmodified H3 cycle number from the qPCR averaged across both control and experimental trials.
We found in this experiment (and many additional qPCR trials) that the H3 gene gave very consistent
cycle numbers across stages and across trials; Figure S3: Relative expression levels of en and inv mRNA
during the first 24 h of development. inv mRNA (red) has a slightly earlier onset of expression, a greater
rate of increase, and ultimately reaches roughly 4× the level of expression than en mRNA (blue).
At 30 ◦C at 10 h AEL the embryo is in the later blastoderm, when no stripes of En/Inv protein are
detectable, by 13 h AEL the germband has formed and is fully extended, with a full complement of
10 abdominal segments by 24 h. These data are from unpublished work describing the wild-type
Tribolium transcriptome at the onset of gastrulation through the end of segmentation. Source: [67–69].
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